blob: af4851eb5f1588650215fd564c5797959041e206 [file] [log] [blame]
//===- LowerVectorScam.cpp - Lower 'vector.scan' operation ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.scan' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#define DEBUG_TYPE "vector-broadcast-lowering"
using namespace mlir;
using namespace mlir::vector;
/// This function checks to see if the vector combining kind
/// is consistent with the integer or float element type.
static bool isValidKind(bool isInt, vector::CombiningKind kind) {
using vector::CombiningKind;
enum class KindType { FLOAT, INT, INVALID };
KindType type{KindType::INVALID};
switch (kind) {
case CombiningKind::MINNUMF:
case CombiningKind::MINIMUMF:
case CombiningKind::MAXNUMF:
case CombiningKind::MAXIMUMF:
type = KindType::FLOAT;
break;
case CombiningKind::MINUI:
case CombiningKind::MINSI:
case CombiningKind::MAXUI:
case CombiningKind::MAXSI:
case CombiningKind::AND:
case CombiningKind::OR:
case CombiningKind::XOR:
type = KindType::INT;
break;
case CombiningKind::ADD:
case CombiningKind::MUL:
type = isInt ? KindType::INT : KindType::FLOAT;
break;
}
bool isValidIntKind = (type == KindType::INT) && isInt;
bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt);
return (isValidIntKind || isValidFloatKind);
}
namespace {
/// Convert vector.scan op into arith ops and vector.insert_strided_slice /
/// vector.extract_strided_slice.
///
/// Example:
///
/// ```
/// %0:2 = vector.scan <add>, %arg0, %arg1
/// {inclusive = true, reduction_dim = 1} :
/// (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>)
/// ```
///
/// is converted to:
///
/// ```
/// %cst = arith.constant dense<0> : vector<2x3xi32>
/// %0 = vector.extract_strided_slice %arg0
/// {offsets = [0, 0], sizes = [2, 1], strides = [1, 1]}
/// : vector<2x3xi32> to vector<2x1xi32>
/// %1 = vector.insert_strided_slice %0, %cst
/// {offsets = [0, 0], strides = [1, 1]}
/// : vector<2x1xi32> into vector<2x3xi32>
/// %2 = vector.extract_strided_slice %arg0
/// {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]}
/// : vector<2x3xi32> to vector<2x1xi32>
/// %3 = arith.muli %0, %2 : vector<2x1xi32>
/// %4 = vector.insert_strided_slice %3, %1
/// {offsets = [0, 1], strides = [1, 1]}
/// : vector<2x1xi32> into vector<2x3xi32>
/// %5 = vector.extract_strided_slice %arg0
/// {offsets = [0, 2], sizes = [2, 1], strides = [1, 1]}
/// : vector<2x3xi32> to vector<2x1xi32>
/// %6 = arith.muli %3, %5 : vector<2x1xi32>
/// %7 = vector.insert_strided_slice %6, %4
/// {offsets = [0, 2], strides = [1, 1]}
/// : vector<2x1xi32> into vector<2x3xi32>
/// %8 = vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32>
/// return %7, %8 : vector<2x3xi32>, vector<2xi32>
/// ```
struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ScanOp scanOp,
PatternRewriter &rewriter) const override {
auto loc = scanOp.getLoc();
VectorType destType = scanOp.getDestType();
ArrayRef<int64_t> destShape = destType.getShape();
auto elType = destType.getElementType();
bool isInt = elType.isIntOrIndex();
if (!isValidKind(isInt, scanOp.getKind()))
return failure();
VectorType resType = VectorType::get(destShape, elType);
Value result = arith::ConstantOp::create(rewriter, loc, resType,
rewriter.getZeroAttr(resType));
int64_t reductionDim = scanOp.getReductionDim();
bool inclusive = scanOp.getInclusive();
int64_t destRank = destType.getRank();
VectorType initialValueType = scanOp.getInitialValueType();
int64_t initialValueRank = initialValueType.getRank();
SmallVector<int64_t> reductionShape(destShape);
reductionShape[reductionDim] = 1;
VectorType reductionType = VectorType::get(reductionShape, elType);
SmallVector<int64_t> offsets(destRank, 0);
SmallVector<int64_t> strides(destRank, 1);
SmallVector<int64_t> sizes(destShape);
sizes[reductionDim] = 1;
ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes);
ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides);
Value lastOutput, lastInput;
for (int i = 0; i < destShape[reductionDim]; i++) {
offsets[reductionDim] = i;
ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets);
Value input = vector::ExtractStridedSliceOp::create(
rewriter, loc, reductionType, scanOp.getSource(), scanOffsets,
scanSizes, scanStrides);
Value output;
if (i == 0) {
if (inclusive) {
output = input;
} else {
if (initialValueRank == 0) {
// ShapeCastOp cannot handle 0-D vectors
output = vector::BroadcastOp::create(rewriter, loc, input.getType(),
scanOp.getInitialValue());
} else {
output = vector::ShapeCastOp::create(rewriter, loc, input.getType(),
scanOp.getInitialValue());
}
}
} else {
Value y = inclusive ? input : lastInput;
output = vector::makeArithReduction(rewriter, loc, scanOp.getKind(),
lastOutput, y);
}
result = vector::InsertStridedSliceOp::create(rewriter, loc, output,
result, offsets, strides);
lastOutput = output;
lastInput = input;
}
Value reduction;
if (initialValueRank == 0) {
Value v = vector::ExtractOp::create(rewriter, loc, lastOutput, 0);
reduction =
vector::BroadcastOp::create(rewriter, loc, initialValueType, v);
} else {
reduction = vector::ShapeCastOp::create(rewriter, loc, initialValueType,
lastOutput);
}
rewriter.replaceOp(scanOp, {result, reduction});
return success();
}
};
} // namespace
void mlir::vector::populateVectorScanLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<ScanToArithOps>(patterns.getContext(), benefit);
}