| //===- SCFToControlFlow.cpp - SCF to CF conversion ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a pass to convert scf.for, scf.if and loop.terminator |
| // ops into standard CFG ops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h" |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/SCF/IR/SCF.h" |
| #include "mlir/Dialect/SCF/Transforms/Transforms.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/Passes.h" |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_SCFTOCONTROLFLOWPASS |
| #include "mlir/Conversion/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| using namespace mlir::scf; |
| |
| namespace { |
| |
| struct SCFToControlFlowPass |
| : public impl::SCFToControlFlowPassBase<SCFToControlFlowPass> { |
| void runOnOperation() override; |
| }; |
| |
| // Create a CFG subgraph for the loop around its body blocks (if the body |
| // contained other loops, they have been already lowered to a flow of blocks). |
| // Maintain the invariants that a CFG subgraph created for any loop has a single |
| // entry and a single exit, and that the entry/exit blocks are respectively |
| // first/last blocks in the parent region. The original loop operation is |
| // replaced by the initialization operations that set up the initial value of |
| // the loop induction variable (%iv) and computes the loop bounds that are loop- |
| // invariant for affine loops. The operations following the original scf.for |
| // are split out into a separate continuation (exit) block. A condition block is |
| // created before the continuation block. It checks the exit condition of the |
| // loop and branches either to the continuation block, or to the first block of |
| // the body. The condition block takes as arguments the values of the induction |
| // variable followed by loop-carried values. Since it dominates both the body |
| // blocks and the continuation block, loop-carried values are visible in all of |
| // those blocks. Induction variable modification is appended to the last block |
| // of the body (which is the exit block from the body subgraph thanks to the |
| // invariant we maintain) along with a branch that loops back to the condition |
| // block. Loop-carried values are the loop terminator operands, which are |
| // forwarded to the branch. |
| // |
| // +---------------------------------+ |
| // | <code before the ForOp> | |
| // | <definitions of %init...> | |
| // | <compute initial %iv value> | |
| // | cf.br cond(%iv, %init...) | |
| // +---------------------------------+ |
| // | |
| // -------| | |
| // | v v |
| // | +--------------------------------+ |
| // | | cond(%iv, %init...): | |
| // | | <compare %iv to upper bound> | |
| // | | cf.cond_br %r, body, end | |
| // | +--------------------------------+ |
| // | | | |
| // | | -------------| |
| // | v | |
| // | +--------------------------------+ | |
| // | | body-first: | | |
| // | | <%init visible by dominance> | | |
| // | | <body contents> | | |
| // | +--------------------------------+ | |
| // | | | |
| // | ... | |
| // | | | |
| // | +--------------------------------+ | |
| // | | body-last: | | |
| // | | <body contents> | | |
| // | | <operands of yield = %yields>| | |
| // | | %new_iv =<add step to %iv> | | |
| // | | cf.br cond(%new_iv, %yields) | | |
| // | +--------------------------------+ | |
| // | | | |
| // |----------- |-------------------- |
| // v |
| // +--------------------------------+ |
| // | end: | |
| // | <code after the ForOp> | |
| // | <%init visible by dominance> | |
| // +--------------------------------+ |
| // |
| struct ForLowering : public OpRewritePattern<ForOp> { |
| using OpRewritePattern<ForOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ForOp forOp, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| // Create a CFG subgraph for the scf.if operation (including its "then" and |
| // optional "else" operation blocks). We maintain the invariants that the |
| // subgraph has a single entry and a single exit point, and that the entry/exit |
| // blocks are respectively the first/last block of the enclosing region. The |
| // operations following the scf.if are split into a continuation (subgraph |
| // exit) block. The condition is lowered to a chain of blocks that implement the |
| // short-circuit scheme. The "scf.if" operation is replaced with a conditional |
| // branch to either the first block of the "then" region, or to the first block |
| // of the "else" region. In these blocks, "scf.yield" is unconditional branches |
| // to the post-dominating block. When the "scf.if" does not return values, the |
| // post-dominating block is the same as the continuation block. When it returns |
| // values, the post-dominating block is a new block with arguments that |
| // correspond to the values returned by the "scf.if" that unconditionally |
| // branches to the continuation block. This allows block arguments to dominate |
| // any uses of the hitherto "scf.if" results that they replaced. (Inserting a |
| // new block allows us to avoid modifying the argument list of an existing |
| // block, which is illegal in a conversion pattern). When the "else" region is |
| // empty, which is only allowed for "scf.if"s that don't return values, the |
| // condition branches directly to the continuation block. |
| // |
| // CFG for a scf.if with else and without results. |
| // |
| // +--------------------------------+ |
| // | <code before the IfOp> | |
| // | cf.cond_br %cond, %then, %else | |
| // +--------------------------------+ |
| // | | |
| // | --------------| |
| // v | |
| // +--------------------------------+ | |
| // | then: | | |
| // | <then contents> | | |
| // | cf.br continue | | |
| // +--------------------------------+ | |
| // | | |
| // |---------- |------------- |
| // | V |
| // | +--------------------------------+ |
| // | | else: | |
| // | | <else contents> | |
| // | | cf.br continue | |
| // | +--------------------------------+ |
| // | | |
| // ------| | |
| // v v |
| // +--------------------------------+ |
| // | continue: | |
| // | <code after the IfOp> | |
| // +--------------------------------+ |
| // |
| // CFG for a scf.if with results. |
| // |
| // +--------------------------------+ |
| // | <code before the IfOp> | |
| // | cf.cond_br %cond, %then, %else | |
| // +--------------------------------+ |
| // | | |
| // | --------------| |
| // v | |
| // +--------------------------------+ | |
| // | then: | | |
| // | <then contents> | | |
| // | cf.br dom(%args...) | | |
| // +--------------------------------+ | |
| // | | |
| // |---------- |------------- |
| // | V |
| // | +--------------------------------+ |
| // | | else: | |
| // | | <else contents> | |
| // | | cf.br dom(%args...) | |
| // | +--------------------------------+ |
| // | | |
| // ------| | |
| // v v |
| // +--------------------------------+ |
| // | dom(%args...): | |
| // | cf.br continue | |
| // +--------------------------------+ |
| // | |
| // v |
| // +--------------------------------+ |
| // | continue: | |
| // | <code after the IfOp> | |
| // +--------------------------------+ |
| // |
| struct IfLowering : public OpRewritePattern<IfOp> { |
| using OpRewritePattern<IfOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(IfOp ifOp, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| struct ExecuteRegionLowering : public OpRewritePattern<ExecuteRegionOp> { |
| using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ExecuteRegionOp op, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| struct ParallelLowering : public OpRewritePattern<mlir::scf::ParallelOp> { |
| using OpRewritePattern<mlir::scf::ParallelOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(mlir::scf::ParallelOp parallelOp, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| /// Create a CFG subgraph for this loop construct. The regions of the loop need |
| /// not be a single block anymore (for example, if other SCF constructs that |
| /// they contain have been already converted to CFG), but need to be single-exit |
| /// from the last block of each region. The operations following the original |
| /// WhileOp are split into a new continuation block. Both regions of the WhileOp |
| /// are inlined, and their terminators are rewritten to organize the control |
| /// flow implementing the loop as follows. |
| /// |
| /// +---------------------------------+ |
| /// | <code before the WhileOp> | |
| /// | cf.br ^before(%operands...) | |
| /// +---------------------------------+ |
| /// | |
| /// -------| | |
| /// | v v |
| /// | +--------------------------------+ |
| /// | | ^before(%bargs...): | |
| /// | | %vals... = <some payload> | |
| /// | +--------------------------------+ |
| /// | | |
| /// | ... |
| /// | | |
| /// | +--------------------------------+ |
| /// | | ^before-last: |
| /// | | %cond = <compute condition> | |
| /// | | cf.cond_br %cond, | |
| /// | | ^after(%vals...), ^cont | |
| /// | +--------------------------------+ |
| /// | | | |
| /// | | -------------| |
| /// | v | |
| /// | +--------------------------------+ | |
| /// | | ^after(%aargs...): | | |
| /// | | <body contents> | | |
| /// | +--------------------------------+ | |
| /// | | | |
| /// | ... | |
| /// | | | |
| /// | +--------------------------------+ | |
| /// | | ^after-last: | | |
| /// | | %yields... = <some payload> | | |
| /// | | cf.br ^before(%yields...) | | |
| /// | +--------------------------------+ | |
| /// | | | |
| /// |----------- |-------------------- |
| /// v |
| /// +--------------------------------+ |
| /// | ^cont: | |
| /// | <code after the WhileOp> | |
| /// | <%vals from 'before' region | |
| /// | visible by dominance> | |
| /// +--------------------------------+ |
| /// |
| /// Values are communicated between ex-regions (the groups of blocks that used |
| /// to form a region before inlining) through block arguments of their |
| /// entry blocks, which are visible in all other dominated blocks. Similarly, |
| /// the results of the WhileOp are defined in the 'before' region, which is |
| /// required to have a single existing block, and are therefore accessible in |
| /// the continuation block due to dominance. |
| struct WhileLowering : public OpRewritePattern<WhileOp> { |
| using OpRewritePattern<WhileOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(WhileOp whileOp, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| /// Optimized version of the above for the case of the "after" region merely |
| /// forwarding its arguments back to the "before" region (i.e., a "do-while" |
| /// loop). This avoid inlining the "after" region completely and branches back |
| /// to the "before" entry instead. |
| struct DoWhileLowering : public OpRewritePattern<WhileOp> { |
| using OpRewritePattern<WhileOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(WhileOp whileOp, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| /// Lower an `scf.index_switch` operation to a `cf.switch` operation. |
| struct IndexSwitchLowering : public OpRewritePattern<IndexSwitchOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(IndexSwitchOp op, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| /// Lower an `scf.forall` operation to an `scf.parallel` op, assuming that it |
| /// has no shared outputs. Ops with shared outputs should be bufferized first. |
| /// Specialized lowerings for `scf.forall` (e.g., for GPUs) exist in other |
| /// dialects/passes. |
| struct ForallLowering : public OpRewritePattern<mlir::scf::ForallOp> { |
| using OpRewritePattern<mlir::scf::ForallOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(mlir::scf::ForallOp forallOp, |
| PatternRewriter &rewriter) const override; |
| }; |
| |
| } // namespace |
| |
| LogicalResult ForLowering::matchAndRewrite(ForOp forOp, |
| PatternRewriter &rewriter) const { |
| Location loc = forOp.getLoc(); |
| |
| // Start by splitting the block containing the 'scf.for' into two parts. |
| // The part before will get the init code, the part after will be the end |
| // point. |
| auto *initBlock = rewriter.getInsertionBlock(); |
| auto initPosition = rewriter.getInsertionPoint(); |
| auto *endBlock = rewriter.splitBlock(initBlock, initPosition); |
| |
| // Use the first block of the loop body as the condition block since it is the |
| // block that has the induction variable and loop-carried values as arguments. |
| // Split out all operations from the first block into a new block. Move all |
| // body blocks from the loop body region to the region containing the loop. |
| auto *conditionBlock = &forOp.getRegion().front(); |
| auto *firstBodyBlock = |
| rewriter.splitBlock(conditionBlock, conditionBlock->begin()); |
| auto *lastBodyBlock = &forOp.getRegion().back(); |
| rewriter.inlineRegionBefore(forOp.getRegion(), endBlock); |
| auto iv = conditionBlock->getArgument(0); |
| |
| // Append the induction variable stepping logic to the last body block and |
| // branch back to the condition block. Loop-carried values are taken from |
| // operands of the loop terminator. |
| Operation *terminator = lastBodyBlock->getTerminator(); |
| rewriter.setInsertionPointToEnd(lastBodyBlock); |
| auto step = forOp.getStep(); |
| auto stepped = arith::AddIOp::create(rewriter, loc, iv, step).getResult(); |
| if (!stepped) |
| return failure(); |
| |
| SmallVector<Value, 8> loopCarried; |
| loopCarried.push_back(stepped); |
| loopCarried.append(terminator->operand_begin(), terminator->operand_end()); |
| auto branchOp = |
| cf::BranchOp::create(rewriter, loc, conditionBlock, loopCarried); |
| |
| // Let the CondBranchOp carry the LLVM attributes from the ForOp, such as the |
| // llvm.loop_annotation attribute. |
| // LLVM requires the loop metadata to be attached on the "latch" block. Which |
| // is the back-edge to the header block (conditionBlock) |
| SmallVector<NamedAttribute> llvmAttrs; |
| llvm::copy_if(forOp->getAttrs(), std::back_inserter(llvmAttrs), |
| [](auto attr) { |
| return isa<LLVM::LLVMDialect>(attr.getValue().getDialect()); |
| }); |
| branchOp->setDiscardableAttrs(llvmAttrs); |
| |
| rewriter.eraseOp(terminator); |
| |
| // Compute loop bounds before branching to the condition. |
| rewriter.setInsertionPointToEnd(initBlock); |
| Value lowerBound = forOp.getLowerBound(); |
| Value upperBound = forOp.getUpperBound(); |
| if (!lowerBound || !upperBound) |
| return failure(); |
| |
| // The initial values of loop-carried values is obtained from the operands |
| // of the loop operation. |
| SmallVector<Value, 8> destOperands; |
| destOperands.push_back(lowerBound); |
| llvm::append_range(destOperands, forOp.getInitArgs()); |
| cf::BranchOp::create(rewriter, loc, conditionBlock, destOperands); |
| |
| // With the body block done, we can fill in the condition block. |
| rewriter.setInsertionPointToEnd(conditionBlock); |
| auto comparison = arith::CmpIOp::create( |
| rewriter, loc, arith::CmpIPredicate::slt, iv, upperBound); |
| |
| cf::CondBranchOp::create(rewriter, loc, comparison, firstBodyBlock, |
| ArrayRef<Value>(), endBlock, ArrayRef<Value>()); |
| |
| // The result of the loop operation is the values of the condition block |
| // arguments except the induction variable on the last iteration. |
| rewriter.replaceOp(forOp, conditionBlock->getArguments().drop_front()); |
| return success(); |
| } |
| |
| LogicalResult IfLowering::matchAndRewrite(IfOp ifOp, |
| PatternRewriter &rewriter) const { |
| auto loc = ifOp.getLoc(); |
| |
| // Start by splitting the block containing the 'scf.if' into two parts. |
| // The part before will contain the condition, the part after will be the |
| // continuation point. |
| auto *condBlock = rewriter.getInsertionBlock(); |
| auto opPosition = rewriter.getInsertionPoint(); |
| auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition); |
| Block *continueBlock; |
| if (ifOp.getNumResults() == 0) { |
| continueBlock = remainingOpsBlock; |
| } else { |
| continueBlock = |
| rewriter.createBlock(remainingOpsBlock, ifOp.getResultTypes(), |
| SmallVector<Location>(ifOp.getNumResults(), loc)); |
| cf::BranchOp::create(rewriter, loc, remainingOpsBlock); |
| } |
| |
| // Move blocks from the "then" region to the region containing 'scf.if', |
| // place it before the continuation block, and branch to it. |
| auto &thenRegion = ifOp.getThenRegion(); |
| auto *thenBlock = &thenRegion.front(); |
| Operation *thenTerminator = thenRegion.back().getTerminator(); |
| ValueRange thenTerminatorOperands = thenTerminator->getOperands(); |
| rewriter.setInsertionPointToEnd(&thenRegion.back()); |
| cf::BranchOp::create(rewriter, loc, continueBlock, thenTerminatorOperands); |
| rewriter.eraseOp(thenTerminator); |
| rewriter.inlineRegionBefore(thenRegion, continueBlock); |
| |
| // Move blocks from the "else" region (if present) to the region containing |
| // 'scf.if', place it before the continuation block and branch to it. It |
| // will be placed after the "then" regions. |
| auto *elseBlock = continueBlock; |
| auto &elseRegion = ifOp.getElseRegion(); |
| if (!elseRegion.empty()) { |
| elseBlock = &elseRegion.front(); |
| Operation *elseTerminator = elseRegion.back().getTerminator(); |
| ValueRange elseTerminatorOperands = elseTerminator->getOperands(); |
| rewriter.setInsertionPointToEnd(&elseRegion.back()); |
| cf::BranchOp::create(rewriter, loc, continueBlock, elseTerminatorOperands); |
| rewriter.eraseOp(elseTerminator); |
| rewriter.inlineRegionBefore(elseRegion, continueBlock); |
| } |
| |
| rewriter.setInsertionPointToEnd(condBlock); |
| cf::CondBranchOp::create(rewriter, loc, ifOp.getCondition(), thenBlock, |
| /*trueArgs=*/ArrayRef<Value>(), elseBlock, |
| /*falseArgs=*/ArrayRef<Value>()); |
| |
| // Ok, we're done! |
| rewriter.replaceOp(ifOp, continueBlock->getArguments()); |
| return success(); |
| } |
| |
| LogicalResult |
| ExecuteRegionLowering::matchAndRewrite(ExecuteRegionOp op, |
| PatternRewriter &rewriter) const { |
| auto loc = op.getLoc(); |
| |
| auto *condBlock = rewriter.getInsertionBlock(); |
| auto opPosition = rewriter.getInsertionPoint(); |
| auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition); |
| |
| auto ®ion = op.getRegion(); |
| rewriter.setInsertionPointToEnd(condBlock); |
| cf::BranchOp::create(rewriter, loc, ®ion.front()); |
| |
| for (Block &block : region) { |
| if (auto terminator = dyn_cast<scf::YieldOp>(block.getTerminator())) { |
| ValueRange terminatorOperands = terminator->getOperands(); |
| rewriter.setInsertionPointToEnd(&block); |
| cf::BranchOp::create(rewriter, loc, remainingOpsBlock, |
| terminatorOperands); |
| rewriter.eraseOp(terminator); |
| } |
| } |
| |
| rewriter.inlineRegionBefore(region, remainingOpsBlock); |
| |
| SmallVector<Value> vals; |
| SmallVector<Location> argLocs(op.getNumResults(), op->getLoc()); |
| for (auto arg : |
| remainingOpsBlock->addArguments(op->getResultTypes(), argLocs)) |
| vals.push_back(arg); |
| rewriter.replaceOp(op, vals); |
| return success(); |
| } |
| |
| LogicalResult |
| ParallelLowering::matchAndRewrite(ParallelOp parallelOp, |
| PatternRewriter &rewriter) const { |
| Location loc = parallelOp.getLoc(); |
| auto reductionOp = dyn_cast<ReduceOp>(parallelOp.getBody()->getTerminator()); |
| if (!reductionOp) { |
| return failure(); |
| } |
| |
| // For a parallel loop, we essentially need to create an n-dimensional loop |
| // nest. We do this by translating to scf.for ops and have those lowered in |
| // a further rewrite. If a parallel loop contains reductions (and thus returns |
| // values), forward the initial values for the reductions down the loop |
| // hierarchy and bubble up the results by modifying the "yield" terminator. |
| SmallVector<Value, 4> iterArgs = llvm::to_vector<4>(parallelOp.getInitVals()); |
| SmallVector<Value, 4> ivs; |
| ivs.reserve(parallelOp.getNumLoops()); |
| bool first = true; |
| SmallVector<Value, 4> loopResults(iterArgs); |
| for (auto [iv, lower, upper, step] : |
| llvm::zip(parallelOp.getInductionVars(), parallelOp.getLowerBound(), |
| parallelOp.getUpperBound(), parallelOp.getStep())) { |
| ForOp forOp = ForOp::create(rewriter, loc, lower, upper, step, iterArgs); |
| ivs.push_back(forOp.getInductionVar()); |
| auto iterRange = forOp.getRegionIterArgs(); |
| iterArgs.assign(iterRange.begin(), iterRange.end()); |
| |
| if (first) { |
| // Store the results of the outermost loop that will be used to replace |
| // the results of the parallel loop when it is fully rewritten. |
| loopResults.assign(forOp.result_begin(), forOp.result_end()); |
| first = false; |
| } else if (!forOp.getResults().empty()) { |
| // A loop is constructed with an empty "yield" terminator if there are |
| // no results. |
| rewriter.setInsertionPointToEnd(rewriter.getInsertionBlock()); |
| scf::YieldOp::create(rewriter, loc, forOp.getResults()); |
| } |
| |
| rewriter.setInsertionPointToStart(forOp.getBody()); |
| } |
| |
| // First, merge reduction blocks into the main region. |
| SmallVector<Value> yieldOperands; |
| yieldOperands.reserve(parallelOp.getNumResults()); |
| for (int64_t i = 0, e = parallelOp.getNumResults(); i < e; ++i) { |
| Block &reductionBody = reductionOp.getReductions()[i].front(); |
| Value arg = iterArgs[yieldOperands.size()]; |
| yieldOperands.push_back( |
| cast<ReduceReturnOp>(reductionBody.getTerminator()).getResult()); |
| rewriter.eraseOp(reductionBody.getTerminator()); |
| rewriter.inlineBlockBefore(&reductionBody, reductionOp, |
| {arg, reductionOp.getOperands()[i]}); |
| } |
| rewriter.eraseOp(reductionOp); |
| |
| // Then merge the loop body without the terminator. |
| Block *newBody = rewriter.getInsertionBlock(); |
| if (newBody->empty()) |
| rewriter.mergeBlocks(parallelOp.getBody(), newBody, ivs); |
| else |
| rewriter.inlineBlockBefore(parallelOp.getBody(), newBody->getTerminator(), |
| ivs); |
| |
| // Finally, create the terminator if required (for loops with no results, it |
| // has been already created in loop construction). |
| if (!yieldOperands.empty()) { |
| rewriter.setInsertionPointToEnd(rewriter.getInsertionBlock()); |
| scf::YieldOp::create(rewriter, loc, yieldOperands); |
| } |
| |
| rewriter.replaceOp(parallelOp, loopResults); |
| |
| return success(); |
| } |
| |
| LogicalResult WhileLowering::matchAndRewrite(WhileOp whileOp, |
| PatternRewriter &rewriter) const { |
| OpBuilder::InsertionGuard guard(rewriter); |
| Location loc = whileOp.getLoc(); |
| |
| // Split the current block before the WhileOp to create the inlining point. |
| Block *currentBlock = rewriter.getInsertionBlock(); |
| Block *continuation = |
| rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); |
| |
| // Inline both regions. |
| Block *after = whileOp.getAfterBody(); |
| Block *before = whileOp.getBeforeBody(); |
| rewriter.inlineRegionBefore(whileOp.getAfter(), continuation); |
| rewriter.inlineRegionBefore(whileOp.getBefore(), after); |
| |
| // Branch to the "before" region. |
| rewriter.setInsertionPointToEnd(currentBlock); |
| cf::BranchOp::create(rewriter, loc, before, whileOp.getInits()); |
| |
| // Replace terminators with branches. Assuming bodies are SESE, which holds |
| // given only the patterns from this file, we only need to look at the last |
| // block. This should be reconsidered if we allow break/continue in SCF. |
| rewriter.setInsertionPointToEnd(before); |
| auto condOp = cast<ConditionOp>(before->getTerminator()); |
| SmallVector<Value> args = llvm::to_vector(condOp.getArgs()); |
| rewriter.replaceOpWithNewOp<cf::CondBranchOp>(condOp, condOp.getCondition(), |
| after, condOp.getArgs(), |
| continuation, ValueRange()); |
| |
| rewriter.setInsertionPointToEnd(after); |
| auto yieldOp = cast<scf::YieldOp>(after->getTerminator()); |
| rewriter.replaceOpWithNewOp<cf::BranchOp>(yieldOp, before, |
| yieldOp.getResults()); |
| |
| // Replace the op with values "yielded" from the "before" region, which are |
| // visible by dominance. |
| rewriter.replaceOp(whileOp, args); |
| |
| return success(); |
| } |
| |
| LogicalResult |
| DoWhileLowering::matchAndRewrite(WhileOp whileOp, |
| PatternRewriter &rewriter) const { |
| Block &afterBlock = *whileOp.getAfterBody(); |
| if (!llvm::hasSingleElement(afterBlock)) |
| return rewriter.notifyMatchFailure(whileOp, |
| "do-while simplification applicable " |
| "only if 'after' region has no payload"); |
| |
| auto yield = dyn_cast<scf::YieldOp>(&afterBlock.front()); |
| if (!yield || yield.getResults() != afterBlock.getArguments()) |
| return rewriter.notifyMatchFailure(whileOp, |
| "do-while simplification applicable " |
| "only to forwarding 'after' regions"); |
| |
| // Split the current block before the WhileOp to create the inlining point. |
| OpBuilder::InsertionGuard guard(rewriter); |
| Block *currentBlock = rewriter.getInsertionBlock(); |
| Block *continuation = |
| rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); |
| |
| // Only the "before" region should be inlined. |
| Block *before = whileOp.getBeforeBody(); |
| rewriter.inlineRegionBefore(whileOp.getBefore(), continuation); |
| |
| // Branch to the "before" region. |
| rewriter.setInsertionPointToEnd(currentBlock); |
| cf::BranchOp::create(rewriter, whileOp.getLoc(), before, whileOp.getInits()); |
| |
| // Loop around the "before" region based on condition. |
| rewriter.setInsertionPointToEnd(before); |
| auto condOp = cast<ConditionOp>(before->getTerminator()); |
| cf::CondBranchOp::create(rewriter, condOp.getLoc(), condOp.getCondition(), |
| before, condOp.getArgs(), continuation, |
| ValueRange()); |
| |
| // Replace the op with values "yielded" from the "before" region, which are |
| // visible by dominance. |
| rewriter.replaceOp(whileOp, condOp.getArgs()); |
| |
| // Erase the condition op. |
| rewriter.eraseOp(condOp); |
| return success(); |
| } |
| |
| LogicalResult |
| IndexSwitchLowering::matchAndRewrite(IndexSwitchOp op, |
| PatternRewriter &rewriter) const { |
| // Split the block at the op. |
| Block *condBlock = rewriter.getInsertionBlock(); |
| Block *continueBlock = rewriter.splitBlock(condBlock, Block::iterator(op)); |
| |
| // Create the arguments on the continue block with which to replace the |
| // results of the op. |
| SmallVector<Value> results; |
| results.reserve(op.getNumResults()); |
| for (Type resultType : op.getResultTypes()) |
| results.push_back(continueBlock->addArgument(resultType, op.getLoc())); |
| |
| // Handle the regions. |
| auto convertRegion = [&](Region ®ion) -> FailureOr<Block *> { |
| Block *block = ®ion.front(); |
| |
| // Convert the yield terminator to a branch to the continue block. |
| auto yield = cast<scf::YieldOp>(block->getTerminator()); |
| rewriter.setInsertionPoint(yield); |
| rewriter.replaceOpWithNewOp<cf::BranchOp>(yield, continueBlock, |
| yield.getOperands()); |
| |
| // Inline the region. |
| rewriter.inlineRegionBefore(region, continueBlock); |
| return block; |
| }; |
| |
| // Convert the case regions. |
| SmallVector<Block *> caseSuccessors; |
| SmallVector<int32_t> caseValues; |
| caseSuccessors.reserve(op.getCases().size()); |
| caseValues.reserve(op.getCases().size()); |
| for (auto [region, value] : llvm::zip(op.getCaseRegions(), op.getCases())) { |
| FailureOr<Block *> block = convertRegion(region); |
| if (failed(block)) |
| return failure(); |
| caseSuccessors.push_back(*block); |
| caseValues.push_back(value); |
| } |
| |
| // Convert the default region. |
| FailureOr<Block *> defaultBlock = convertRegion(op.getDefaultRegion()); |
| if (failed(defaultBlock)) |
| return failure(); |
| |
| // Create the switch. |
| rewriter.setInsertionPointToEnd(condBlock); |
| SmallVector<ValueRange> caseOperands(caseSuccessors.size(), {}); |
| |
| // Cast switch index to integer case value. |
| Value caseValue = arith::IndexCastOp::create( |
| rewriter, op.getLoc(), rewriter.getI32Type(), op.getArg()); |
| |
| cf::SwitchOp::create(rewriter, op.getLoc(), caseValue, *defaultBlock, |
| ValueRange(), rewriter.getDenseI32ArrayAttr(caseValues), |
| caseSuccessors, caseOperands); |
| rewriter.replaceOp(op, continueBlock->getArguments()); |
| return success(); |
| } |
| |
| LogicalResult ForallLowering::matchAndRewrite(ForallOp forallOp, |
| PatternRewriter &rewriter) const { |
| return scf::forallToParallelLoop(rewriter, forallOp); |
| } |
| |
| void mlir::populateSCFToControlFlowConversionPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<ForallLowering, ForLowering, IfLowering, ParallelLowering, |
| WhileLowering, ExecuteRegionLowering, IndexSwitchLowering>( |
| patterns.getContext()); |
| patterns.add<DoWhileLowering>(patterns.getContext(), /*benefit=*/2); |
| } |
| |
| void SCFToControlFlowPass::runOnOperation() { |
| RewritePatternSet patterns(&getContext()); |
| populateSCFToControlFlowConversionPatterns(patterns); |
| |
| // Configure conversion to lower out SCF operations. |
| ConversionTarget target(getContext()); |
| target.addIllegalOp<scf::ForallOp, scf::ForOp, scf::IfOp, scf::IndexSwitchOp, |
| scf::ParallelOp, scf::WhileOp, scf::ExecuteRegionOp>(); |
| target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); |
| if (failed( |
| applyPartialConversion(getOperation(), target, std::move(patterns)))) |
| signalPassFailure(); |
| } |