blob: 00a0f05b63330316c178f746ee63c6ed19ab571a [file] [log] [blame]
//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
#include <numeric>
#include <optional>
#include <type_traits>
using namespace mlir;
namespace {
// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
// representing the constant value of the affine expression evaluated on
// constant 'operandConsts', or nullptr if it can't be folded.
class AffineExprConstantFolder {
public:
AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
: numDims(numDims), operandConsts(operandConsts) {}
/// Attempt to constant fold the specified affine expr, or return null on
/// failure.
IntegerAttr constantFold(AffineExpr expr) {
if (auto result = constantFoldImpl(expr))
return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
return nullptr;
}
bool hasPoison() const { return hasPoison_; }
private:
std::optional<int64_t> constantFoldImpl(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Add:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
case AffineExprKind::Mul:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
case AffineExprKind::Mod:
return constantFoldBinExpr(
expr, [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
if (rhs < 1) {
hasPoison_ = true;
return std::nullopt;
}
return mod(lhs, rhs);
});
case AffineExprKind::FloorDiv:
return constantFoldBinExpr(
expr, [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
if (rhs == 0) {
hasPoison_ = true;
return std::nullopt;
}
return floorDiv(lhs, rhs);
});
case AffineExprKind::CeilDiv:
return constantFoldBinExpr(
expr, [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
if (rhs == 0) {
hasPoison_ = true;
return std::nullopt;
}
return ceilDiv(lhs, rhs);
});
case AffineExprKind::Constant:
return cast<AffineConstantExpr>(expr).getValue();
case AffineExprKind::DimId:
if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
operandConsts[cast<AffineDimExpr>(expr).getPosition()]))
return attr.getInt();
return std::nullopt;
case AffineExprKind::SymbolId:
if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
operandConsts[numDims +
cast<AffineSymbolExpr>(expr).getPosition()]))
return attr.getInt();
return std::nullopt;
}
llvm_unreachable("Unknown AffineExpr");
}
// TODO: Change these to operate on APInts too.
std::optional<int64_t> constantFoldBinExpr(
AffineExpr expr,
llvm::function_ref<std::optional<int64_t>(int64_t, int64_t)> op) {
auto binOpExpr = cast<AffineBinaryOpExpr>(expr);
if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
return op(*lhs, *rhs);
return std::nullopt;
}
// The number of dimension operands in AffineMap containing this expression.
unsigned numDims;
// The constant valued operands used to evaluate this AffineExpr.
ArrayRef<Attribute> operandConsts;
bool hasPoison_{false};
};
} // namespace
/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
return get(/*dimCount=*/0, /*symbolCount=*/0,
{getAffineConstantExpr(val, context)});
}
/// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
/// minor dimensions.
AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
MLIRContext *context) {
assert(dims >= results && "Dimension mismatch");
auto id = AffineMap::getMultiDimIdentityMap(dims, context);
return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
}
AffineMap AffineMap::getFilteredIdentityMap(
MLIRContext *ctx, unsigned numDims,
llvm::function_ref<bool(AffineDimExpr)> keepDimFilter) {
auto identityMap = getMultiDimIdentityMap(numDims, ctx);
// Apply filter to results.
llvm::SmallBitVector dropDimResults(numDims);
for (auto [idx, resultExpr] : llvm::enumerate(identityMap.getResults()))
dropDimResults[idx] = !keepDimFilter(cast<AffineDimExpr>(resultExpr));
return identityMap.dropResults(dropDimResults);
}
bool AffineMap::isMinorIdentity() const {
return getNumDims() >= getNumResults() &&
*this ==
getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
}
/// Returns true if this affine map is a minor identity up to broadcasted
/// dimensions which are indicated by value 0 in the result.
bool AffineMap::isMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> *broadcastedDims) const {
if (broadcastedDims)
broadcastedDims->clear();
if (getNumDims() < getNumResults())
return false;
unsigned suffixStart = getNumDims() - getNumResults();
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) {
// Each result may be either a constant 0 (broadcasted dimension).
if (constExpr.getValue() != 0)
return false;
if (broadcastedDims)
broadcastedDims->push_back(resIdx);
} else if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
// Or it may be the input dimension corresponding to this result position.
if (dimExpr.getPosition() != suffixStart + resIdx)
return false;
} else {
return false;
}
}
return true;
}
/// Return true if this affine map can be converted to a minor identity with
/// broadcast by doing a permute. Return a permutation (there may be
/// several) to apply to get to a minor identity with broadcasts.
/// Ex:
/// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
/// perm = [1, 0] and broadcast d2
/// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
/// permutation + broadcast
/// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
/// with perm = [1, 0, 2] and broadcast d2
/// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
/// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
/// perm = [3, 0, 1, 2]
bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> &permutedDims) const {
unsigned projectionStart =
getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
permutedDims.clear();
SmallVector<unsigned> broadcastDims;
permutedDims.resize(getNumResults(), 0);
// If there are more results than input dimensions we want the new map to
// start with broadcast dimensions in order to be a minor identity with
// broadcasting.
unsigned leadingBroadcast =
getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
false);
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
// Each result may be either a constant 0 (broadcast dimension) or a
// dimension.
if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) {
if (constExpr.getValue() != 0)
return false;
broadcastDims.push_back(resIdx);
} else if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
if (dimExpr.getPosition() < projectionStart)
return false;
unsigned newPosition =
dimExpr.getPosition() - projectionStart + leadingBroadcast;
permutedDims[resIdx] = newPosition;
dimFound[newPosition] = true;
} else {
return false;
}
}
// Find a permuation for the broadcast dimension. Since they are broadcasted
// any valid permutation is acceptable. We just permute the dim into a slot
// without an existing dimension.
unsigned pos = 0;
for (auto dim : broadcastDims) {
while (pos < dimFound.size() && dimFound[pos]) {
pos++;
}
permutedDims[dim] = pos++;
}
return true;
}
/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
MLIRContext *context) {
assert(!permutation.empty() &&
"Cannot create permutation map from empty permutation vector");
const auto *m = llvm::max_element(permutation);
auto permutationMap = getMultiDimMapWithTargets(*m + 1, permutation, context);
assert(permutationMap.isPermutation() && "Invalid permutation vector");
return permutationMap;
}
AffineMap AffineMap::getPermutationMap(ArrayRef<int64_t> permutation,
MLIRContext *context) {
SmallVector<unsigned> perm = llvm::map_to_vector(
permutation, [](int64_t i) { return static_cast<unsigned>(i); });
return AffineMap::getPermutationMap(perm, context);
}
AffineMap AffineMap::getMultiDimMapWithTargets(unsigned numDims,
ArrayRef<unsigned> targets,
MLIRContext *context) {
SmallVector<AffineExpr, 4> affExprs;
for (unsigned t : targets)
affExprs.push_back(getAffineDimExpr(t, context));
AffineMap result = AffineMap::get(/*dimCount=*/numDims, /*symbolCount=*/0,
affExprs, context);
return result;
}
/// Creates an affine map each for each list of AffineExpr's in `exprsList`
/// while inferring the right number of dimensional and symbolic inputs needed
/// based on the maximum dimensional and symbolic identifier appearing in the
/// expressions.
template <typename AffineExprContainer>
static SmallVector<AffineMap, 4>
inferFromExprList(ArrayRef<AffineExprContainer> exprsList,
MLIRContext *context) {
if (exprsList.empty())
return {};
int64_t maxDim = -1, maxSym = -1;
getMaxDimAndSymbol(exprsList, maxDim, maxSym);
SmallVector<AffineMap, 4> maps;
maps.reserve(exprsList.size());
for (const auto &exprs : exprsList)
maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
/*symbolCount=*/maxSym + 1, exprs, context));
return maps;
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList,
MLIRContext *context) {
return ::inferFromExprList(exprsList, context);
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList,
MLIRContext *context) {
return ::inferFromExprList(exprsList, context);
}
uint64_t AffineMap::getLargestKnownDivisorOfMapExprs() {
uint64_t gcd = 0;
for (AffineExpr resultExpr : getResults()) {
uint64_t thisGcd = resultExpr.getLargestKnownDivisor();
gcd = std::gcd(gcd, thisGcd);
}
if (gcd == 0)
gcd = std::numeric_limits<uint64_t>::max();
return gcd;
}
AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
MLIRContext *context) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(numDims);
for (unsigned i = 0; i < numDims; ++i)
dimExprs.push_back(mlir::getAffineDimExpr(i, context));
return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
}
MLIRContext *AffineMap::getContext() const { return map->context; }
bool AffineMap::isIdentity() const {
if (getNumDims() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
auto expr = dyn_cast<AffineDimExpr>(results[i]);
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isSymbolIdentity() const {
if (getNumSymbols() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numSymbols = getNumSymbols(); i < numSymbols; ++i) {
auto expr = dyn_cast<AffineDimExpr>(results[i]);
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isEmpty() const {
return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
}
bool AffineMap::isSingleConstant() const {
return getNumResults() == 1 && isa<AffineConstantExpr>(getResult(0));
}
bool AffineMap::isConstant() const {
return llvm::all_of(getResults(), [](AffineExpr expr) {
return isa<AffineConstantExpr>(expr);
});
}
int64_t AffineMap::getSingleConstantResult() const {
assert(isSingleConstant() && "map must have a single constant result");
return cast<AffineConstantExpr>(getResult(0)).getValue();
}
SmallVector<int64_t> AffineMap::getConstantResults() const {
assert(isConstant() && "map must have only constant results");
SmallVector<int64_t> result;
for (auto expr : getResults())
result.emplace_back(cast<AffineConstantExpr>(expr).getValue());
return result;
}
unsigned AffineMap::getNumDims() const {
assert(map && "uninitialized map storage");
return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
assert(map && "uninitialized map storage");
return map->numSymbols;
}
unsigned AffineMap::getNumResults() const { return getResults().size(); }
unsigned AffineMap::getNumInputs() const {
assert(map && "uninitialized map storage");
return map->numDims + map->numSymbols;
}
ArrayRef<AffineExpr> AffineMap::getResults() const {
assert(map && "uninitialized map storage");
return map->results();
}
AffineExpr AffineMap::getResult(unsigned idx) const {
return getResults()[idx];
}
unsigned AffineMap::getDimPosition(unsigned idx) const {
return cast<AffineDimExpr>(getResult(idx)).getPosition();
}
std::optional<unsigned> AffineMap::getResultPosition(AffineExpr input) const {
if (!isa<AffineDimExpr>(input))
return std::nullopt;
for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++) {
if (getResult(i) == input)
return i;
}
return std::nullopt;
}
/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
LogicalResult AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<Attribute> &results,
bool *hasPoison) const {
// Attempt partial folding.
SmallVector<int64_t, 2> integers;
partialConstantFold(operandConstants, &integers, hasPoison);
// If all expressions folded to a constant, populate results with attributes
// containing those constants.
if (integers.empty())
return failure();
auto range = llvm::map_range(integers, [this](int64_t i) {
return IntegerAttr::get(IndexType::get(getContext()), i);
});
results.append(range.begin(), range.end());
return success();
}
AffineMap AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<int64_t> *results,
bool *hasPoison) const {
assert(getNumInputs() == operandConstants.size());
// Fold each of the result expressions.
AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(getNumResults());
for (auto expr : getResults()) {
auto folded = exprFolder.constantFold(expr);
if (exprFolder.hasPoison() && hasPoison) {
*hasPoison = true;
return {};
}
// If did not fold to a constant, keep the original expression, and clear
// the integer results vector.
if (folded) {
exprs.push_back(
getAffineConstantExpr(folded.getInt(), folded.getContext()));
if (results)
results->push_back(folded.getInt());
} else {
exprs.push_back(expr);
if (results) {
results->clear();
results = nullptr;
}
}
}
return get(getNumDims(), getNumSymbols(), exprs, getContext());
}
/// Walk all of the AffineExpr's in this mapping. Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const {
for (auto expr : getResults())
expr.walk(callback);
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping. Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result. The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 8> results;
results.reserve(getNumResults());
for (auto expr : getResults())
results.push_back(
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
return get(numResultDims, numResultSyms, results, getContext());
}
/// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to
/// each of the results and return a new AffineMap with the new results and
/// with the specified number of dims and symbols.
AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(expr, replacement));
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}
/// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the
/// results and return a new AffineMap with the new results and with the
/// specified number of dims and symbols.
AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(map));
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}
AffineMap
AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(map));
return AffineMap::inferFromExprList(newResults, getContext()).front();
}
AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const {
auto exprs = llvm::to_vector<4>(getResults());
// TODO: this is a pretty terrible API .. is there anything better?
for (auto pos = positions.find_last(); pos != -1;
pos = positions.find_prev(pos))
exprs.erase(exprs.begin() + pos);
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}
AffineMap AffineMap::compose(AffineMap map) const {
assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
// Prepare `map` by concatenating the symbols and rewriting its exprs.
unsigned numDims = map.getNumDims();
unsigned numSymbolsThisMap = getNumSymbols();
unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
SmallVector<AffineExpr, 8> newDims(numDims);
for (unsigned idx = 0; idx < numDims; ++idx) {
newDims[idx] = getAffineDimExpr(idx, getContext());
}
SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap);
for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
newSymbols[idx - numSymbolsThisMap] =
getAffineSymbolExpr(idx, getContext());
}
auto newMap =
map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
SmallVector<AffineExpr, 8> exprs;
exprs.reserve(getResults().size());
for (auto expr : getResults())
exprs.push_back(expr.compose(newMap));
return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
}
SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
assert(getNumSymbols() == 0 && "Expected symbol-less map");
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(values.size());
MLIRContext *ctx = getContext();
for (auto v : values)
exprs.push_back(getAffineConstantExpr(v, ctx));
auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
SmallVector<int64_t, 4> res;
res.reserve(resMap.getNumResults());
for (auto e : resMap.getResults())
res.push_back(cast<AffineConstantExpr>(e).getValue());
return res;
}
bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
if (getNumSymbols() > 0)
return false;
// Having more results than inputs means that results have duplicated dims or
// zeros that can't be mapped to input dims.
if (getNumResults() > getNumInputs())
return false;
SmallVector<bool, 8> seen(getNumInputs(), false);
// A projected permutation can have, at most, only one instance of each input
// dimension in the result expressions. Zeros are allowed as long as the
// number of result expressions is lower or equal than the number of input
// expressions.
for (auto expr : getResults()) {
if (auto dim = dyn_cast<AffineDimExpr>(expr)) {
if (seen[dim.getPosition()])
return false;
seen[dim.getPosition()] = true;
} else {
auto constExpr = dyn_cast<AffineConstantExpr>(expr);
if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0)
return false;
}
}
// Results are either dims or zeros and zeros can be mapped to input dims.
return true;
}
bool AffineMap::isPermutation() const {
if (getNumDims() != getNumResults())
return false;
return isProjectedPermutation();
}
AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const {
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(resultPos.size());
for (auto idx : resultPos)
exprs.push_back(getResult(idx));
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}
AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const {
return AffineMap::get(getNumDims(), getNumSymbols(),
getResults().slice(start, length), getContext());
}
AffineMap AffineMap::getMajorSubMap(unsigned numResults) const {
if (numResults == 0)
return AffineMap();
if (numResults > getNumResults())
return *this;
return getSliceMap(0, numResults);
}
AffineMap AffineMap::getMinorSubMap(unsigned numResults) const {
if (numResults == 0)
return AffineMap();
if (numResults > getNumResults())
return *this;
return getSliceMap(getNumResults() - numResults, numResults);
}
/// Implementation detail to compress multiple affine maps with a compressionFun
/// that is expected to be either compressUnusedDims or compressUnusedSymbols.
/// The implementation keeps track of num dims and symbols across the different
/// affine maps.
static SmallVector<AffineMap> compressUnusedListImpl(
ArrayRef<AffineMap> maps,
llvm::function_ref<AffineMap(AffineMap)> compressionFun) {
if (maps.empty())
return SmallVector<AffineMap>();
SmallVector<AffineExpr> allExprs;
allExprs.reserve(maps.size() * maps.front().getNumResults());
unsigned numDims = maps.front().getNumDims(),
numSymbols = maps.front().getNumSymbols();
for (auto m : maps) {
assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() &&
"expected maps with same num dims and symbols");
llvm::append_range(allExprs, m.getResults());
}
AffineMap unifiedMap = compressionFun(
AffineMap::get(numDims, numSymbols, allExprs, maps.front().getContext()));
unsigned unifiedNumDims = unifiedMap.getNumDims(),
unifiedNumSymbols = unifiedMap.getNumSymbols();
ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults();
SmallVector<AffineMap> res;
res.reserve(maps.size());
for (auto m : maps) {
res.push_back(AffineMap::get(unifiedNumDims, unifiedNumSymbols,
unifiedResults.take_front(m.getNumResults()),
m.getContext()));
unifiedResults = unifiedResults.drop_front(m.getNumResults());
}
return res;
}
AffineMap mlir::compressDims(AffineMap map,
const llvm::SmallBitVector &unusedDims) {
return projectDims(map, unusedDims, /*compressDimsFlag=*/true);
}
AffineMap mlir::compressUnusedDims(AffineMap map) {
return compressDims(map, getUnusedDimsBitVector({map}));
}
SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) {
return compressUnusedListImpl(
maps, [](AffineMap m) { return compressUnusedDims(m); });
}
AffineMap mlir::compressSymbols(AffineMap map,
const llvm::SmallBitVector &unusedSymbols) {
return projectSymbols(map, unusedSymbols, /*compressSymbolsFlag=*/true);
}
AffineMap mlir::compressUnusedSymbols(AffineMap map) {
return compressSymbols(map, getUnusedSymbolsBitVector({map}));
}
SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) {
return compressUnusedListImpl(
maps, [](AffineMap m) { return compressUnusedSymbols(m); });
}
AffineMap mlir::foldAttributesIntoMap(Builder &b, AffineMap map,
ArrayRef<OpFoldResult> operands,
SmallVector<Value> &remainingValues) {
SmallVector<AffineExpr> dimReplacements, symReplacements;
int64_t numDims = 0;
for (int64_t i = 0; i < map.getNumDims(); ++i) {
if (auto attr = operands[i].dyn_cast<Attribute>()) {
dimReplacements.push_back(
b.getAffineConstantExpr(attr.cast<IntegerAttr>().getInt()));
} else {
dimReplacements.push_back(b.getAffineDimExpr(numDims++));
remainingValues.push_back(operands[i].get<Value>());
}
}
int64_t numSymbols = 0;
for (int64_t i = 0; i < map.getNumSymbols(); ++i) {
if (auto attr = operands[i + map.getNumDims()].dyn_cast<Attribute>()) {
symReplacements.push_back(
b.getAffineConstantExpr(attr.cast<IntegerAttr>().getInt()));
} else {
symReplacements.push_back(b.getAffineSymbolExpr(numSymbols++));
remainingValues.push_back(operands[i + map.getNumDims()].get<Value>());
}
}
return map.replaceDimsAndSymbols(dimReplacements, symReplacements, numDims,
numSymbols);
}
AffineMap mlir::simplifyAffineMap(AffineMap map) {
SmallVector<AffineExpr, 8> exprs;
for (auto e : map.getResults()) {
exprs.push_back(
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
}
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
map.getContext());
}
AffineMap mlir::removeDuplicateExprs(AffineMap map) {
auto results = map.getResults();
SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
uniqueExprs.end());
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
map.getContext());
}
AffineMap mlir::inversePermutation(AffineMap map) {
if (map.isEmpty())
return map;
assert(map.getNumSymbols() == 0 && "expected map without symbols");
SmallVector<AffineExpr, 4> exprs(map.getNumDims());
for (const auto &en : llvm::enumerate(map.getResults())) {
auto expr = en.value();
// Skip non-permutations.
if (auto d = dyn_cast<AffineDimExpr>(expr)) {
if (exprs[d.getPosition()])
continue;
exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
}
}
SmallVector<AffineExpr, 4> seenExprs;
seenExprs.reserve(map.getNumDims());
for (auto expr : exprs)
if (expr)
seenExprs.push_back(expr);
if (seenExprs.size() != map.getNumInputs())
return AffineMap();
return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
}
AffineMap mlir::inverseAndBroadcastProjectedPermutation(AffineMap map) {
assert(map.isProjectedPermutation(/*allowZeroInResults=*/true));
MLIRContext *context = map.getContext();
AffineExpr zero = mlir::getAffineConstantExpr(0, context);
// Start with all the results as 0.
SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero);
for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) {
// Skip zeros from input map. 'exprs' is already initialized to zero.
if (auto constExpr = dyn_cast<AffineConstantExpr>(map.getResult(i))) {
assert(constExpr.getValue() == 0 &&
"Unexpected constant in projected permutation");
(void)constExpr;
continue;
}
// Reverse each dimension existing in the original map result.
exprs[map.getDimPosition(i)] = getAffineDimExpr(i, context);
}
return AffineMap::get(map.getNumResults(), /*symbolCount=*/0, exprs, context);
}
AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
unsigned numResults = 0, numDims = 0, numSymbols = 0;
for (auto m : maps)
numResults += m.getNumResults();
SmallVector<AffineExpr, 8> results;
results.reserve(numResults);
for (auto m : maps) {
for (auto res : m.getResults())
results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));
numSymbols += m.getNumSymbols();
numDims = std::max(m.getNumDims(), numDims);
}
return AffineMap::get(numDims, numSymbols, results,
maps.front().getContext());
}
/// Common implementation to project out dimensions or symbols from an affine
/// map based on the template type.
/// Additionally, if 'compress' is true, the projected out dimensions or symbols
/// are also dropped from the resulting map.
template <typename AffineDimOrSymExpr>
static AffineMap projectCommonImpl(AffineMap map,
const llvm::SmallBitVector &toProject,
bool compress) {
static_assert(llvm::is_one_of<AffineDimOrSymExpr, AffineDimExpr,
AffineSymbolExpr>::value,
"expected AffineDimExpr or AffineSymbolExpr");
constexpr bool isDim = std::is_same<AffineDimOrSymExpr, AffineDimExpr>::value;
int64_t numDimOrSym = (isDim) ? map.getNumDims() : map.getNumSymbols();
SmallVector<AffineExpr> replacements;
replacements.reserve(numDimOrSym);
auto createNewDimOrSym = (isDim) ? getAffineDimExpr : getAffineSymbolExpr;
using replace_fn_ty =
std::function<AffineExpr(AffineExpr, ArrayRef<AffineExpr>)>;
replace_fn_ty replaceDims = [](AffineExpr e,
ArrayRef<AffineExpr> replacements) {
return e.replaceDims(replacements);
};
replace_fn_ty replaceSymbols = [](AffineExpr e,
ArrayRef<AffineExpr> replacements) {
return e.replaceSymbols(replacements);
};
replace_fn_ty replaceNewDimOrSym = (isDim) ? replaceDims : replaceSymbols;
MLIRContext *context = map.getContext();
int64_t newNumDimOrSym = 0;
for (unsigned dimOrSym = 0; dimOrSym < numDimOrSym; ++dimOrSym) {
if (toProject.test(dimOrSym)) {
replacements.push_back(getAffineConstantExpr(0, context));
continue;
}
int64_t newPos = compress ? newNumDimOrSym++ : dimOrSym;
replacements.push_back(createNewDimOrSym(newPos, context));
}
SmallVector<AffineExpr> resultExprs;
resultExprs.reserve(map.getNumResults());
for (auto e : map.getResults())
resultExprs.push_back(replaceNewDimOrSym(e, replacements));
int64_t numDims = (compress && isDim) ? newNumDimOrSym : map.getNumDims();
int64_t numSyms = (compress && !isDim) ? newNumDimOrSym : map.getNumSymbols();
return AffineMap::get(numDims, numSyms, resultExprs, context);
}
AffineMap mlir::projectDims(AffineMap map,
const llvm::SmallBitVector &projectedDimensions,
bool compressDimsFlag) {
return projectCommonImpl<AffineDimExpr>(map, projectedDimensions,
compressDimsFlag);
}
AffineMap mlir::projectSymbols(AffineMap map,
const llvm::SmallBitVector &projectedSymbols,
bool compressSymbolsFlag) {
return projectCommonImpl<AffineSymbolExpr>(map, projectedSymbols,
compressSymbolsFlag);
}
AffineMap mlir::getProjectedMap(AffineMap map,
const llvm::SmallBitVector &projectedDimensions,
bool compressDimsFlag,
bool compressSymbolsFlag) {
map = projectDims(map, projectedDimensions, compressDimsFlag);
if (compressSymbolsFlag)
map = compressUnusedSymbols(map);
return map;
}
llvm::SmallBitVector mlir::getUnusedDimsBitVector(ArrayRef<AffineMap> maps) {
unsigned numDims = maps[0].getNumDims();
llvm::SmallBitVector numDimsBitVector(numDims, true);
for (AffineMap m : maps) {
for (unsigned i = 0; i < numDims; ++i) {
if (m.isFunctionOfDim(i))
numDimsBitVector.reset(i);
}
}
return numDimsBitVector;
}
llvm::SmallBitVector mlir::getUnusedSymbolsBitVector(ArrayRef<AffineMap> maps) {
unsigned numSymbols = maps[0].getNumSymbols();
llvm::SmallBitVector numSymbolsBitVector(numSymbols, true);
for (AffineMap m : maps) {
for (unsigned i = 0; i < numSymbols; ++i) {
if (m.isFunctionOfSymbol(i))
numSymbolsBitVector.reset(i);
}
}
return numSymbolsBitVector;
}
AffineMap
mlir::expandDimsToRank(AffineMap map, int64_t rank,
const llvm::SmallBitVector &projectedDimensions) {
auto id = AffineMap::getMultiDimIdentityMap(rank, map.getContext());
AffineMap proj = id.dropResults(projectedDimensions);
return map.compose(proj);
}
//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//
MutableAffineMap::MutableAffineMap(AffineMap map)
: results(map.getResults().begin(), map.getResults().end()),
numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
context(map.getContext()) {}
void MutableAffineMap::reset(AffineMap map) {
results.clear();
numDims = map.getNumDims();
numSymbols = map.getNumSymbols();
context = map.getContext();
llvm::append_range(results, map.getResults());
}
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
return results[idx].isMultipleOf(factor);
}
// Simplifies the result affine expressions of this map. The expressions
// have to be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO: functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}
}
AffineMap MutableAffineMap::getAffineMap() const {
return AffineMap::get(numDims, numSymbols, results, context);
}