blob: 0e88d31dae8e84af014cfe7b45e6083fdd347a20 [file] [log] [blame]
//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "Utils/CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static std::optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(type.getContext());
return std::nullopt;
}
/// Generates call to lookup a level-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t lvl) {
StringRef name = "sparseLvlSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates call to lookup a dimension-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t dim) {
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Looks up a level-size by returning a statically-computed constant
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Level lvl) {
// Only sparse tensors have "levels" to query.
assert(stt.hasEncoding());
// TODO: The following implementation only handles permutations;
// we'll need to generalize this to handle arbitrary AffineExpr.
//
// There's no need to assert `isPermutation` here: because
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
// which is all we care about (for supporting permutations).
const Dimension dim =
stt.isIdentity() ? lvl : stt.getDimToLvl().getDimPosition(lvl);
const Size sz = stt.getDynamicDimSize(dim);
if (ShapedType::isStatic(sz))
return constantIndex(builder, loc, sz);
// If we cannot statically compute the size from the shape, then we
// must dynamically query it. (In principle we could also dynamically
// compute it, but since we already did so to construct the `tensor`
// in the first place, we might as well query rather than recompute.)
return genLvlSizeCall(builder, loc, tensor, lvl);
}
/// Looks up a dimension-size by returning a constant from the shape
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
/// of dense tensors).
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Dimension dim) {
const Size sz = stt.getDynamicDimSize(dim);
if (ShapedType::isStatic(sz))
return constantIndex(builder, loc, sz);
if (stt.hasEncoding())
return genDimSizeCall(builder, loc, tensor, dim);
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
}
/// Populates the array with the dimension-sizes of the given tensor.
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor, SmallVectorImpl<Value> &out) {
const Dimension dimRank = stt.getDimRank();
out.clear();
out.reserve(dimRank);
for (Dimension d = 0; d < dimRank; d++)
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
}
/// Returns an array with the dimension-sizes of the given tensor.
/// If the *tensor* parameters is null, the tensor type is assumed to have a
/// static shape.
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt,
Value tensor = Value()) {
SmallVector<Value> out;
fillDimSizes(builder, loc, stt, tensor, out);
return out;
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
return memref::AllocOp::create(rewriter, loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> lvlTypes;
lvlTypes.reserve(stt.getLvlRank());
for (const auto lt : stt.getEncoding().getLvlTypes())
lvlTypes.push_back(constantLevelTypeEncoding(builder, loc, lt));
return allocaBuffer(builder, loc, lvlTypes);
}
/// Extracts the bare (aligned) pointers that point to the tensor.
static Value extractBarePtrFromTensor(OpBuilder &builder, Location loc,
Value tensor) {
auto buf = genToMemref(builder, loc, tensor);
return memref::ExtractAlignedPointerAsIndexOp::create(builder, loc, buf);
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlPtrsBuffers(OpBuilder &builder, Location loc,
ValueRange lvlTensors, Value valTensor) {
SmallVector<Value> lvlBarePtrs;
lvlBarePtrs.reserve(lvlTensors.size() + 1);
// Passing in lvl buffer pointers.
for (const auto lvl : lvlTensors)
lvlBarePtrs.push_back(extractBarePtrFromTensor(builder, loc, lvl));
// Passing in value buffer pointers.
lvlBarePtrs.push_back(extractBarePtrFromTensor(builder, loc, valTensor));
Value idxPtr = memref::ExtractAlignedPointerAsIndexOp::create(
builder, loc, allocaBuffer(builder, loc, lvlBarePtrs));
Value idxCast =
arith::IndexCastOp::create(builder, loc, builder.getI64Type(), idxPtr);
return LLVM::IntToPtrOp::create(builder, loc, getOpaquePointerType(builder),
idxCast);
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need for modifications when the API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
NewCallParams &genBuffers(SparseTensorType stt,
ArrayRef<Value> dimSizesValues,
Value dimSizesBuffer = Value()) {
assert(dimSizesValues.size() == static_cast<size_t>(stt.getDimRank()));
// Sparsity annotations.
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
// Construct dimSizes, lvlSizes, dim2lvl, and lvl2dim buffers.
params[kParamDimSizes] = dimSizesBuffer
? dimSizesBuffer
: allocaBuffer(builder, loc, dimSizesValues);
SmallVector<Value> lvlSizesValues; // unused
params[kParamLvlSizes] = genMapBuffers(
builder, loc, stt, dimSizesValues, params[kParamDimSizes],
lvlSizesValues, params[kParamDim2Lvl], params[kParamLvl2Dim]);
// Secondary and primary types encoding.
const auto enc = stt.getEncoding();
params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc);
params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
// Return `this` for method chaining.
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : LLVM::ZeroOp::create(builder, loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 8;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamDimSizes = 0;
static constexpr unsigned kParamLvlSizes = 1;
static constexpr unsigned kParamLvlTypes = 2;
static constexpr unsigned kParamDim2Lvl = 3;
static constexpr unsigned kParamLvl2Dim = 4;
static constexpr unsigned kParamPosTp = 5;
static constexpr unsigned kParamCrdTp = 6;
static constexpr unsigned kParamValTp = 7;
static constexpr unsigned kParamAction = 8;
static constexpr unsigned kParamPtr = 9;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr) {
auto eltTp = stt.getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltTp);
SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltTp)};
return createFuncCall(builder, loc, name, resTp, {ptr}, EmitCInterface::On)
.getResult(0);
}
/// Generates a call to obtain the positions array.
static Value genPositionsCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr, Level l) {
Type posTp = stt.getPosType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, posTp);
Value lvl = constantIndex(builder, loc, l);
SmallString<17> name{"sparsePositions", overheadTypeFunctionSuffix(posTp)};
return createFuncCall(builder, loc, name, resTp, {ptr, lvl},
EmitCInterface::On)
.getResult(0);
}
/// Generates a call to obtain the coordinates array.
static Value genCoordinatesCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr, Level l) {
Type crdTp = stt.getCrdType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, crdTp);
Value lvl = constantIndex(builder, loc, l);
SmallString<19> name{"sparseCoordinates", overheadTypeFunctionSuffix(crdTp)};
return createFuncCall(builder, loc, name, resTp, {ptr, lvl},
EmitCInterface::On)
.getResult(0);
}
/// Generates a call to obtain the coordinates array (AoS view).
static Value genCoordinatesBufferCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr,
Level l) {
Type crdTp = stt.getCrdType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, crdTp);
Value lvl = constantIndex(builder, loc, l);
SmallString<25> name{"sparseCoordinatesBuffer",
overheadTypeFunctionSuffix(crdTp)};
return createFuncCall(builder, loc, name, resTp, {ptr, lvl},
EmitCInterface::On)
.getResult(0);
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for accessing level-sizes.
class SparseTensorLvlOpConverter : public OpConversionPattern<LvlOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LvlOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op.getSource());
// Only rewrite sparse DimOp.
if (!stt.hasEncoding())
return failure();
// Only rewrite DimOp with constant index.
std::optional<int64_t> lvl = op.getConstantLvlIndex();
if (!lvl)
return failure();
// By now, if the level size is constant, the operation should have already
// been folded by LvlOp's folder, so we generate the call unconditionally.
Value src = adaptor.getOperands()[0];
rewriter.replaceOp(op, genLvlSizeCall(rewriter, op.getLoc(), src, *lvl));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReinterpretMapOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply fold the operation.
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Construct the `reader` opening method calls.
SmallVector<Value> dimSizesValues;
Value dimSizesBuffer;
Value reader = genReader(rewriter, loc, stt, adaptor.getOperands()[0],
dimSizesValues, dimSizesBuffer);
// Use the `reader` to parse the file.
Value tensor = NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizesValues, dimSizesBuffer)
.genNewCall(Action::kFromReader, reader);
// Free the memory for `reader`.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
rewriter.replaceOp(op, tensor);
return success();
}
};
/// Sparse conversion rule for the alloc operator.
/// TODO(springerm): remove when bufferization.alloc_tensor is gone
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
if (op.getCopy())
return rewriter.notifyMatchFailure(op, "alloc copy not implemented");
// Gather all dimension sizes as SSA values.
Location loc = op.getLoc();
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizesValues;
dimSizesValues.reserve(dimRank);
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; d++) {
dimSizesValues.push_back(
stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, op.getStaticSize(d)));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizesValues)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the empty tensor.
class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizesValues;
dimSizesValues.reserve(dimRank);
auto shape = op.getType().getShape();
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; d++) {
dimSizesValues.push_back(stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, shape[d]));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizesValues)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorReorderCOOConverter
: public OpConversionPattern<ReorderCOOOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReorderCOOOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getInputCoo());
const auto dstTp = getSparseTensorType(op);
const Value src = adaptor.getInputCoo();
NewCallParams params(rewriter, loc);
SmallVector<Value> dimSizesValues = getDimSizes(rewriter, loc, srcTp, src);
rewriter.replaceOp(op, params.genBuffers(dstTp, dimSizesValues)
.genNewCall(Action::kSortCOOInPlace, src));
return success();
}
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorType(op.getTensor()).hasEncoding())
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for position accesses.
class SparseTensorToPositionsConverter
: public OpConversionPattern<ToPositionsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto stt = getSparseTensorType(op.getTensor());
auto poss = genPositionsCall(rewriter, op.getLoc(), stt,
adaptor.getTensor(), op.getLevel());
rewriter.replaceOp(op, poss);
return success();
}
};
/// Sparse conversion rule for coordinate accesses.
class SparseTensorToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getTensor());
auto crds = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(),
op.getLevel());
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (op.getType() != crds.getType())
crds = memref::CastOp::create(rewriter, loc, op.getType(), crds);
rewriter.replaceOp(op, crds);
return success();
}
};
/// Sparse conversion rule for coordinate accesses (AoS style).
class SparseToCoordinatesBufferConverter
: public OpConversionPattern<ToCoordinatesBufferOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getTensor());
auto crds = genCoordinatesBufferCall(
rewriter, loc, stt, adaptor.getTensor(), stt.getAoSCOOStart());
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (op.getType() != crds.getType())
crds = memref::CastOp::create(rewriter, loc, op.getType(), crds);
rewriter.replaceOp(op, crds);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto stt = getSparseTensorType(op.getTensor());
auto vals = genValuesCall(rewriter, op.getLoc(), stt, adaptor.getTensor());
rewriter.replaceOp(op, vals);
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query values array size for the actually stored values size.
auto stt = getSparseTensorType(op.getTensor());
auto vals = genValuesCall(rewriter, op.getLoc(), stt, adaptor.getTensor());
auto zero = constantIndex(rewriter, op.getLoc(), 0);
rewriter.replaceOpWithNewOp<memref::DimOp>(op, vals, zero);
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endLexInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter
: public OpConversionPattern<tensor::InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// coordinate order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
const auto stt = getSparseTensorType(op.getDest());
// Dense tensor insertion.
if (!stt.hasEncoding())
return failure();
assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
const auto elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
Value lvlCoords, vref;
{
OpBuilder::InsertionGuard guard(rewriter);
Operation *loop = op;
// Finds the outermost loop.
while (auto l = loop->getParentOfType<LoopLikeOpInterface>())
loop = l;
if (llvm::isa<LoopLikeOpInterface>(loop)) {
// Hoists alloca outside the loop to avoid stack overflow.
rewriter.setInsertionPoint(loop);
}
lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
vref = genAllocaScalar(rewriter, loc, elemTp);
}
storeAll(rewriter, loc, lvlCoords, adaptor.getIndices());
memref::StoreOp::create(rewriter, loc, adaptor.getScalar(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{adaptor.getDest(), lvlCoords, vref}, EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getDest());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
Type eltType = srcTp.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Get the cardinality of valid coordinates for the innermost level.
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
srcTp.getLvlRank() - 1);
// Allocate temporary buffers for values, filled-switch, and coordinates.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
linalg::FillOp::create(rewriter, loc,
ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
linalg::FillOp::create(rewriter, loc,
ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
const auto stt = getSparseTensorType(op.getTensor());
const Type elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, lvlCoords, values, filled, added, count},
EmitCInterface::On);
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
memref::DeallocOp::create(rewriter, loc, values);
memref::DeallocOp::create(rewriter, loc, filled);
memref::DeallocOp::create(rewriter, loc, added);
return success();
}
};
/// Sparse conversion rule for the sparse_tensor.assemble operator.
class SparseTensorAssembleConverter : public OpConversionPattern<AssembleOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
assert(dstTp.hasStaticDimShape());
SmallVector<Value> dimSizesValues = getDimSizes(rewriter, loc, dstTp);
// Use a library method to transfer the external buffers from
// clients to the internal SparseTensorStorage. Since we cannot
// assume clients transfer ownership of the buffers, this method
// will copy all data over into a new SparseTensorStorage.
Value dst =
NewCallParams(rewriter, loc)
.genBuffers(dstTp.withoutDimToLvl(), dimSizesValues)
.genNewCall(Action::kPack,
genLvlPtrsBuffers(rewriter, loc, adaptor.getLevels(),
adaptor.getValues()));
rewriter.replaceOp(op, dst);
return success();
}
};
/// Sparse conversion rule for the sparse_tensor.disassemble operator.
/// Note that the current implementation simply exposes the buffers to
/// the external client. This assumes the client only reads the buffers
/// (usually copying it to the external data structures, such as numpy
/// arrays). The semantics of the disassemble operation technically
/// require that the copying is done here already using the out-levels
/// and out-values clause.
class SparseTensorDisassembleConverter
: public OpConversionPattern<DisassembleOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(DisassembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto stt = getSparseTensorType(op.getTensor());
SmallVector<Value> retVal;
SmallVector<Value> retLen;
// Get the positions and coordinates buffers.
const Level lvlRank = stt.getLvlRank();
Level trailCOOLen = 0;
for (Level l = 0; l < lvlRank; l++) {
if (!stt.isUniqueLvl(l) &&
(stt.isCompressedLvl(l) || stt.isLooseCompressedLvl(l))) {
// A `(loose)compressed_nu` level marks the start of trailing COO
// start level. Since the target coordinate buffer used for trailing
// COO is passed in as AoS scheme and SparseTensorStorage uses a SoA
// scheme, we cannot simply use the internal buffers.
trailCOOLen = lvlRank - l;
break;
}
if (stt.isWithPos(l)) {
auto poss =
genPositionsCall(rewriter, loc, stt, adaptor.getTensor(), l);
auto posLen = linalg::createOrFoldDimOp(rewriter, loc, poss, 0);
auto posLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(poss);
retLen.push_back(genScalarToTensor(rewriter, loc, posLen, posLenTp));
}
if (stt.isWithCrd(l)) {
auto crds =
genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(), l);
auto crdLen = linalg::createOrFoldDimOp(rewriter, loc, crds, 0);
auto crdLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(crds);
retLen.push_back(genScalarToTensor(rewriter, loc, crdLen, crdLenTp));
}
}
// Handle AoS vs. SoA mismatch for COO.
if (trailCOOLen != 0) {
uint64_t cooStartLvl = lvlRank - trailCOOLen;
assert(!stt.isUniqueLvl(cooStartLvl) &&
(stt.isCompressedLvl(cooStartLvl) ||
stt.isLooseCompressedLvl(cooStartLvl)));
// Positions.
auto poss = genPositionsCall(rewriter, loc, stt, adaptor.getTensor(),
cooStartLvl);
auto posLen = linalg::createOrFoldDimOp(rewriter, loc, poss, 0);
auto posLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(poss);
retLen.push_back(genScalarToTensor(rewriter, loc, posLen, posLenTp));
// Coordinates, copied over with:
// for (i = 0; i < crdLen; i++)
// buf[i][0] = crd0[i]; buf[i][1] = crd1[i];
auto buf = genToMemref(rewriter, loc, op.getOutLevels()[retLen.size()]);
auto crds0 = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(),
cooStartLvl);
auto crds1 = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(),
cooStartLvl + 1);
auto crdLen = linalg::createOrFoldDimOp(rewriter, loc, crds0, 0);
auto two = constantIndex(rewriter, loc, 2);
auto bufLen = arith::MulIOp::create(rewriter, loc, crdLen, two);
Type indexType = rewriter.getIndexType();
auto zero = constantZero(rewriter, loc, indexType);
auto one = constantOne(rewriter, loc, indexType);
scf::ForOp forOp = scf::ForOp::create(rewriter, loc, zero, crdLen, one);
auto idx = forOp.getInductionVar();
rewriter.setInsertionPointToStart(forOp.getBody());
auto c0 = memref::LoadOp::create(rewriter, loc, crds0, idx);
auto c1 = memref::LoadOp::create(rewriter, loc, crds1, idx);
SmallVector<Value> args;
args.push_back(idx);
args.push_back(zero);
memref::StoreOp::create(rewriter, loc, c0, buf, args);
args[1] = one;
memref::StoreOp::create(rewriter, loc, c1, buf, args);
rewriter.setInsertionPointAfter(forOp);
auto bufLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(buf);
retLen.push_back(genScalarToTensor(rewriter, loc, bufLen, bufLenTp));
}
// Get the values buffer last.
auto vals = genValuesCall(rewriter, loc, stt, adaptor.getTensor());
auto valLenTp = op.getValLen().getType();
auto valLen = linalg::createOrFoldDimOp(rewriter, loc, vals, 0);
retVal.push_back(vals);
retLen.push_back(genScalarToTensor(rewriter, loc, valLen, valLenTp));
// Converts MemRefs back to Tensors.
assert(retVal.size() + retLen.size() == op.getNumResults());
for (unsigned i = 0, sz = retVal.size(); i < sz; i++) {
auto tensor = bufferization::ToTensorOp::create(
rewriter, loc,
memref::getTensorTypeFromMemRefType(retVal[i].getType()), retVal[i]);
retVal[i] =
tensor::CastOp::create(rewriter, loc, op.getResultTypes()[i], tensor);
}
// Appends the actual memory length used in each buffer returned.
retVal.append(retLen.begin(), retLen.end());
rewriter.replaceOp(op, retVal);
return success();
}
};
struct SparseHasRuntimeLibraryConverter
: public OpConversionPattern<HasRuntimeLibraryOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i1Type = rewriter.getI1Type();
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, i1Type, rewriter.getIntegerAttr(i1Type, 1));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(
const TypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns
.add<SparseReturnConverter, SparseTensorLvlOpConverter,
SparseCastConverter, SparseReMapConverter, SparseTensorNewConverter,
SparseTensorAllocConverter, SparseTensorEmptyConverter,
SparseTensorDeallocConverter, SparseTensorReorderCOOConverter,
SparseTensorToPositionsConverter, SparseTensorToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseTensorToValuesConverter,
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
SparseTensorInsertConverter, SparseTensorExpandConverter,
SparseTensorCompressConverter, SparseTensorAssembleConverter,
SparseTensorDisassembleConverter, SparseHasRuntimeLibraryConverter>(
typeConverter, patterns.getContext());
}