| //===- LowerVectorScam.cpp - Lower 'vector.scan' operation ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements target-independent rewrites and utilities to lower the |
| // 'vector.scan' operation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/Utils/IndexingUtils.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| |
| #define DEBUG_TYPE "vector-broadcast-lowering" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| /// This function checks to see if the vector combining kind |
| /// is consistent with the integer or float element type. |
| static bool isValidKind(bool isInt, vector::CombiningKind kind) { |
| using vector::CombiningKind; |
| enum class KindType { FLOAT, INT, INVALID }; |
| KindType type{KindType::INVALID}; |
| switch (kind) { |
| case CombiningKind::MINNUMF: |
| case CombiningKind::MINIMUMF: |
| case CombiningKind::MAXNUMF: |
| case CombiningKind::MAXIMUMF: |
| type = KindType::FLOAT; |
| break; |
| case CombiningKind::MINUI: |
| case CombiningKind::MINSI: |
| case CombiningKind::MAXUI: |
| case CombiningKind::MAXSI: |
| case CombiningKind::AND: |
| case CombiningKind::OR: |
| case CombiningKind::XOR: |
| type = KindType::INT; |
| break; |
| case CombiningKind::ADD: |
| case CombiningKind::MUL: |
| type = isInt ? KindType::INT : KindType::FLOAT; |
| break; |
| } |
| bool isValidIntKind = (type == KindType::INT) && isInt; |
| bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt); |
| return (isValidIntKind || isValidFloatKind); |
| } |
| |
| namespace { |
| /// Convert vector.scan op into arith ops and vector.insert_strided_slice / |
| /// vector.extract_strided_slice. |
| /// |
| /// Example: |
| /// |
| /// ``` |
| /// %0:2 = vector.scan <add>, %arg0, %arg1 |
| /// {inclusive = true, reduction_dim = 1} : |
| /// (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>) |
| /// ``` |
| /// |
| /// is converted to: |
| /// |
| /// ``` |
| /// %cst = arith.constant dense<0> : vector<2x3xi32> |
| /// %0 = vector.extract_strided_slice %arg0 |
| /// {offsets = [0, 0], sizes = [2, 1], strides = [1, 1]} |
| /// : vector<2x3xi32> to vector<2x1xi32> |
| /// %1 = vector.insert_strided_slice %0, %cst |
| /// {offsets = [0, 0], strides = [1, 1]} |
| /// : vector<2x1xi32> into vector<2x3xi32> |
| /// %2 = vector.extract_strided_slice %arg0 |
| /// {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} |
| /// : vector<2x3xi32> to vector<2x1xi32> |
| /// %3 = arith.muli %0, %2 : vector<2x1xi32> |
| /// %4 = vector.insert_strided_slice %3, %1 |
| /// {offsets = [0, 1], strides = [1, 1]} |
| /// : vector<2x1xi32> into vector<2x3xi32> |
| /// %5 = vector.extract_strided_slice %arg0 |
| /// {offsets = [0, 2], sizes = [2, 1], strides = [1, 1]} |
| /// : vector<2x3xi32> to vector<2x1xi32> |
| /// %6 = arith.muli %3, %5 : vector<2x1xi32> |
| /// %7 = vector.insert_strided_slice %6, %4 |
| /// {offsets = [0, 2], strides = [1, 1]} |
| /// : vector<2x1xi32> into vector<2x3xi32> |
| /// %8 = vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> |
| /// return %7, %8 : vector<2x3xi32>, vector<2xi32> |
| /// ``` |
| struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ScanOp scanOp, |
| PatternRewriter &rewriter) const override { |
| auto loc = scanOp.getLoc(); |
| VectorType destType = scanOp.getDestType(); |
| ArrayRef<int64_t> destShape = destType.getShape(); |
| auto elType = destType.getElementType(); |
| bool isInt = elType.isIntOrIndex(); |
| if (!isValidKind(isInt, scanOp.getKind())) |
| return failure(); |
| |
| VectorType resType = VectorType::get(destShape, elType); |
| Value result = arith::ConstantOp::create(rewriter, loc, resType, |
| rewriter.getZeroAttr(resType)); |
| int64_t reductionDim = scanOp.getReductionDim(); |
| bool inclusive = scanOp.getInclusive(); |
| int64_t destRank = destType.getRank(); |
| VectorType initialValueType = scanOp.getInitialValueType(); |
| int64_t initialValueRank = initialValueType.getRank(); |
| |
| SmallVector<int64_t> reductionShape(destShape); |
| reductionShape[reductionDim] = 1; |
| VectorType reductionType = VectorType::get(reductionShape, elType); |
| SmallVector<int64_t> offsets(destRank, 0); |
| SmallVector<int64_t> strides(destRank, 1); |
| SmallVector<int64_t> sizes(destShape); |
| sizes[reductionDim] = 1; |
| ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes); |
| ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides); |
| |
| Value lastOutput, lastInput; |
| for (int i = 0; i < destShape[reductionDim]; i++) { |
| offsets[reductionDim] = i; |
| ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets); |
| Value input = vector::ExtractStridedSliceOp::create( |
| rewriter, loc, reductionType, scanOp.getSource(), scanOffsets, |
| scanSizes, scanStrides); |
| Value output; |
| if (i == 0) { |
| if (inclusive) { |
| output = input; |
| } else { |
| if (initialValueRank == 0) { |
| // ShapeCastOp cannot handle 0-D vectors |
| output = vector::BroadcastOp::create(rewriter, loc, input.getType(), |
| scanOp.getInitialValue()); |
| } else { |
| output = vector::ShapeCastOp::create(rewriter, loc, input.getType(), |
| scanOp.getInitialValue()); |
| } |
| } |
| } else { |
| Value y = inclusive ? input : lastInput; |
| output = vector::makeArithReduction(rewriter, loc, scanOp.getKind(), |
| lastOutput, y); |
| } |
| result = vector::InsertStridedSliceOp::create(rewriter, loc, output, |
| result, offsets, strides); |
| lastOutput = output; |
| lastInput = input; |
| } |
| |
| Value reduction; |
| if (initialValueRank == 0) { |
| Value v = vector::ExtractOp::create(rewriter, loc, lastOutput, 0); |
| reduction = |
| vector::BroadcastOp::create(rewriter, loc, initialValueType, v); |
| } else { |
| reduction = vector::ShapeCastOp::create(rewriter, loc, initialValueType, |
| lastOutput); |
| } |
| |
| rewriter.replaceOp(scanOp, {result, reduction}); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void mlir::vector::populateVectorScanLoweringPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<ScanToArithOps>(patterns.getContext(), benefit); |
| } |