blob: 4ae30942374e611480e8c95bf90b8ab176bef3d3 [file] [log] [blame]
//===- RootOrderingTest.cpp - unit tests for optimal branching ------------===//
//
// Part of the LLVM Project, under the Apache License v[1].0 with LLVM
// Exceptions. See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../lib/Conversion/PDLToPDLInterp/RootOrdering.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "gtest/gtest.h"
using namespace mlir;
using namespace mlir::pdl_to_pdl_interp;
namespace {
//===----------------------------------------------------------------------===//
// Test Fixture
//===----------------------------------------------------------------------===//
/// The test fixture for constructing root ordering tests and verifying results.
/// This fixture constructs the test values v. The test populates the graph
/// with the desired costs and then calls check(), passing the expeted optimal
/// cost and the list of edges in the preorder traversal of the optimal
/// branching.
class RootOrderingTest : public ::testing::Test {
protected:
RootOrderingTest() {
context.loadDialect<StandardOpsDialect>();
createValues();
}
/// Creates the test values.
void createValues() {
OpBuilder builder(&context);
for (int i = 0; i < 4; ++i)
v[i] = builder.create<ConstantOp>(builder.getUnknownLoc(),
builder.getI32IntegerAttr(i));
}
/// Checks that optimal branching on graph has the given cost and
/// its preorder traversal results in the specified edges.
void check(unsigned cost, OptimalBranching::EdgeList edges) {
OptimalBranching opt(graph, v[0]);
EXPECT_EQ(opt.solve(), cost);
EXPECT_EQ(opt.preOrderTraversal({v, v + edges.size()}), edges);
for (std::pair<Value, Value> edge : edges)
EXPECT_EQ(opt.getRootOrderingParents().lookup(edge.first), edge.second);
}
protected:
/// The context for creating the values.
MLIRContext context;
/// Values used in the graph definition. We always use leading `n` values.
Value v[4];
/// The graph being tested on.
RootOrderingGraph graph;
};
//===----------------------------------------------------------------------===//
// Simple 3-node graphs
//===----------------------------------------------------------------------===//
TEST_F(RootOrderingTest, simpleA) {
graph[v[1]][v[0]].cost = {1, 10};
graph[v[2]][v[0]].cost = {1, 11};
graph[v[1]][v[2]].cost = {2, 12};
graph[v[2]][v[1]].cost = {2, 13};
check(2, {{v[0], {}}, {v[1], v[0]}, {v[2], v[0]}});
}
TEST_F(RootOrderingTest, simpleB) {
graph[v[1]][v[0]].cost = {1, 10};
graph[v[2]][v[0]].cost = {2, 11};
graph[v[1]][v[2]].cost = {1, 12};
graph[v[2]][v[1]].cost = {1, 13};
check(2, {{v[0], {}}, {v[1], v[0]}, {v[2], v[1]}});
}
TEST_F(RootOrderingTest, simpleC) {
graph[v[1]][v[0]].cost = {2, 10};
graph[v[2]][v[0]].cost = {2, 11};
graph[v[1]][v[2]].cost = {1, 12};
graph[v[2]][v[1]].cost = {1, 13};
check(3, {{v[0], {}}, {v[1], v[0]}, {v[2], v[1]}});
}
//===----------------------------------------------------------------------===//
// Graph for testing contraction
//===----------------------------------------------------------------------===//
TEST_F(RootOrderingTest, contraction) {
graph[v[1]][v[0]].cost = {10, 0};
graph[v[2]][v[0]].cost = {5, 0};
graph[v[2]][v[1]].cost = {1, 0};
graph[v[3]][v[2]].cost = {2, 0};
graph[v[1]][v[3]].cost = {3, 0};
check(10, {{v[0], {}}, {v[2], v[0]}, {v[3], v[2]}, {v[1], v[3]}});
}
} // end namespace