| //===- TosaCanonicalizations.cpp - Canonicalization patterns & folders ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // \file |
| // TOSA canonicalization patterns and folders. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Quant/IR/Quant.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
| #include "mlir/IR/BuiltinTypeInterfaces.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Transforms/FoldUtils.h" |
| #include "mlir/Transforms/InliningUtils.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| |
| #include <functional> |
| |
| using namespace mlir; |
| using namespace mlir::tosa; |
| |
| //===----------------------------------------------------------------------===// |
| // Operator Canonicalizers. |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Tensor Data Engine Operators. |
| //===----------------------------------------------------------------------===// |
| |
| // Check that the zero point of the tensor and padding operations are aligned. |
| bool checkMatchingPadConstAndZp(Value padConst, Value zp) { |
| // Check that padConst is a constant value and a scalar tensor |
| DenseElementsAttr padConstAttr; |
| if (!matchPattern(padConst, m_Constant(&padConstAttr)) || |
| (padConstAttr.size() != 1)) { |
| return false; |
| } |
| |
| // Check that floating point pad is zero |
| if (auto padConstFpAttr = mlir::dyn_cast<DenseFPElementsAttr>(padConstAttr)) { |
| float padConstVal = (*padConstFpAttr.begin()).convertToFloat(); |
| return padConstVal == 0.0f; |
| } |
| |
| // Check that the zp and padConst align for the integer (quantized) case |
| if (auto padConstIntAttr = |
| mlir::dyn_cast<DenseIntElementsAttr>(padConstAttr)) { |
| DenseIntElementsAttr zpAttr; |
| // Check that zp is a constant value and a scalar tensor |
| if (!matchPattern(zp, m_Constant(&zpAttr)) || (padConstAttr.size() != 1)) { |
| return false; |
| } |
| |
| // Check equality |
| int64_t zpVal = (*zpAttr.begin()).getSExtValue(); |
| int64_t padConstVal = (*padConstIntAttr.begin()).getSExtValue(); |
| return zpVal == padConstVal; |
| } |
| |
| // Bail-out on unsupported type |
| return false; |
| } |
| |
| namespace { |
| template <typename OpTy> |
| struct PoolPadFoldAdaptor; |
| |
| template <> |
| struct PoolPadFoldAdaptor<tosa::AvgPool2dOp> { |
| using OpTy = tosa::AvgPool2dOp; |
| static bool checkKernelCompliance(OpTy op, const ArrayRef<int64_t> newPad) { |
| const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
| if (newPad[2] >= kernel[1] || newPad[3] >= kernel[1] || |
| newPad[0] >= kernel[0] || newPad[1] >= kernel[0]) |
| return false; |
| return true; |
| } |
| static bool checkPadConstCompliance(OpTy op, Value padConst) { |
| return checkMatchingPadConstAndZp(padConst, op.getInputZp()); |
| } |
| static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
| Value padInput, ArrayRef<int64_t> newPad) { |
| rewriter.replaceOpWithNewOp<tosa::AvgPool2dOp>( |
| op, op.getType(), padInput, op.getInputZp(), op.getOutputZp(), |
| op.getKernel(), op.getStride(), rewriter.getDenseI64ArrayAttr(newPad), |
| op.getAccType()); |
| } |
| }; |
| |
| template <> |
| struct PoolPadFoldAdaptor<tosa::MaxPool2dOp> { |
| using OpTy = tosa::MaxPool2dOp; |
| static bool checkKernelCompliance(OpTy op, const ArrayRef<int64_t> newPad) { |
| const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
| if (newPad[2] >= kernel[1] || newPad[3] >= kernel[1] || |
| newPad[0] >= kernel[0] || newPad[1] >= kernel[0]) |
| return false; |
| return true; |
| } |
| static bool checkPadConstCompliance(OpTy, Value padConst) { |
| // Check that padConst is a constant value and a scalar tensor |
| DenseElementsAttr padConstAttr; |
| if (!matchPattern(padConst, m_Constant(&padConstAttr)) || |
| padConstAttr.size() != 1) { |
| return false; |
| } |
| |
| // Pad needs to be in the minimum value to be able to merge |
| if (auto padConstFpAttr = |
| mlir::dyn_cast<DenseFPElementsAttr>(padConstAttr)) { |
| const APFloat padConstVal = *padConstFpAttr.begin(); |
| const APFloat lowestVal = |
| APFloat::getLargest(padConstVal.getSemantics(), true); |
| return padConstVal == lowestVal; |
| } else if (auto padConstIntAttr = |
| mlir::dyn_cast<DenseIntElementsAttr>(padConstAttr)) { |
| const APInt padConstVal = *padConstIntAttr.begin(); |
| const unsigned int bitWidth = padConstVal.getBitWidth(); |
| const APInt lowestVal = |
| padConstIntAttr.getElementType().isUnsignedInteger() |
| ? APInt::getZero(bitWidth) |
| : APInt::getSignedMinValue(bitWidth); |
| return padConstVal == lowestVal; |
| } |
| |
| // Bail-out on unsupported type |
| return false; |
| } |
| static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
| Value padInput, ArrayRef<int64_t> newPad) { |
| rewriter.replaceOpWithNewOp<tosa::MaxPool2dOp>( |
| op, op.getType(), padInput, op.getKernel(), op.getStride(), |
| rewriter.getDenseI64ArrayAttr(newPad), op.getNanMode()); |
| } |
| }; |
| |
| template <typename OpTy> |
| struct ConvPadFoldAdaptor { |
| static bool checkKernelCompliance(OpTy, const ArrayRef<int64_t>) { |
| return true; |
| } |
| static bool checkPadConstCompliance(OpTy op, Value padConst) { |
| return checkMatchingPadConstAndZp(padConst, op.getInputZp()); |
| } |
| static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
| Value padInput, ArrayRef<int64_t> newPad) { |
| rewriter.replaceOpWithNewOp<OpTy>( |
| op, op.getResult().getType(), padInput, op.getWeight(), op.getBias(), |
| op.getInputZp(), op.getWeightZp(), newPad, op.getStrideAttr(), |
| op.getDilationAttr(), op.getAccType(), op.getLocalBound()); |
| } |
| }; |
| |
| // Pattern attempts to fold a `tosa.pad` operator to a following tensor |
| // operation like `tosa.conv2d` by merging the padding associated with the |
| // pad operator directly to the implicit padding of the tensor operation. |
| // This helps eliminate the explicit padding operator if unused. |
| template <typename OpTy, typename AdaptorTy> |
| struct FoldPadToTensorOp : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy tensorOp, |
| PatternRewriter &rewriter) const override { |
| // Check producer is a tosa::PadOp |
| auto padOp = tensorOp.getInput().template getDefiningOp<tosa::PadOp>(); |
| if (!padOp) |
| return rewriter.notifyMatchFailure(tensorOp, |
| "Producer must be a tosa::PadOp."); |
| |
| // Validate that tensor operation has sane padding |
| const std::vector<int64_t> &tensorOpPad = tensorOp.getPad().vec(); |
| if (tensorOpPad.size() != 4) // pad_top, pad_bottom, pad_left, pad_right |
| return rewriter.notifyMatchFailure( |
| tensorOp, "Tensor operation padding shall have 4 elements."); |
| |
| // Validate tosa::PadOp padding |
| DenseIntElementsAttr padOpPadding; |
| if (!matchPattern(padOp.getPadding(), m_Constant(&padOpPadding))) { |
| return rewriter.notifyMatchFailure( |
| tensorOp, |
| "The `padding` input specified on the tosa::PadOp must be constant."); |
| } |
| // N_before, N_after, H_before, H_after, W_before, W_after, C_before, |
| // C_after |
| if (padOpPadding.size() != 8) |
| return rewriter.notifyMatchFailure(tensorOp, |
| "Pad padding should have 8 elements."); |
| int64_t padNBefore = (*(padOpPadding.begin() + 0)).getLimitedValue(); |
| int64_t padNAfter = (*(padOpPadding.begin() + 1)).getLimitedValue(); |
| int64_t padHBefore = (*(padOpPadding.begin() + 2)).getLimitedValue(); |
| int64_t padHAfter = (*(padOpPadding.begin() + 3)).getLimitedValue(); |
| int64_t padWBefore = (*(padOpPadding.begin() + 4)).getLimitedValue(); |
| int64_t padWAfter = (*(padOpPadding.begin() + 5)).getLimitedValue(); |
| int64_t padCBefore = (*(padOpPadding.begin() + 6)).getLimitedValue(); |
| int64_t padCAfter = (*(padOpPadding.begin() + 7)).getLimitedValue(); |
| |
| if (padNBefore != 0 || padNAfter != 0 || padCBefore != 0 || padCAfter != 0) |
| return rewriter.notifyMatchFailure( |
| tensorOp, "Folding padding in N or C dimensions is not supported."); |
| |
| // Fold padding from Pad into the tensor operation |
| // 4 elements - pad_top, pad_bottom, pad_left, pad_right |
| SmallVector<int64_t> foldedPad(tensorOpPad.size()); |
| foldedPad[0] = padHBefore + tensorOpPad[0]; |
| foldedPad[1] = padHAfter + tensorOpPad[1]; |
| foldedPad[2] = padWBefore + tensorOpPad[2]; |
| foldedPad[3] = padWAfter + tensorOpPad[3]; |
| |
| // Check kernel related restrictions |
| if (!AdaptorTy::checkKernelCompliance(tensorOp, foldedPad)) { |
| return rewriter.notifyMatchFailure( |
| tensorOp, "Padding size not aligned with kernel restrictions."); |
| } |
| |
| // Check padding constant restrictions |
| if (!AdaptorTy::checkPadConstCompliance(tensorOp, padOp.getPadConst())) { |
| return rewriter.notifyMatchFailure( |
| tensorOp, |
| "Padding constant is not aligned with operator zero-point."); |
| } |
| |
| // Check that padding doesn't grow more than 8K level (8192) for now |
| if (llvm::any_of(foldedPad, [](int64_t padVal) { return padVal > 8192; })) { |
| return rewriter.notifyMatchFailure( |
| tensorOp, "Padding size more than the 8K level limit."); |
| } |
| |
| // Create operator |
| AdaptorTy::replaceOpWithNewPad(rewriter, tensorOp, padOp.getInput1(), |
| foldedPad); |
| |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void AvgPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<FoldPadToTensorOp<tosa::AvgPool2dOp, |
| PoolPadFoldAdaptor<tosa::AvgPool2dOp>>>( |
| context); |
| } |
| |
| void Conv2DOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add< |
| FoldPadToTensorOp<tosa::Conv2DOp, ConvPadFoldAdaptor<tosa::Conv2DOp>>>( |
| context); |
| } |
| |
| void DepthwiseConv2DOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<FoldPadToTensorOp<tosa::DepthwiseConv2DOp, |
| ConvPadFoldAdaptor<tosa::DepthwiseConv2DOp>>>( |
| context); |
| } |
| |
| struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, |
| PatternRewriter &rewriter) const override { |
| Value input = op.getInput(); |
| Value output = op.getOutput(); |
| ShapedType inputType = llvm::cast<ShapedType>(input.getType()); |
| ShapedType outputType = llvm::cast<ShapedType>(output.getType()); |
| |
| if (!inputType.hasStaticShape() || !outputType.hasStaticShape()) { |
| return failure(); |
| } |
| |
| // If the output and input shapes are 1x1, then this is a no op. |
| ArrayRef<int64_t> outputShape = outputType.getShape(); |
| if (outputShape[1] != 1 || outputShape[2] != 1) { |
| return failure(); |
| } |
| |
| ArrayRef<int64_t> inputShape = inputType.getShape(); |
| if (inputShape[1] != 1 || inputShape[2] != 1) { |
| return failure(); |
| } |
| |
| rewriter.replaceOp(op, input); |
| return success(); |
| } |
| }; |
| |
| void MaxPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<MaxPool2dIsNoOp, |
| FoldPadToTensorOp<tosa::MaxPool2dOp, |
| PoolPadFoldAdaptor<tosa::MaxPool2dOp>>>( |
| context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Data Layout / Memory Reinterpretation. |
| //===----------------------------------------------------------------------===// |
| |
| struct ConcatOptimization : public OpRewritePattern<tosa::ConcatOp> { |
| using OpRewritePattern<tosa::ConcatOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::ConcatOp op, |
| PatternRewriter &rewriter) const override { |
| if (op.getInput1().size() != 1) |
| return failure(); |
| if (op.getInput1().front().getType() != op.getType()) { |
| rewriter |
| .replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), |
| op.getInput1().front()) |
| .getResult(); |
| return success(); |
| } |
| |
| rewriter.replaceOp(op, op.getInput1().front()); |
| return success(); |
| } |
| }; |
| |
| void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ConcatOptimization>(context); |
| } |
| |
| LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) { |
| auto notOp = op.getInput1().getDefiningOp<tosa::LogicalNotOp>(); |
| if (!notOp) |
| return failure(); |
| rewriter.modifyOpInPlace(op, [&]() { |
| op.getOperation()->setOperands( |
| {notOp.getInput1(), op.getOnFalse(), op.getOnTrue()}); |
| }); |
| return success(); |
| } |
| |
| struct ConsolidateTransposeOptimization |
| : public OpRewritePattern<tosa::TransposeOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::TransposeOp transposeOp, |
| PatternRewriter &rewriter) const override { |
| // Input is also TransposeOp - transpose(transpose(A)). |
| auto innerTranspose = |
| transposeOp.getInput1().getDefiningOp<tosa::TransposeOp>(); |
| if (!innerTranspose) |
| return rewriter.notifyMatchFailure(transposeOp, |
| "input must be transpose operation"); |
| |
| const llvm::ArrayRef<int32_t> transposePerms = transposeOp.getPerms(); |
| const llvm::ArrayRef<int32_t> innerTransposePerms = |
| innerTranspose.getPerms(); |
| |
| if (transposePerms.size() != innerTransposePerms.size()) |
| return rewriter.notifyMatchFailure( |
| transposeOp, |
| "transpose and inner transpose perms sizes must be equal"); |
| if (transposePerms.empty()) |
| return rewriter.notifyMatchFailure( |
| transposeOp, "transpose perms sizes must be positive"); |
| |
| // Consolidate transposes into one transpose. |
| SmallVector<int32_t> perms(transposePerms.size()); |
| for (int i = 0, s = transposePerms.size(); i < s; ++i) |
| perms[i] = innerTransposePerms[transposePerms[i]]; |
| |
| rewriter.replaceOpWithNewOp<tosa::TransposeOp>( |
| transposeOp, transposeOp.getResult().getType(), |
| innerTranspose.getInput1(), rewriter.getDenseI32ArrayAttr(perms)); |
| |
| return success(); |
| } |
| }; |
| |
| // Determines the case when tosa.transpose is a tosa.reshape operation. |
| struct TransposeIsReshape : public OpRewritePattern<tosa::TransposeOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::TransposeOp op, |
| PatternRewriter &rewriter) const override { |
| if (op.getInput1().getDefiningOp<tosa::TransposeOp>()) |
| return rewriter.notifyMatchFailure( |
| op, "Src is from transpose, can compose transposes"); |
| |
| Value result = op.getResult(); |
| for (Operation *subop : result.getUsers()) { |
| if (isa_and_nonnull<tosa::TransposeOp>(subop)) |
| return rewriter.notifyMatchFailure( |
| op, "Dest is used by transpose, can compose transposes"); |
| } |
| |
| auto input = op.getInput1(); |
| auto inputTy = llvm::cast<ShapedType>(input.getType()); |
| if (!inputTy.hasRank()) |
| return rewriter.notifyMatchFailure(op, "Unranked input."); |
| |
| int64_t numDynDims = 0; |
| for (int i = 0; i < inputTy.getRank(); ++i) |
| if (inputTy.isDynamicDim(i)) |
| numDynDims++; |
| |
| if (numDynDims > 1) |
| return rewriter.notifyMatchFailure(op, "Has more than one dynamic dim."); |
| |
| const llvm::ArrayRef<int32_t> permValues = op.getPerms(); |
| |
| SmallVector<int64_t> nonZeroPerms; |
| nonZeroPerms.reserve(permValues.size()); |
| for (auto idx : permValues) { |
| auto sz = inputTy.getDimSize(idx); |
| if (sz != 1) |
| nonZeroPerms.push_back(idx); |
| } |
| |
| for (int i = 1, s = nonZeroPerms.size(); i < s; ++i) |
| if (nonZeroPerms[i - 1] > nonZeroPerms[i]) |
| return rewriter.notifyMatchFailure(op, |
| "Transpose changes memory layout."); |
| |
| SmallVector<int64_t> newShape; |
| newShape.reserve(inputTy.getRank()); |
| for (int i = 0, s = inputTy.getRank(); i < s; ++i) |
| newShape.push_back(inputTy.getDimSize(permValues[i])); |
| |
| rewriter.replaceOpWithNewOp<tosa::ReshapeOp>( |
| op, op.getType(), op.getInput1(), |
| getTosaConstShape(rewriter, op.getLoc(), newShape)); |
| return success(); |
| } |
| }; |
| |
| void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ConsolidateTransposeOptimization, TransposeIsReshape>(context); |
| } |
| |
| struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::ClampOp op, |
| PatternRewriter &rewriter) const override { |
| Value input = op.getInput(); |
| auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
| auto inputElementType = inputType.getElementType(); |
| |
| if (!inputType.hasStaticShape()) { |
| return failure(); |
| } |
| |
| if (isa<FloatType>(inputElementType)) { |
| // Unlike integer types, floating point types can represent infinity. |
| auto minClamp = |
| llvm::cast<mlir::FloatAttr>(op.getMinValAttr()).getValue(); |
| auto maxClamp = |
| llvm::cast<mlir::FloatAttr>(op.getMaxValAttr()).getValue(); |
| bool isMin = minClamp.isNegInfinity(); |
| bool isMax = maxClamp.isInfinity(); |
| |
| if (isMin && isMax) { |
| rewriter.replaceOp(op, input); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| if (inputElementType.isUnsignedInteger()) { |
| int64_t minClamp = |
| llvm::cast<mlir::IntegerAttr>(op.getMinValAttr()).getUInt(); |
| int64_t maxClamp = |
| llvm::cast<mlir::IntegerAttr>(op.getMaxValAttr()).getUInt(); |
| |
| int64_t intMin = |
| APInt::getMinValue(inputElementType.getIntOrFloatBitWidth()) |
| .getZExtValue(); |
| int64_t intMax = |
| APInt::getMaxValue(inputElementType.getIntOrFloatBitWidth()) |
| .getZExtValue(); |
| |
| if (minClamp <= intMin && maxClamp >= intMax) { |
| rewriter.replaceOp(op, input); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| if (llvm::isa<IntegerType>(inputElementType)) { |
| int64_t minClamp = |
| llvm::cast<mlir::IntegerAttr>(op.getMinValAttr()).getInt(); |
| int64_t maxClamp = |
| llvm::cast<mlir::IntegerAttr>(op.getMaxValAttr()).getInt(); |
| |
| int64_t intMin = |
| APInt::getSignedMinValue(inputElementType.getIntOrFloatBitWidth()) |
| .getSExtValue(); |
| int64_t intMax = |
| APInt::getSignedMaxValue(inputElementType.getIntOrFloatBitWidth()) |
| .getSExtValue(); |
| |
| if (minClamp <= intMin && maxClamp >= intMax) { |
| rewriter.replaceOp(op, input); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| return failure(); |
| } |
| }; |
| |
| // Attempts the following transformation: |
| // |
| // For integers a, b, a', and b' such that [a, b] ∩ [a', b'] ≠∅ and input |
| // tensor X the following identity holds: |
| // |
| // CLAMP(CLAMP(X, a, b), a', b') = CLAMP(X, max(a, a'), min(b, b')) |
| // |
| // subject to the following valid NaN propagation semantics: |
| // -------------------------------------------- |
| // | OUTER CLAMP | INNER CLAMP | RESULT MODE | |
| // |-------------|--------------|-------------| |
| // | PROPAGATE | PROPAGATE | PROPAGATE | |
| // | PROPAGATE | IGNORE | IGNORE | |
| // | IGNORE | PROPAGATE | INVALID | |
| // | IGNORE | IGNORE | IGNORE | |
| // |------------------------------------------| |
| |
| struct ClampClampOptimization : public OpRewritePattern<tosa::ClampOp> { |
| using OpRewritePattern<tosa::ClampOp>::OpRewritePattern; |
| |
| // Helper structure to describe the range of a clamp operation. |
| template <typename T> |
| struct ClampRange { |
| ClampRange(const T &start, const T &end) : start(start), end(end) {} |
| T start; |
| T end; |
| |
| // Helper function to determine if two Clamp ranges intersect. |
| bool intersects(const ClampRange<T> &otherRange) { |
| return start < otherRange.end && otherRange.start < end; |
| } |
| }; |
| |
| LogicalResult matchAndRewrite(tosa::ClampOp op, |
| PatternRewriter &rewriter) const override { |
| Value input = op.getInput(); |
| |
| // Check the input to the CLAMP op is itself a CLAMP. |
| auto clampOp = input.getDefiningOp<tosa::ClampOp>(); |
| if (!clampOp) |
| return failure(); |
| |
| // Check we have a valid NaN propagation combination. |
| const auto opNanMode = op.getNanMode(); |
| const auto clampNanMode = clampOp.getNanMode(); |
| if (opNanMode == "IGNORE" && clampNanMode == "PROPAGATE") |
| return failure(); |
| |
| auto maxValAttr = op.getMaxValAttr(); |
| auto minValAttr = op.getMinValAttr(); |
| auto clampOpMaxValAttr = clampOp.getMaxValAttr(); |
| auto clampOpMinValAttr = clampOp.getMinValAttr(); |
| |
| auto inputEType = llvm::cast<ShapedType>(input.getType()).getElementType(); |
| if (auto quantType = |
| llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputEType)) { |
| inputEType = quantType.getStorageType(); |
| } |
| |
| Attribute newMinValAttr, newMaxValAttr; |
| if (mlir::isa<FloatType>(inputEType)) { |
| auto floatMaxValAttr = cast<mlir::FloatAttr>(maxValAttr); |
| auto floatMinValAttr = cast<mlir::FloatAttr>(minValAttr); |
| auto clampOpFloatMaxValAttr = cast<mlir::FloatAttr>(clampOpMaxValAttr); |
| auto clampOpFloatMinValAttr = cast<mlir::FloatAttr>(clampOpMinValAttr); |
| |
| // Check we have intersecting ranges. |
| const auto opMinFloat = floatMinValAttr.getValue(); |
| const auto opMaxFloat = floatMaxValAttr.getValue(); |
| const auto clampOpMinFloat = clampOpFloatMinValAttr.getValue(); |
| const auto clampOpMaxFloat = clampOpFloatMaxValAttr.getValue(); |
| ClampRange<APFloat> opRangeFloatRange(opMinFloat, opMaxFloat); |
| ClampRange<APFloat> clampRangeFloatRange(clampOpMinFloat, |
| clampOpMaxFloat); |
| if (!opRangeFloatRange.intersects(clampRangeFloatRange)) |
| return failure(); |
| |
| // Run the transformation. |
| auto newMinVal = std::max(opMinFloat, clampOpMinFloat); |
| auto newMaxVal = std::min(opMaxFloat, clampOpMaxFloat); |
| newMinValAttr = rewriter.getFloatAttr(inputEType, newMinVal); |
| newMaxValAttr = rewriter.getFloatAttr(inputEType, newMaxVal); |
| } else { |
| assert(mlir::isa<IntegerType>(inputEType)); |
| auto intMaxValAttr = cast<mlir::IntegerAttr>(maxValAttr); |
| auto intMinValAttr = cast<mlir::IntegerAttr>(minValAttr); |
| auto clampOpIntMaxValAttr = cast<mlir::IntegerAttr>(clampOpMaxValAttr); |
| auto clampOpIntMinValAttr = cast<mlir::IntegerAttr>(clampOpMinValAttr); |
| |
| if (inputEType.isUnsignedInteger()) { |
| // Check we have intersecting ranges. |
| const auto opMinInt = intMinValAttr.getUInt(); |
| const auto opMaxInt = intMaxValAttr.getUInt(); |
| const auto clampOpMinInt = clampOpIntMinValAttr.getUInt(); |
| const auto clampOpMaxInt = clampOpIntMaxValAttr.getUInt(); |
| ClampRange<std::uint64_t> opRangeIntRange(opMinInt, opMaxInt); |
| ClampRange<std::uint64_t> clampRangeIntRange(clampOpMinInt, |
| clampOpMaxInt); |
| if (!opRangeIntRange.intersects(clampRangeIntRange)) |
| return failure(); |
| |
| // Run the transformation. |
| auto newMinVal = std::max(opMinInt, clampOpMinInt); |
| auto newMaxVal = std::min(opMaxInt, clampOpMaxInt); |
| newMinValAttr = rewriter.getIntegerAttr(inputEType, newMinVal); |
| newMaxValAttr = rewriter.getIntegerAttr(inputEType, newMaxVal); |
| } else { |
| // Check we have intersecting ranges. |
| const auto opMinInt = intMinValAttr.getInt(); |
| const auto opMaxInt = intMaxValAttr.getInt(); |
| const auto clampOpMinInt = clampOpIntMinValAttr.getInt(); |
| const auto clampOpMaxInt = clampOpIntMaxValAttr.getInt(); |
| ClampRange<std::int64_t> opRangeIntRange(opMinInt, opMaxInt); |
| ClampRange<std::int64_t> clampRangeIntRange(clampOpMinInt, |
| clampOpMaxInt); |
| if (!opRangeIntRange.intersects(clampRangeIntRange)) |
| return failure(); |
| |
| // Run the transformation. |
| auto newMinVal = std::max(opMinInt, clampOpMinInt); |
| auto newMaxVal = std::min(opMaxInt, clampOpMaxInt); |
| newMinValAttr = rewriter.getIntegerAttr(inputEType, newMinVal); |
| newMaxValAttr = rewriter.getIntegerAttr(inputEType, newMaxVal); |
| } |
| } |
| |
| rewriter.replaceOpWithNewOp<tosa::ClampOp>( |
| op, op.getType(), clampOp.getInput(), newMinValAttr, newMaxValAttr, |
| rewriter.getStringAttr((opNanMode != clampNanMode) ? "IGNORE" |
| : opNanMode)); |
| return success(); |
| } |
| }; |
| |
| void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ClampIsNoOp>(context); |
| results.add<ClampClampOptimization>(context); |
| } |
| |
| struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> { |
| using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
| PatternRewriter &rewriter) const override { |
| Value sliceInput = sliceOp.getInput1(); |
| auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>(); |
| if (!concatOp) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "slice input must be concat operation"); |
| |
| OperandRange inputs = concatOp.getInput1(); |
| auto concatType = dyn_cast<RankedTensorType>(concatOp.getType()); |
| if (!concatType || !concatType.hasStaticShape()) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "slice input must be a static ranked tensor"); |
| int32_t axis = concatOp.getAxis(); |
| |
| DenseElementsAttr startElems; |
| DenseElementsAttr sizeElems; |
| |
| if (!matchPattern(sliceOp.getStart(), m_Constant(&startElems))) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "start of slice must be a static ranked shape"); |
| |
| if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems))) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "size of slice must be a static ranked shape"); |
| |
| llvm::SmallVector<int64_t> sliceStarts = |
| llvm::to_vector(startElems.getValues<int64_t>()); |
| llvm::SmallVector<int64_t> sliceSizes = |
| llvm::to_vector(sizeElems.getValues<int64_t>()); |
| |
| // Validate slice on the concatenated axis. Slicing along this |
| // axis should span only one of the inputs to the concatenate |
| // operation. |
| std::optional<Value> replaceWithSlice; |
| for (auto input : inputs) { |
| auto inputType = dyn_cast<RankedTensorType>(input.getType()); |
| if (!inputType || !inputType.hasStaticShape()) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "concat input must be a static ranked tensor"); |
| |
| if (sliceStarts[axis] >= 0 && (sliceStarts[axis] + sliceSizes[axis]) <= |
| inputType.getDimSize(axis)) { |
| auto start_op = |
| getTosaConstShape(rewriter, sliceOp.getLoc(), sliceStarts); |
| auto size_op = |
| getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes); |
| replaceWithSlice = |
| rewriter |
| .create<tosa::SliceOp>(sliceOp.getLoc(), sliceOp.getType(), |
| input, start_op, size_op) |
| .getResult(); |
| break; |
| } |
| sliceStarts[axis] -= inputType.getDimSize(axis); |
| } |
| |
| if (!replaceWithSlice) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "corresponding concat input not found for slice"); |
| |
| rewriter.replaceOp(sliceOp, replaceWithSlice.value()); |
| return success(); |
| } |
| }; |
| |
| struct PadSliceOptimization : public OpRewritePattern<tosa::SliceOp> { |
| using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
| PatternRewriter &rewriter) const override { |
| Value sliceInput = sliceOp.getInput1(); |
| |
| // Check if producer is a PadOp |
| auto padOp = sliceInput.getDefiningOp<tosa::PadOp>(); |
| if (!padOp) |
| return rewriter.notifyMatchFailure(sliceOp, |
| "slice input must be a pad operation"); |
| |
| // Check PadOp has a single consumer |
| if (!padOp->hasOneUse()) |
| return rewriter.notifyMatchFailure(sliceOp, |
| "pad shall have a single consumer"); |
| |
| // Check input is statically ranked |
| auto inputTy = dyn_cast<RankedTensorType>(padOp.getInput1().getType()); |
| auto padTy = dyn_cast<RankedTensorType>(padOp.getType()); |
| if (!inputTy || !padTy || !inputTy.hasRank()) |
| return rewriter.notifyMatchFailure(sliceOp, |
| "slice input must be a ranked tensor"); |
| |
| // Validate and extract tosa::PadOp padding |
| DenseIntElementsAttr paddingElems; |
| if (!matchPattern(padOp.getPadding(), m_Constant(&paddingElems))) { |
| return rewriter.notifyMatchFailure( |
| sliceOp, |
| "`padding` input specified on the tosa::PadOp must be constant."); |
| } |
| llvm::SmallVector<int64_t> padPaddings = |
| llvm::to_vector(paddingElems.getValues<int64_t>()); |
| |
| // Extract slice parameters |
| DenseElementsAttr startElems; |
| if (!matchPattern(sliceOp.getStart(), m_Constant(&startElems))) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "start of slice must be a static ranked shape"); |
| llvm::SmallVector<int64_t> sliceStarts = |
| llvm::to_vector(startElems.getValues<int64_t>()); |
| |
| DenseElementsAttr sizeElems; |
| if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems))) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "size of slice must be a static ranked shape"); |
| llvm::SmallVector<int64_t> sliceSizes = |
| llvm::to_vector(sizeElems.getValues<int64_t>()); |
| |
| // Check if dynamic dimensions are sliced |
| const int64_t rank = inputTy.getRank(); |
| if (llvm::any_of(llvm::seq<int64_t>(0, rank), [&](int64_t i) { |
| const bool isDimDynamic = inputTy.isDynamicDim(i); |
| const bool isDimSliced = |
| (sliceStarts[i] != 0) || (sliceSizes[i] != -1); |
| |
| return isDimDynamic && isDimSliced; |
| })) { |
| return rewriter.notifyMatchFailure( |
| sliceOp, "axis that are sliced shall be statically known."); |
| } |
| |
| // Update the parameters |
| llvm::SmallVector<int64_t> newSliceStarts(rank, 0); |
| llvm::SmallVector<int64_t> newPadPaddings(2 * rank, 0); |
| llvm::SmallVector<int64_t> newPadShape(rank, ShapedType::kDynamic); |
| bool updated = false; |
| |
| for (int64_t i = 0; i < rank; ++i) { |
| const int64_t padLo = padPaddings[i * 2]; |
| const int64_t padHi = padPaddings[i * 2 + 1]; |
| const int64_t sliceStart = sliceStarts[i]; |
| const int64_t sliceSize = sliceSizes[i]; |
| const int64_t sliceEnd = sliceStart + sliceSize; |
| |
| // If dimension is dynamic pass-through |
| if (inputTy.isDynamicDim(i)) { |
| newPadPaddings[i * 2] = padLo; |
| newPadPaddings[i * 2 + 1] = padHi; |
| newSliceStarts[i] = sliceStart; |
| continue; |
| } |
| |
| // Handle static dimensions |
| const int64_t dimSize = inputTy.getShape()[i]; |
| const int64_t dimTotal = padLo + dimSize + padHi; |
| |
| // Check slice within bounds |
| if (sliceStart < 0 || sliceEnd > dimTotal) |
| return rewriter.notifyMatchFailure(sliceOp, "slice is out-of-bounds"); |
| |
| // Compute updated slice start parameter |
| const int64_t newSliceStart = std::max<int64_t>(sliceStart - padLo, 0); |
| newSliceStarts[i] = newSliceStart; |
| updated |= newSliceStart != sliceStart; |
| |
| // Compute updated pad parameters |
| const int64_t newPadLo = std::max<int64_t>(padLo - sliceStart, 0); |
| const int64_t newPadHi = |
| std::max<int64_t>(sliceEnd - (padLo + dimSize), 0); |
| newPadPaddings[i * 2] = newPadLo; |
| newPadPaddings[i * 2 + 1] = newPadHi; |
| updated |= (newPadLo != padLo) || (newPadHi != padHi); |
| |
| // Calculate new pad output shape |
| newPadShape[i] = |
| newPadPaddings[i * 2] + dimSize + newPadPaddings[i * 2 + 1]; |
| } |
| |
| // Check that we actually need to proceed with the rewrite |
| if (!updated) |
| return rewriter.notifyMatchFailure( |
| sliceOp, "terminate condition; nothing to rewrite"); |
| |
| // Create a PadOp with updated padding |
| auto newPaddingsOp = |
| getTosaConstShape(rewriter, sliceOp.getLoc(), newPadPaddings); |
| auto newPadTy = |
| RankedTensorType::get(newPadShape, inputTy.getElementType()); |
| auto newPadOp = tosa::PadOp::create(rewriter, padOp.getLoc(), newPadTy, |
| padOp.getInput1(), newPaddingsOp, |
| padOp.getPadConst()); |
| |
| // Update SliceOp and point to new PadOp |
| auto newStartOp = |
| getTosaConstShape(rewriter, sliceOp.getLoc(), newSliceStarts); |
| rewriter.replaceOpWithNewOp<tosa::SliceOp>(sliceOp, sliceOp.getType(), |
| newPadOp.getResult(), newStartOp, |
| sliceOp.getSize()); |
| |
| return success(); |
| } |
| }; |
| |
| // Update size operand of tosa.slice if size has dynamic dims but corresponding |
| // output dim is static |
| struct SliceDynamicSizeCanonicalization |
| : public OpRewritePattern<tosa::SliceOp> { |
| using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
| PatternRewriter &rewriter) const override { |
| ShapedType resultType = cast<ShapedType>(sliceOp.getType()); |
| |
| ElementsAttr sizeElems; |
| if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems))) { |
| return rewriter.notifyMatchFailure( |
| sliceOp, "size of slice must be a static ranked shape"); |
| } |
| |
| llvm::SmallVector<int64_t> sliceSizes = |
| llvm::to_vector(sizeElems.getValues<int64_t>()); |
| |
| bool replaceSliceSize{false}; |
| // if size op has -1 indicating dynamic shape but corresponding dim on the |
| // output is statically known, update size to match with known output dim |
| // shape |
| for (const auto &[index, size] : llvm::enumerate(sliceSizes)) { |
| if (size == -1 && !resultType.isDynamicDim(index)) { |
| sliceSizes[index] = resultType.getDimSize(index); |
| replaceSliceSize = true; |
| } |
| } |
| |
| if (!replaceSliceSize) { |
| return rewriter.notifyMatchFailure( |
| sliceOp, "no dimension of size of slice is dynamic that resolves " |
| "to static output shape"); |
| } |
| |
| auto size_op = getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes); |
| auto newSliceOp = |
| tosa::SliceOp::create(rewriter, sliceOp.getLoc(), sliceOp.getType(), |
| sliceOp.getInput1(), sliceOp.getStart(), size_op); |
| |
| rewriter.replaceOp(sliceOp, newSliceOp.getResult()); |
| return success(); |
| } |
| }; |
| |
| void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ConcatSliceOptimization, PadSliceOptimization, |
| SliceDynamicSizeCanonicalization>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Operator Folders. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename IntFolder, typename FloatFolder> |
| DenseElementsAttr binaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs, |
| RankedTensorType returnTy) { |
| if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) { |
| auto lETy = llvm::cast<ShapedType>(lhs.getType()).getElementType(); |
| auto rETy = llvm::cast<ShapedType>(rhs.getType()).getElementType(); |
| if (lETy != rETy) |
| return {}; |
| |
| if (llvm::isa<IntegerType>(lETy)) { |
| APInt l = lhs.getSplatValue<APInt>(); |
| APInt r = rhs.getSplatValue<APInt>(); |
| auto result = IntFolder()(l, r); |
| return DenseElementsAttr::get(returnTy, result); |
| } |
| |
| if (llvm::isa<FloatType>(lETy)) { |
| APFloat l = lhs.getSplatValue<APFloat>(); |
| APFloat r = rhs.getSplatValue<APFloat>(); |
| auto result = FloatFolder()(l, r); |
| return DenseElementsAttr::get(returnTy, result); |
| } |
| } |
| |
| return {}; |
| } |
| |
| static bool isSplatZero(Type elemType, DenseElementsAttr val) { |
| if (llvm::isa<FloatType>(elemType)) |
| return val && val.isSplat() && val.getSplatValue<APFloat>().isZero(); |
| if (llvm::isa<IntegerType>(elemType)) |
| return val && val.isSplat() && val.getSplatValue<APInt>().isZero(); |
| return false; |
| } |
| |
| static bool isSplatOne(Type elemType, DenseElementsAttr val, int64_t shift) { |
| if (llvm::isa<FloatType>(elemType)) |
| return val && val.isSplat() && |
| val.getSplatValue<APFloat>().isExactlyValue(1.0); |
| if (llvm::isa<IntegerType>(elemType)) { |
| const int64_t shifted = 1LL << shift; |
| return val && val.isSplat() && |
| val.getSplatValue<APInt>().getSExtValue() == shifted; |
| } |
| return false; |
| } |
| |
| OpFoldResult AddOp::fold(FoldAdaptor adaptor) { |
| auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| if (!lhsTy || !rhsTy || !resultTy) |
| return {}; |
| |
| // Cannot create an ElementsAttr from non-int/float/index types |
| if (!lhsTy.getElementType().isIntOrIndexOrFloat() || |
| !rhsTy.getElementType().isIntOrIndexOrFloat()) |
| return {}; |
| |
| auto resultETy = resultTy.getElementType(); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| |
| if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr)) |
| return getInput1(); |
| if (rhsTy == resultTy && isSplatZero(resultETy, lhsAttr)) |
| return getInput2(); |
| |
| if (!lhsAttr || !rhsAttr) |
| return {}; |
| |
| return binaryFolder<std::plus<APInt>, std::plus<APFloat>>(lhsAttr, rhsAttr, |
| resultTy); |
| } |
| |
| OpFoldResult ArgMaxOp::fold(FoldAdaptor adaptor) { |
| auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType()); |
| auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| if (!inputTy || !outputTy || !inputTy.hasStaticShape() || |
| !outputTy.hasStaticShape()) |
| return {}; |
| |
| if (inputTy.getDimSize(getAxis()) == 1) |
| return DenseElementsAttr::get(outputTy, 0); |
| |
| return {}; |
| } |
| |
| OpFoldResult IntDivOp::fold(FoldAdaptor adaptor) { |
| auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| if (!lhsTy || !rhsTy || !resultTy) |
| return {}; |
| if (lhsTy != rhsTy) |
| return {}; |
| |
| // IntDivOp inputs must be integer type, no need to check for quantized type |
| auto resultETy = resultTy.getElementType(); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| if (lhsAttr && lhsAttr.isSplat()) { |
| if (llvm::isa<IntegerType>(resultETy) && |
| lhsAttr.getSplatValue<APInt>().isZero()) |
| return lhsAttr; |
| } |
| |
| if (rhsAttr && rhsAttr.isSplat()) { |
| if (llvm::isa<IntegerType>(resultETy) && |
| rhsAttr.getSplatValue<APInt>().isOne()) |
| return getInput1(); |
| } |
| |
| if (rhsAttr && lhsAttr && rhsAttr.isSplat() && lhsAttr.isSplat() && |
| llvm::isa<IntegerType>(resultETy)) { |
| APInt l = lhsAttr.getSplatValue<APInt>(); |
| APInt r = rhsAttr.getSplatValue<APInt>(); |
| if (!r.isZero()) { |
| APInt result = l.sdiv(r); |
| return DenseElementsAttr::get(resultTy, result); |
| } |
| } |
| |
| return {}; |
| } |
| |
| namespace { |
| // calculate lhs * rhs >> shift according to TOSA Spec |
| // return nullopt if result is not in range of int32_t when shift > 0 |
| std::optional<APInt> mulInt(APInt lhs, APInt rhs, int32_t shift, |
| unsigned bitwidth) { |
| APInt result = lhs.sext(64) * rhs.sext(64); |
| |
| if (shift > 0) { |
| auto round = APInt(64, 1) << (shift - 1); |
| result += round; |
| result.ashrInPlace(shift); |
| // REQUIRE(product >= minimum_s<i32_t>() && product <= maximum_s<i32_t>()) |
| if (!(result.getSExtValue() >= INT32_MIN && |
| result.getSExtValue() <= INT32_MAX)) { |
| // REQUIRE failed |
| return std::nullopt; |
| } |
| } |
| |
| return result.trunc(bitwidth); |
| } |
| |
| DenseElementsAttr mulBinaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs, |
| RankedTensorType ty, int32_t shift) { |
| if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) { |
| if (llvm::isa<IntegerType>(ty.getElementType())) { |
| APInt l = lhs.getSplatValue<APInt>(); |
| APInt r = rhs.getSplatValue<APInt>(); |
| |
| if (shift == 0) { |
| return DenseElementsAttr::get(ty, l * r); |
| } |
| |
| auto bitwidth = ty.getElementType().getIntOrFloatBitWidth(); |
| const std::optional<APInt> result = mulInt(l, r, shift, bitwidth); |
| if (!result) |
| return {}; |
| return DenseElementsAttr::get(ty, result.value()); |
| } |
| |
| if (llvm::isa<FloatType>(ty.getElementType())) { |
| APFloat l = lhs.getSplatValue<APFloat>(); |
| APFloat r = rhs.getSplatValue<APFloat>(); |
| APFloat result = l * r; |
| return DenseElementsAttr::get(ty, result); |
| } |
| } |
| |
| return {}; |
| } |
| } // namespace |
| |
| OpFoldResult MulOp::fold(FoldAdaptor adaptor) { |
| auto lhs = getInput1(); |
| auto rhs = getInput2(); |
| auto lhsTy = llvm::dyn_cast<RankedTensorType>(lhs.getType()); |
| auto rhsTy = llvm::dyn_cast<RankedTensorType>(rhs.getType()); |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| if (!lhsTy || !rhsTy || !resultTy) |
| return {}; |
| |
| auto resultETy = resultTy.getElementType(); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| |
| // Result right shift on i32_t data type only. For simplification, synthesize |
| // a zero shift for other data type. |
| int32_t shift = 0; |
| if (resultETy.isInteger(32)) { |
| ElementsAttr shift_elem; |
| if (getShift().getImpl()) { |
| if (!matchPattern(getShift(), m_Constant(&shift_elem))) |
| // cannot be folded when the shift value is unknown. |
| return {}; |
| shift = shift_elem.getValues<IntegerAttr>()[0].getInt(); |
| } |
| } |
| |
| if (rhsTy == resultTy) { |
| if (isSplatZero(resultETy, lhsAttr)) |
| return lhsAttr.resizeSplat(resultTy); |
| if (isSplatOne(resultETy, lhsAttr, shift)) |
| return rhs; |
| } |
| if (lhsTy == resultTy) { |
| if (isSplatZero(resultETy, rhsAttr)) |
| return rhsAttr.resizeSplat(resultTy); |
| if (isSplatOne(resultETy, rhsAttr, shift)) |
| return lhs; |
| } |
| |
| return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, shift); |
| } |
| |
| OpFoldResult SubOp::fold(FoldAdaptor adaptor) { |
| auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| if (!lhsTy || !rhsTy || !resultTy) |
| return {}; |
| |
| // Cannot create an ElementsAttr from non-int/float/index types |
| if (!lhsTy.getElementType().isIntOrIndexOrFloat() || |
| !rhsTy.getElementType().isIntOrIndexOrFloat()) |
| return {}; |
| |
| auto resultETy = resultTy.getElementType(); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| |
| if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr)) |
| return getInput1(); |
| |
| if (!lhsAttr || !rhsAttr) |
| return {}; |
| |
| return binaryFolder<std::minus<APInt>, std::minus<APFloat>>(lhsAttr, rhsAttr, |
| resultTy); |
| } |
| |
| namespace { |
| template <typename Cmp> |
| struct ComparisonFold { |
| ComparisonFold() = default; |
| APInt operator()(const APInt &l, const APInt &r) { |
| return APInt(1, Cmp()(l, r)); |
| } |
| |
| APInt operator()(const APFloat &l, const APFloat &r) { |
| return APInt(1, Cmp()(l, r)); |
| } |
| }; |
| |
| struct APIntFoldGreater { |
| APIntFoldGreater() = default; |
| APInt operator()(const APInt &l, const APInt &r) { |
| return APInt(1, l.sgt(r)); |
| } |
| }; |
| |
| struct APIntFoldGreaterEqual { |
| APIntFoldGreaterEqual() = default; |
| APInt operator()(const APInt &l, const APInt &r) { |
| return APInt(1, l.sge(r)); |
| } |
| }; |
| } // namespace |
| |
| OpFoldResult GreaterOp::fold(FoldAdaptor adaptor) { |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| |
| if (!lhsAttr || !rhsAttr) |
| return {}; |
| |
| return binaryFolder<APIntFoldGreater, ComparisonFold<std::greater<APFloat>>>( |
| lhsAttr, rhsAttr, resultTy); |
| } |
| |
| OpFoldResult GreaterEqualOp::fold(FoldAdaptor adaptor) { |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| |
| if (!lhsAttr || !rhsAttr) |
| return {}; |
| |
| return binaryFolder<APIntFoldGreaterEqual, |
| ComparisonFold<std::greater_equal<APFloat>>>( |
| lhsAttr, rhsAttr, resultTy); |
| } |
| |
| OpFoldResult EqualOp::fold(FoldAdaptor adaptor) { |
| auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| auto lhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| auto rhsAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| Value lhs = getInput1(); |
| Value rhs = getInput2(); |
| auto lhsTy = llvm::cast<ShapedType>(lhs.getType()); |
| |
| // If we are comparing an integer value to itself it is always true. We can |
| // not do this with float due to float values. |
| if (llvm::isa<IntegerType>(lhsTy.getElementType()) && resultTy && |
| resultTy.hasStaticShape() && lhs == rhs) { |
| return DenseElementsAttr::get(resultTy, true); |
| } |
| |
| if (!lhsAttr || !rhsAttr) |
| return {}; |
| |
| return binaryFolder<ComparisonFold<std::equal_to<APInt>>, |
| ComparisonFold<std::equal_to<APFloat>>>(lhsAttr, rhsAttr, |
| resultTy); |
| } |
| |
| OpFoldResult CastOp::fold(FoldAdaptor adaptor) { |
| if (getInput().getType() == getType()) |
| return getInput(); |
| |
| auto operand = llvm::dyn_cast_if_present<ElementsAttr>(adaptor.getInput()); |
| if (!operand) |
| return {}; |
| |
| auto inTy = llvm::cast<ShapedType>(getInput().getType()); |
| auto outTy = llvm::cast<ShapedType>(getType()); |
| auto inETy = inTy.getElementType(); |
| auto outETy = outTy.getElementType(); |
| |
| if (operand.isSplat()) { |
| if (llvm::isa<FloatType>(inETy) && llvm::isa<FloatType>(outETy)) { |
| bool overflow; |
| auto splatVal = operand.getSplatValue<APFloat>(); |
| auto &semantics = llvm::cast<FloatType>(outETy).getFloatSemantics(); |
| splatVal.convert(semantics, llvm::RoundingMode::NearestTiesToEven, |
| &overflow); |
| return SplatElementsAttr::get(outTy, splatVal); |
| } |
| |
| if (llvm::isa<IntegerType>(inETy) && llvm::isa<FloatType>(outETy)) { |
| auto unsign = llvm::cast<IntegerType>(inETy).isUnsignedInteger(); |
| APFloat splatVal(llvm::cast<FloatType>(outETy).getFloatSemantics()); |
| splatVal.convertFromAPInt(operand.getSplatValue<APInt>(), !unsign, |
| llvm::RoundingMode::NearestTiesToEven); |
| return SplatElementsAttr::get(outTy, splatVal); |
| } |
| |
| if (llvm::isa<FloatType>(inETy) && llvm::isa<IntegerType>(outETy)) { |
| auto unsign = llvm::cast<IntegerType>(outETy).isUnsignedInteger(); |
| auto intVal = APSInt( |
| llvm::cast<IntegerType>(outETy).getIntOrFloatBitWidth(), unsign); |
| auto floatVal = operand.getSplatValue<APFloat>(); |
| bool exact; |
| floatVal.convertToInteger(intVal, llvm::RoundingMode::NearestTiesToEven, |
| &exact); |
| return SplatElementsAttr::get(outTy, intVal); |
| } |
| |
| if (llvm::isa<IntegerType>(inETy) && llvm::isa<IntegerType>(outETy)) { |
| const auto inIntType = llvm::cast<IntegerType>(inETy); |
| auto unsignIn = inIntType.isUnsignedInteger(); |
| bool trunc = |
| inETy.getIntOrFloatBitWidth() > outETy.getIntOrFloatBitWidth(); |
| auto intVal = operand.getSplatValue<APInt>(); |
| auto bitwidth = outETy.getIntOrFloatBitWidth(); |
| |
| // i1 types are boolean in TOSA |
| if (outETy.isInteger(1)) { |
| intVal = APInt(bitwidth, intVal.isZero() ? 0 : 1); |
| } else if (trunc) { |
| intVal = intVal.trunc(bitwidth); |
| } else if (unsignIn || inIntType.isInteger(1)) { |
| intVal = intVal.zext(bitwidth); |
| } else { |
| intVal = intVal.sext(bitwidth); |
| } |
| |
| return SplatElementsAttr::get(outTy, intVal); |
| } |
| } |
| |
| return {}; |
| } |
| |
| OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); } |
| |
| OpFoldResult ConstShapeOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); } |
| |
| #define REDUCE_FOLDER(OP) \ |
| OpFoldResult OP::fold(FoldAdaptor adaptor) { \ |
| ShapedType inputTy = llvm::cast<ShapedType>(getInput().getType()); \ |
| if (!inputTy.hasRank()) \ |
| return {}; \ |
| if (inputTy != getType()) \ |
| return {}; \ |
| if (inputTy.getRank() == 0 || inputTy.getDimSize(getAxis()) == 1) \ |
| return getInput(); \ |
| return {}; \ |
| } |
| |
| REDUCE_FOLDER(ReduceAllOp) |
| REDUCE_FOLDER(ReduceAnyOp) |
| REDUCE_FOLDER(ReduceMaxOp) |
| REDUCE_FOLDER(ReduceMinOp) |
| REDUCE_FOLDER(ReduceProductOp) |
| REDUCE_FOLDER(ReduceSumOp) |
| #undef REDUCE_FOLDER |
| |
| OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) { |
| auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| |
| if (!inputTy || !outputTy) |
| return {}; |
| |
| // Fold when the input and output types are the same. This is only safe when |
| // there is at most 1 dynamic dimension. For 2 or more dynamic dimensions, |
| // there may still be a productive reshape. |
| if (inputTy == outputTy && inputTy.getNumDynamicDims() < 2) |
| return getInput1(); |
| |
| // reshape(reshape(x)) -> reshape(x) |
| if (auto reshapeOp = llvm::dyn_cast_if_present<tosa::ReshapeOp>( |
| getInput1().getDefiningOp())) { |
| getInput1Mutable().assign(reshapeOp.getInput1()); |
| return getResult(); |
| } |
| |
| // Cannot create an ElementsAttr from non-int/float/index types |
| if (!inputTy.getElementType().isIntOrIndexOrFloat()) |
| return {}; |
| |
| // reshape(const(x)) -> const(reshape-attr(x)) |
| if (auto operand = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) { |
| // Constants must have static shape. |
| if (!outputTy.hasStaticShape()) |
| return {}; |
| |
| // Okay to duplicate splat constants. |
| if (operand.isSplat()) |
| return SplatElementsAttr::get(outputTy, |
| operand.getSplatValue<Attribute>()); |
| |
| // Don't duplicate other constants. |
| if (!getInput1().hasOneUse()) |
| return {}; |
| |
| llvm::SmallVector<int64_t> shapeVec; |
| if (!tosa::getConstShapeValues(getShape().getDefiningOp(), shapeVec)) |
| return {}; |
| |
| return operand.reshape( |
| llvm::cast<ShapedType>(operand.getType()).clone(shapeVec)); |
| } |
| |
| return {}; |
| } |
| |
| OpFoldResult PadOp::fold(FoldAdaptor adaptor) { |
| // If the pad is all zeros we can fold this operation away. |
| if (adaptor.getPadding() && getInput1().getType() == getType()) { |
| auto densePad = llvm::dyn_cast<DenseElementsAttr>(adaptor.getPadding()); |
| if (densePad && densePad.isSplat() && |
| densePad.getSplatValue<APInt>().isZero()) { |
| return getInput1(); |
| } |
| } |
| |
| return {}; |
| } |
| |
| // Fold away cases where a tosa.resize operation returns a copy |
| // of the input image. |
| OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) { |
| auto scaleAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getScale()); |
| auto offsetAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getOffset()); |
| auto borderAttr = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getBorder()); |
| if (!scaleAttr || !offsetAttr || !borderAttr) { |
| return {}; |
| } |
| |
| auto scale = tosa::convertFromIntAttr(scaleAttr, /* rank = */ 4); |
| auto offset = tosa::convertFromIntAttr(offsetAttr, /* rank = */ 2); |
| auto border = tosa::convertFromIntAttr(borderAttr, /* rank = */ 2); |
| if (scale.size() != 4 || offset.size() != 2 || border.size() != 2) { |
| return {}; |
| } |
| |
| // Check unit scaling. |
| if (scale[0] != scale[1] || scale[2] != scale[3]) { |
| return {}; |
| } |
| |
| // There should be no offset. |
| if (offset[0] != 0 || offset[1] != 0) { |
| return {}; |
| } |
| |
| // There should be no border. |
| if (border[0] != 0 || border[1] != 0) { |
| return {}; |
| } |
| |
| auto input = getInput(); |
| auto inputTy = llvm::cast<RankedTensorType>(input.getType()); |
| auto resultTy = llvm::cast<RankedTensorType>(getType()); |
| if (inputTy != resultTy) |
| return {}; |
| |
| return input; |
| } |
| |
| OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) { |
| auto operand = getInput1(); |
| auto operandTy = llvm::cast<ShapedType>(operand.getType()); |
| auto axis = getAxis(); |
| auto operandAttr = |
| llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput1()); |
| if (operandAttr) |
| return operandAttr; |
| |
| // If the dim-length is 1, tosa.reverse is a no-op. |
| if (operandTy.hasRank() && |
| (operandTy.getRank() == 0 || operandTy.getDimSize(axis) == 1)) |
| return operand; |
| |
| return {}; |
| } |
| |
| OpFoldResult SliceOp::fold(FoldAdaptor adaptor) { |
| auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| |
| if (!inputTy || !outputTy) |
| return {}; |
| |
| if (inputTy == outputTy && inputTy.hasStaticShape()) |
| return getInput1(); |
| |
| if (!adaptor.getInput1()) |
| return {}; |
| |
| // Cannot create an ElementsAttr from non-int/float/index types |
| if (!inputTy.getElementType().isIntOrIndexOrFloat() || |
| !outputTy.getElementType().isIntOrIndexOrFloat()) |
| return {}; |
| |
| auto operand = llvm::cast<ElementsAttr>(adaptor.getInput1()); |
| if (operand.isSplat() && outputTy.hasStaticShape()) { |
| return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>()); |
| } |
| |
| if (inputTy.hasStaticShape() && outputTy.hasStaticShape() && |
| outputTy.getNumElements() == 1) { |
| DenseElementsAttr startElems; |
| if (!matchPattern(getStart(), m_Constant(&startElems))) |
| return {}; |
| |
| llvm::SmallVector<uint64_t> indices = |
| llvm::to_vector(startElems.getValues<uint64_t>()); |
| auto value = operand.getValues<Attribute>()[indices]; |
| return SplatElementsAttr::get(outputTy, value); |
| } |
| |
| return {}; |
| } |
| |
| OpFoldResult tosa::SelectOp::fold(FoldAdaptor adaptor) { |
| if (getOnTrue() == getOnFalse()) |
| return getOnTrue(); |
| |
| auto predicate = |
| llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getInput1()); |
| if (!predicate) |
| return {}; |
| |
| if (!predicate.isSplat()) |
| return {}; |
| return predicate.getSplatValue<APInt>().getBoolValue() ? getOnTrue() |
| : getOnFalse(); |
| } |
| |
| OpFoldResult TileOp::fold(FoldAdaptor adaptor) { |
| if (getInput1().getType() == getType()) { |
| if (auto multiples = llvm::dyn_cast_if_present<DenseElementsAttr>( |
| adaptor.getMultiples())) { |
| if (multiples.isSplat() && |
| multiples.getSplatValue<APInt>().getSExtValue() == 1) |
| return getInput1(); |
| if (auto int_array_attr = |
| llvm::dyn_cast<DenseIntElementsAttr>(multiples)) { |
| if (llvm::all_of(int_array_attr.getValues<APInt>(), |
| [](APInt v) { return v.getSExtValue() == 1; })) |
| return getInput1(); |
| } |
| } |
| } |
| return {}; |
| } |
| |
| OpFoldResult TransposeOp::fold(FoldAdaptor adaptor) { |
| auto resultTy = llvm::cast<ShapedType>(getType()); |
| |
| // Transposing splat values just means reshaping. |
| if (auto input = |
| llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) { |
| if (input.isSplat() && resultTy.hasStaticShape() && |
| input.getType().getElementType() == resultTy.getElementType()) |
| return input.reshape(resultTy); |
| } |
| |
| // Transpose is not the identity transpose. |
| const llvm::ArrayRef<int32_t> perms = getPerms(); |
| |
| if (!llvm::equal(llvm::seq<int32_t>(0, perms.size()), perms)) |
| return {}; |
| |
| return getInput1(); |
| } |
| |
| OpFoldResult tosa::LogOp::fold(FoldAdaptor adaptor) { |
| auto input = getInput1(); |
| // Element-wise log(exp(x)) = x |
| if (auto op = input.getDefiningOp<tosa::ExpOp>()) { |
| return op.getInput1(); |
| } |
| |
| return {}; |
| } |
| |
| OpFoldResult tosa::ExpOp::fold(FoldAdaptor adaptor) { |
| auto input = getInput1(); |
| // Element-wise exp(log(x)) = x |
| if (auto op = input.getDefiningOp<tosa::LogOp>()) { |
| return op.getInput1(); |
| } |
| |
| return {}; |
| } |
| |
| OpFoldResult tosa::NegateOp::fold(FoldAdaptor adaptor) { |
| // Element-wise negate(negate(x)) = x |
| // iff all zero points are constant 0 |
| auto definingOp = getInput1().getDefiningOp<tosa::NegateOp>(); |
| if (!definingOp) { |
| // defining op of input1 is not a negate, cannot fold |
| return {}; |
| } |
| |
| if (FailureOr<int64_t> maybeIZp = getInput1ZeroPoint(); |
| failed(maybeIZp) || *maybeIZp != 0) { |
| // input1 zero point is not constant 0, cannot fold |
| return {}; |
| } |
| if (FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
| failed(maybeOZp) || *maybeOZp != 0) { |
| // output zero point is not constant 0, cannot fold |
| return {}; |
| } |
| if (FailureOr<int64_t> maybeIZp = definingOp.getInput1ZeroPoint(); |
| failed(maybeIZp) || *maybeIZp != 0) { |
| // definingOp's input1 zero point is not constant 0, cannot fold |
| return {}; |
| } |
| if (FailureOr<int64_t> maybeOZp = definingOp.getOutputZeroPoint(); |
| failed(maybeOZp) || *maybeOZp != 0) { |
| // definingOp's output zero point is not constant 0, cannot fold |
| return {}; |
| } |
| |
| return definingOp.getInput1(); |
| } |
| |
| OpFoldResult tosa::AbsOp::fold(FoldAdaptor adaptor) { |
| auto input = getInput1(); |
| // Element-wise abs(abs(x)) = abs(x) |
| if (auto op = input.getDefiningOp<tosa::AbsOp>()) { |
| return input; |
| } |
| |
| return {}; |
| } |
| |
| OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) { |
| // Fold consecutive concats on the same axis into a single op. |
| // Keep track of the operands so we are able to construct a new concat |
| // later. Conservatively assume that we double the number of operands when |
| // folding |
| SmallVector<Value, 8> concatOperands; |
| concatOperands.reserve(2 * getNumOperands()); |
| |
| // Find all operands that are foldable concats |
| bool foundFoldableConcat = false; |
| for (Value operand : getOperands()) { |
| concatOperands.emplace_back(operand); |
| |
| auto producer = operand.getDefiningOp<ConcatOp>(); |
| if (!producer) |
| continue; |
| |
| // Not foldable if axes are not the same |
| if (getAxis() != producer.getAxis()) |
| continue; |
| |
| // Replace the original operand with all incoming operands |
| foundFoldableConcat = true; |
| concatOperands.pop_back(); |
| llvm::append_range(concatOperands, producer->getOperands()); |
| } |
| |
| if (!foundFoldableConcat) |
| return {}; |
| |
| getOperation()->setOperands(concatOperands); |
| return getResult(); |
| } |
| |
| OpFoldResult tosa::ReciprocalOp::fold(FoldAdaptor adaptor) { |
| auto input = adaptor.getInput1(); |
| |
| auto inputAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(input); |
| // Fold splat inputs only. |
| if (!inputAttr || !inputAttr.isSplat()) |
| return {}; |
| |
| auto shapeType = llvm::cast<ShapedType>(getType()); |
| if (auto floatType = llvm::dyn_cast<FloatType>(inputAttr.getElementType())) { |
| auto floatVal = inputAttr.getSplatValue<APFloat>(); |
| return DenseElementsAttr::get(shapeType, |
| ReciprocalOp::calcOneElement(floatVal)); |
| } |
| |
| return {}; |
| } |