| //===- SparseReinterpretMap.cpp - reinterpret sparse tensor maps ----------===/ |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Utils/CodegenUtils.h" |
| #include "Utils/IterationGraphSorter.h" |
| |
| #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" |
| #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" |
| #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/IR/AffineExprVisitor.h" |
| #include "mlir/IR/AffineMap.h" |
| |
| using namespace mlir; |
| using namespace mlir::sparse_tensor; |
| |
| namespace { |
| |
| //===----------------------------------------------------------------------===// |
| // File Local Helper classes. |
| //===----------------------------------------------------------------------===// |
| |
| // CRTP to help implementing a rewriter that demaps all its inputs. |
| template <typename SubClass, typename SourceOp> |
| struct DemapInsRewriter : public OpRewritePattern<SourceOp> { |
| using OpRewritePattern<SourceOp>::OpRewritePattern; |
| using OpAdaptor = typename SourceOp::Adaptor; |
| |
| LogicalResult matchAndRewrite(SourceOp op, |
| PatternRewriter &rewriter) const override { |
| Location loc = op.getLoc(); |
| |
| // Demaps non-trivial inputs. |
| bool changed = false; |
| SmallVector<Value> deMappedIns(op->getOperands()); |
| for (Value &in : deMappedIns) { |
| if (auto stt = tryGetSparseTensorType(in); stt && !stt->isIdentity()) { |
| in = |
| ReinterpretMapOp::create(rewriter, loc, stt->getDemappedType(), in); |
| changed = true; |
| } |
| } |
| |
| // CRTP call. |
| OpAdaptor adaptor(deMappedIns, op); |
| LogicalResult status = |
| static_cast<const SubClass *>(this)->rewriteOp(op, adaptor, rewriter); |
| return changed ? success() : status; |
| } |
| }; |
| |
| // Flattens an affine expression into a list of AffineDimExprs. |
| struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> { |
| explicit AffineDimCollector(unsigned dimNum) : dims(dimNum){}; |
| void visitDimExpr(AffineDimExpr expr) { dims.set(expr.getPosition()); } |
| BitVector dims; |
| }; |
| |
| // Flattens an affine expression into a list of AffineDimExprs. |
| struct AffineExprAdmissibleVisitor |
| : public AffineExprVisitor<AffineExprAdmissibleVisitor> { |
| explicit AffineExprAdmissibleVisitor(bool isOutput) : isOutput(isOutput){}; |
| |
| // We only allow AffineDimExpr on output. |
| void visitAddExpr(AffineBinaryOpExpr expr) { |
| if (isOutput) |
| admissible = false; |
| } |
| void visitMulExpr(AffineBinaryOpExpr expr) { |
| if (isOutput) |
| admissible = false; |
| } |
| |
| // We disallow mod, floor div and ceil div on inputs. |
| void visitModExpr(AffineBinaryOpExpr expr) { admissible = false; } |
| void visitFloorDivExpr(AffineBinaryOpExpr expr) { admissible = false; } |
| void visitCeilDivExpr(AffineBinaryOpExpr expr) { admissible = false; } |
| operator bool() { return admissible; } |
| |
| private: |
| bool admissible = true; |
| bool isOutput; |
| }; |
| |
| // The first BitVector stores levels where inadmissible exprs are used. |
| // The second BitVector stores the AffineDimExp that are used by the |
| // inadmissible expressions. |
| using InadmissInfo = std::pair<BitVector, BitVector>; |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // File Local Helper methods. |
| //===----------------------------------------------------------------------===// |
| |
| // Collects the inadmissible affine expression imposed on levels. |
| static InadmissInfo collectInadmissInfo(AffineMap map, bool isOutput) { |
| auto ret = std::make_pair(BitVector(map.getNumResults()), |
| BitVector(map.getNumDims())); |
| AffineDimCollector collector(map.getNumDims()); |
| for (unsigned lvl = 0, e = map.getNumResults(); lvl < e; lvl++) { |
| AffineExprAdmissibleVisitor admissible(isOutput); |
| admissible.walkPostOrder(map.getResult(lvl)); |
| if (!admissible) { |
| // Record the inadmissible level. |
| ret.first.set(lvl); |
| // Record the AffineDimExpr that is used in the inadmissible expr. |
| collector.walkPostOrder(map.getResult(lvl)); |
| } |
| } |
| ret.second = collector.dims; |
| return ret; |
| } |
| |
| // Builds the AffineMap to replace the idx in idxMap to lvl such that all tht |
| // inadmissible affine expressions can be eliminated. |
| // For example, we can rewrite |
| // idxMap = (d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3) |
| // to |
| // idxMap = (l0, l1, l2, l3) -> (l0, l1, l2, l3) |
| // by composing inverse(idxMap), that is |
| // inverse(idxMap) . idxMap = (l0, l1, l2, l3) -> (l0 * 2 + l2, l1 * 3 + l3) |
| // -> ((l0 * 2 + l2) floordiv 2, |
| // (l1 * 3 + l3) floordiv 3, |
| // (l0 * 2 + l2) mod 2, |
| // (l1 * 3 + l3) mod 3) = (l0, l1, l2, l3) |
| // |
| // This function builds the inverse(idxMap) that replace every dimensions used |
| // in `info` to levels, and updates the iterator type array `itTps` for the new |
| // index variable introduced. |
| // |
| // Note that the returned affine map does not retain the order of the input |
| // affine map. Instead, it always uses the first `info.inAdlvls.count()` for the |
| // replaced levels, and remaining ones for unused dimensions. |
| // For example, to handle |
| // idxMap = (d0, d1) -> (d0, d1 floordiv 4, d2 mod 4) |
| // which is a typical map for block_2to4. The function returns: |
| // inverse(idxMap) = (l0, l1, d0) -> (d0, l0 * 4 + l1) |
| // in which, (l0, l1) together replaces `d1`, yet they appear |
| // before `d0` in the resulting affine map. |
| // The index (loop) order can later be canonicalized by a topo sort. |
| static AffineMap |
| genReplaceDimToLvlMap(const InadmissInfo &info, AffineMap idxMap, |
| SmallVector<utils::IteratorType> &itTps) { |
| MLIRContext *ctx = idxMap.getContext(); |
| auto [inAdLvls, usedDims] = info; |
| // Note that idxMap does not equal to dim2Lvl map, it is computed by |
| // composing idx2Dim(dim2Lvl). They are only equal when idx2Dim is an |
| // ID map. |
| // TODO: we might fail here, in those case we should really return |
| // failure instead of assertion error. |
| auto lvl2Idx = inferLvlToDim(idxMap, ctx); |
| |
| assert(lvl2Idx.getNumResults() <= idxMap.getNumDims()); |
| if (lvl2Idx.getNumResults() != idxMap.getNumDims()) { |
| // This could happen when some dimensions are projected. |
| // E.g., idx2Lvl = (*i*, j, k) -> (j, k) |
| // ==> lvl2Idx = (j, k) -> (j, k) |
| // In this case, we append the unused dimesion at the end. |
| // ==> lvl2Idx = (j, k, *i*) -> (*i*, j, k) |
| SmallVector<AffineExpr> results; |
| AffineDimCollector usedInLvl(idxMap.getNumDims()); |
| for (auto e : idxMap.getResults()) |
| usedInLvl.walkPostOrder(e); |
| |
| unsigned curUsedDimID = 0; |
| unsigned curUnusedDimID = lvl2Idx.getNumDims(); |
| |
| BitVector unused = usedInLvl.dims.flip(); |
| for (unsigned i = 0; i < idxMap.getNumDims(); i++) { |
| if (unused.test(i)) |
| results.push_back(getAffineDimExpr(curUnusedDimID++, ctx)); |
| else |
| results.push_back(lvl2Idx.getResult(curUsedDimID++)); |
| } |
| lvl2Idx = |
| AffineMap::get(lvl2Idx.getNumDims() + unused.count(), 0, results, ctx); |
| } |
| assert(lvl2Idx.getNumResults() == idxMap.getNumDims()); |
| |
| // We do not need to replace the DimExpr that is not used in inadmissible |
| // level expressions. We use the first inAdLvl.count() dim to represent the |
| // replaced level, the remainings are reserved for unchanged ones. |
| // Note that results from the inverse map computed previously does not follow |
| // the convention we used, and we need to fix the mismatch below. |
| unsigned curRepID = 0; |
| unsigned curOriID = inAdLvls.count(); |
| SmallVector<AffineExpr> results; |
| SmallVector<AffineExpr> dimRep(idxMap.getNumResults(), AffineExpr()); |
| SmallVector<utils::IteratorType> transItTps; |
| |
| for (unsigned l : inAdLvls.set_bits()) { |
| // By our convention, the inadmissible level `l` always appears in the |
| // leading part (accumulated by curRepID) of the affine map's parameter |
| // list. Record the mapping so that we can replace all the uses of `l` to |
| // the correct position after the translation. |
| dimRep[l] = getAffineDimExpr(curRepID++, ctx); |
| // A new index variable is introduced for the inadmissible level, inherit |
| // the iterator type. E.g., if l0 = d0 floordiv 2, the |
| // iterator type of l0 equals to the iterator type of d0. |
| AffineExpr lvlExp = idxMap.getResult(l); |
| AffineDimCollector collector(idxMap.getNumDims()); |
| collector.walkPostOrder(lvlExp); |
| // We assumes a level can only be derived from one dimension. |
| assert(collector.dims.count() == 1); |
| transItTps.push_back(itTps[collector.dims.find_first()]); |
| } |
| |
| for (unsigned d = 0, e = idxMap.getNumDims(); d < e; d++) { |
| if (usedDims.test(d)) { |
| // The dimension is used in some of the inadmissible levels, and it need |
| // to be inversed. Get the inversion from the inverse map, and fix the |
| // mismatch captured by the above loop. |
| results.push_back(lvl2Idx.getResult(d).replaceDims(dimRep)); |
| } else { |
| // The dimension is not used in any of the inadmissible levels, and it |
| // does not need to be inversed. Fix the mismatch by mapping it to the |
| // trailing part of the affine map (accumulated by curOriID). |
| results.push_back(getAffineDimExpr(curOriID++, ctx)); |
| transItTps.push_back(itTps[d]); |
| } |
| } |
| unsigned numDim = idxMap.getNumDims() - usedDims.count() + inAdLvls.count(); |
| // Update iterator type. |
| itTps.assign(transItTps.begin(), transItTps.end()); |
| return AffineMap::get(numDim, 0, results, ctx); |
| } |
| |
| // Translates the index map in the linalg::GenericOp from idx->dim map to |
| // idx->lvl map. Returns failure if the index map can not be translated to an |
| // admissible form. |
| // Returns the translated index map array and the iterator type array. |
| static std::optional<std::pair<ArrayAttr, ArrayAttr>> |
| translateMap(linalg::GenericOp op, PatternRewriter &rewriter) { |
| // idxMap is a idx2dim map before reinterpretation. |
| MLIRContext *ctx = op.getContext(); |
| SmallVector<AffineMap> idxMapArray = op.getIndexingMapsArray(); |
| SmallVector<utils::IteratorType> itTps = op.getIteratorTypesArray(); |
| for (unsigned i = 0, e = idxMapArray.size(); i < e; i++) { |
| Value tensor = op->getOpOperand(i).get(); |
| auto stt = tryGetSparseTensorType(tensor); |
| if (stt && !stt->isIdentity()) { |
| AffineMap dim2Lvl = stt->getDimToLvl(); |
| // By composing the idx2dim(dim2lvl), we got a idx2lvl Map |
| idxMapArray[i] = dim2Lvl.compose(idxMapArray[i]); |
| } |
| } |
| |
| // A naive way to handle common constant expressions that arise during dim2lvl |
| // translation. |
| auto populateCstMapping = [ctx](DenseMap<AffineExpr, AffineExpr> &cstMapping, |
| unsigned pos, int64_t lvlSz) { |
| if (ShapedType::isStatic(lvlSz)) { |
| auto c0 = getAffineConstantExpr(0, ctx); |
| auto lvlExp = getAffineDimExpr(pos, ctx); |
| auto szExp = getAffineConstantExpr(lvlSz, ctx); |
| |
| // lvl floordiv lvlSz = 0 |
| auto divExp = |
| getAffineBinaryOpExpr(AffineExprKind::FloorDiv, lvlExp, szExp); |
| cstMapping.try_emplace(divExp, c0); |
| |
| // lvl mod lvlSz = lvl |
| auto modExp = getAffineBinaryOpExpr(AffineExprKind::Mod, lvlExp, szExp); |
| cstMapping.try_emplace(modExp, lvlExp); |
| } |
| }; |
| |
| unsigned boundedNum = 0; |
| // A fixed-point algorithm. |
| bool changed = true; |
| while (changed) { |
| changed = false; |
| for (OpOperand &operand : op->getOpOperands()) { |
| auto stt = tryGetSparseTensorType(operand.get()); |
| // Skip on dense operands. |
| if (!stt || !stt->getEncoding()) |
| continue; |
| |
| unsigned tid = operand.getOperandNumber(); |
| bool isOutput = &operand == op.getDpsInitOperand(0); |
| AffineMap idxMap = idxMapArray[tid]; |
| InadmissInfo inAdInfo = collectInadmissInfo(idxMap, isOutput); |
| auto [inAdLvls, dimExprs] = inAdInfo; |
| for (unsigned d : dimExprs.set_bits()) { |
| // The first `boundedNum` used in the AffineMap is introduced to |
| // resolve previous inadmissible expressions. We can not replace them |
| // as it might bring back the inadmissible expressions. |
| if (d < boundedNum) |
| return std::nullopt; |
| } |
| |
| if (inAdLvls.count() != 0) { |
| // Naive constant progagation, should be sufficient to handle block |
| // sparsity in our cases. |
| SmallVector<int64_t> lvlShape = stt->getLvlShape(); |
| DenseMap<AffineExpr, AffineExpr> cstMapping; |
| unsigned position = 0; |
| for (unsigned lvl : inAdLvls.set_bits()) { |
| int64_t lvlSz = lvlShape[lvl]; |
| populateCstMapping(cstMapping, position, lvlSz); |
| position++; |
| } |
| |
| AffineMap lvl2Idx = genReplaceDimToLvlMap(inAdInfo, idxMap, itTps); |
| // Compose the lvl2Idx Map to all AffineIdxMap to eliminate |
| // inadmissible expressions. |
| for (unsigned tid = 0, e = idxMapArray.size(); tid < e; tid++) { |
| AffineMap transMap = idxMapArray[tid].compose(lvl2Idx); |
| idxMapArray[tid] = transMap.replace( |
| cstMapping, /*numResultDims=*/transMap.getNumDims(), |
| /*numResultSyms=*/0); |
| } |
| changed = true; |
| boundedNum += inAdLvls.count(); |
| } |
| } |
| }; |
| |
| SmallVector<Attribute> iterAttr = |
| llvm::map_to_vector(itTps, [ctx](auto itTp) -> Attribute { |
| return linalg::IteratorTypeAttr::get(ctx, itTp); |
| }); |
| |
| return std::make_pair(rewriter.getAffineMapArrayAttr(idxMapArray), |
| rewriter.getArrayAttr(iterAttr)); |
| } |
| |
| // Generates a "de"mapping reinterpretation of the map. |
| static Value genDemap(OpBuilder &builder, SparseTensorEncodingAttr enc, |
| Value val) { |
| return ReinterpretMapOp::create(builder, val.getLoc(), enc.withoutDimToLvl(), |
| val); |
| } |
| |
| // Generates a "re"mapping reinterpretation of the map. |
| static Value genRemap(OpBuilder &builder, SparseTensorEncodingAttr enc, |
| Value val) { |
| return ReinterpretMapOp::create(builder, val.getLoc(), enc, val); |
| } |
| |
| static SmallVector<Value> remapValueRange(OpBuilder &rewriter, TypeRange types, |
| ValueRange outs) { |
| SmallVector<Value> ret(outs); |
| assert(outs.size() == types.size()); |
| for (auto [r, t] : llvm::zip(ret, types)) |
| if (r.getType() != t) |
| r = ReinterpretMapOp::create(rewriter, r.getLoc(), t, r); |
| return ret; |
| } |
| |
| namespace { |
| |
| //===----------------------------------------------------------------------===// |
| // Rewriting rules for linalg generic ops. |
| //===----------------------------------------------------------------------===// |
| |
| /// Sparse rewriting rule for the generic `linalg` operation. |
| struct GenericOpReinterpretMap |
| : public DemapInsRewriter<GenericOpReinterpretMap, linalg::GenericOp> { |
| public: |
| using DemapInsRewriter::DemapInsRewriter; |
| LogicalResult rewriteOp(linalg::GenericOp linalgOp, OpAdaptor adaptor, |
| PatternRewriter &rewriter) const { |
| // Only rewrite single output operations with pure (sparse) tensor |
| // semantics. |
| if (linalgOp.getNumDpsInits() != 1 || !linalgOp.hasPureTensorSemantics() || |
| !hasAnySparseOperandOrResult(linalgOp) || |
| !hasAnyNonIdentityOperandsOrResults(linalgOp)) |
| return failure(); |
| |
| // Try translating the index map. |
| auto transMap = translateMap(linalgOp, rewriter); |
| if (!transMap) |
| return rewriter.notifyMatchFailure( |
| linalgOp, "the sparse kernel can not be sparsified."); |
| |
| // On success, replace update the linalg operands and maps in place. |
| Value res = linalgOp.getResult(0); |
| auto stt = tryGetSparseTensorType(res); |
| auto [idxMap, itTp] = *transMap; |
| |
| rewriter.startOpModification(linalgOp); |
| linalgOp.setIndexingMapsAttr(idxMap); |
| linalgOp.setIteratorTypesAttr(itTp); |
| // Use demapped arguments. |
| linalgOp.getInputsMutable().assign(adaptor.getInputs()); |
| linalgOp.getDpsInitsMutable().assign(adaptor.getOutputs()); |
| res.setType(adaptor.getOutputs()[0].getType()); |
| rewriter.finalizeOpModification(linalgOp); |
| |
| rewriter.setInsertionPointAfter(linalgOp); |
| if (stt && stt->hasEncoding()) { |
| Value t = genRemap(rewriter, stt->getEncoding(), res); |
| rewriter.replaceAllUsesExcept(res, t, t.getDefiningOp()); |
| } |
| return success(); |
| } |
| }; |
| |
| struct GenericOpScheduler : public OpRewritePattern<linalg::GenericOp> { |
| using OpRewritePattern::OpRewritePattern; |
| LogicalResult matchAndRewrite(linalg::GenericOp linalgOp, |
| PatternRewriter &rewriter) const override { |
| if (linalgOp.getNumDpsInits() != 1 || !linalgOp.hasPureTensorSemantics() || |
| hasAnyNonIdentityOperandsOrResults(linalgOp) || // need demap first |
| !hasAnySparseOperandOrResult(linalgOp)) { |
| return failure(); |
| } |
| |
| const StringRef sorted = "sorted"; |
| if (linalgOp->hasAttr(sorted)) |
| return failure(); |
| |
| auto scheduler = IterationGraphSorter::fromGenericOp(linalgOp); |
| bool isAdmissible = false; |
| AffineMap order; |
| // A const list of all masks that we used for iteration graph |
| // computation. Must be ordered from more strict to less strict. |
| // Ideally (though might not be guaranteed), the earlier a constraint mask |
| // can be satisfied, the faster the generated kernel will be. |
| const auto allMasks = {SortMask::kIncludeAll, SortMask::kIncludeDense, |
| SortMask::kIncludeDenseInput, |
| SortMask::kIncludeDenseOutput, |
| SortMask::kSparseOnly}; |
| for (const SortMask mask : allMasks) { |
| order = scheduler.sort(mask); |
| if (order) { |
| if (isAdmissibleOrder(linalgOp, order)) { |
| isAdmissible = true; |
| break; |
| } |
| // else try a set of less strict constraints. |
| } |
| } |
| |
| if (!order) { |
| // Cycles detected. |
| if (failed(resolveCycle(scheduler, linalgOp, rewriter))) { |
| return rewriter.notifyMatchFailure( |
| linalgOp, "the sparse kernel can not be scheduled: loop detected."); |
| } |
| return success(); |
| } |
| |
| if (!isAdmissible) { |
| return rewriter.notifyMatchFailure( |
| linalgOp, "the sparse kernel can not be scheduled."); |
| } |
| |
| // Marks the GenericOp to avoid recursive matching. |
| rewriter.modifyOpInPlace(linalgOp, [&]() { |
| linalgOp->setAttr(sorted, rewriter.getBoolAttr(true)); |
| }); |
| |
| // Already sorted. |
| if (order.isIdentity()) |
| return success(); |
| |
| assert(order.isPermutation()); |
| // `order` is orignial loop -> sorted loop map |
| ArrayAttr preItTypes = linalgOp.getIteratorTypesAttr(); |
| SmallVector<Attribute> curItTypes; |
| curItTypes.reserve(preItTypes.size()); |
| for (AffineExpr expr : order.getResults()) { |
| unsigned loopID = llvm::cast<AffineDimExpr>(expr).getPosition(); |
| curItTypes.push_back(preItTypes[loopID]); |
| } |
| |
| // Inverse `order` to get sorted loop -> original loop map |
| order = inversePermutation(order); |
| SmallVector<AffineMap> idxMaps = linalgOp.getIndexingMapsArray(); |
| for (AffineMap &idxMap : idxMaps) |
| idxMap = idxMap.compose(order); // sorted loop -> lvl map |
| |
| rewriter.startOpModification(linalgOp); |
| linalgOp.setIndexingMapsAttr(rewriter.getAffineMapArrayAttr(idxMaps)); |
| linalgOp.setIteratorTypesAttr(rewriter.getArrayAttr(curItTypes)); |
| rewriter.finalizeOpModification(linalgOp); |
| |
| return success(); |
| } |
| |
| private: |
| /// Whether the loop order is admissible by sparsification. |
| static bool isAdmissibleOrder(linalg::GenericOp linalgOp, AffineMap order) { |
| if (!hasAnySparseResult(linalgOp)) |
| return true; |
| |
| OpOperand *lhs = linalgOp.getDpsInitOperand(0); |
| unsigned nest = 0; |
| const auto iteratorTypes = linalgOp.getIteratorTypesArray(); |
| for (const AffineExpr l : order.getResults()) { |
| unsigned loopId = llvm::cast<AffineDimExpr>(l).getPosition(); |
| auto itTp = |
| cast<linalg::IteratorTypeAttr>(linalgOp.getIteratorTypes()[loopId]); |
| if (linalg::isReductionIterator(itTp.getValue())) |
| break; // terminate at first reduction |
| nest++; |
| } |
| // Determine admissible dynamic insertion situations: |
| // (1) fully injective, since there are no reductions, |
| // (2) admissible 1-d expansion in innermost dimension. |
| return static_cast<int64_t>(nest) >= linalgOp.getRank(lhs) - 1; |
| }; |
| |
| // Last resort cycle resolution. |
| static LogicalResult resolveCycle(IterationGraphSorter &scheduler, |
| linalg::LinalgOp linalgOp, |
| PatternRewriter &rewriter) { |
| // Compute topological sort while leaving out every sparse input tensor in |
| // succession until an acylic iteration graph results. |
| for (OpOperand *t : linalgOp.getDpsInputOperands()) { |
| Value tval = t->get(); |
| auto srcEnc = getSparseTensorEncoding(tval.getType()); |
| // The constraints introduced by compound index expression are |
| // complicated. Skip them. |
| AffineMap idxMap = linalgOp.getMatchingIndexingMap(t); |
| bool hasCompExpr = llvm::any_of(idxMap.getResults(), [](AffineExpr exp) { |
| return !llvm::isa<AffineDimExpr>(exp); |
| }); |
| if (!srcEnc || hasCompExpr) |
| continue; |
| |
| // Try scheduling loop without constraints from `tval`. |
| AffineMap order = scheduler.sort(SortMask::kSparseOnly, tval); |
| if (!order) // still cyclic |
| continue; |
| |
| // Found an input tensor that resolves the cycle by inserting a |
| // conversion into a sparse tensor that adheres to the iteration |
| // graph order. |
| auto stt = getSparseTensorType(tval); |
| assert(stt.isIdentity()); |
| order = inversePermutation(order); |
| // sorted loop -> lvl map. |
| idxMap = idxMap.compose(order); |
| |
| // Found a permutation such that the results in `idxMap` is sorted. |
| // For example, |
| // (d0, d1, d2, d3) -> (d2, d1, d0) |
| // loops are scheduled in order of d0->d1->d2->d3, to resolve the cycle, |
| // we find a permutation, perm(d2, d1, d0) -> (d0, d1, d2), such that the |
| // transposed tensor's levels are visited in the same order as the loop |
| // scheduling order. |
| SmallVector<std::pair<unsigned, unsigned>> lvlSeq; |
| for (AffineExpr expr : idxMap.getResults()) { |
| unsigned lvl = llvm::cast<AffineDimExpr>(expr).getPosition(); |
| lvlSeq.push_back(std::make_pair(lvl, lvlSeq.size())); |
| } |
| llvm::sort(lvlSeq, llvm::less_first()); |
| SmallVector<unsigned> perm = |
| llvm::to_vector(llvm::make_second_range(lvlSeq)); |
| auto dimToLvl = AffineMap::getPermutationMap(perm, linalgOp.getContext()); |
| // The result of the idxMap must be unsorted. |
| assert(!dimToLvl.isIdentity()); |
| |
| // Inserting the transpose |
| rewriter.setInsertionPoint(linalgOp); |
| RankedTensorType dstTp = stt.withDimToLvl(dimToLvl).getRankedTensorType(); |
| Value dst = ConvertOp::create(rewriter, tval.getLoc(), dstTp, tval); |
| rewriter.modifyOpInPlace(linalgOp, [&]() { |
| linalgOp->setOperand(t->getOperandNumber(), dst); |
| }); |
| |
| // Release the transposed form afterwards. |
| // TODO: CSE when used in more than one following op? |
| rewriter.setInsertionPointAfter(linalgOp); |
| bufferization::DeallocTensorOp::create(rewriter, dst.getLoc(), dst); |
| |
| return success(); |
| } |
| // Cannot be resolved with a single conversion. |
| // TODO: convert more than one? |
| return failure(); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Reinterpret Map Rewriters for operations other than linalg.generics |
| //===----------------------------------------------------------------------===// |
| |
| template <typename AllocOp> |
| struct TensorAllocDemapper : public OpRewritePattern<AllocOp> { |
| using OpRewritePattern<AllocOp>::OpRewritePattern; |
| LogicalResult matchAndRewrite(AllocOp op, |
| PatternRewriter &rewriter) const override { |
| if (!hasAnyNonIdentityOperandsOrResults(op)) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| auto stt = getSparseTensorType(op.getResult()); |
| |
| SmallVector<Value> maxDimCrds; |
| maxDimCrds.reserve(stt.getDimRank()); |
| ValueRange dynSz = op.getDynamicSizes(); |
| for (int64_t dimSz : stt.getDimShape()) { |
| if (ShapedType::isDynamic(dimSz)) { |
| Value maxCrd = arith::SubIOp::create(rewriter, loc, dynSz.front(), |
| constantIndex(rewriter, loc, 1)); |
| maxDimCrds.push_back(maxCrd); |
| dynSz = dynSz.drop_front(); |
| } else { |
| maxDimCrds.push_back(constantIndex(rewriter, loc, dimSz - 1)); |
| } |
| } |
| |
| ValueRange maxLvlCrds = stt.translateCrds(rewriter, loc, maxDimCrds, |
| CrdTransDirectionKind::dim2lvl); |
| auto lvlShape = stt.getLvlShape(); |
| SmallVector<Value> dynLvlSzs; |
| for (unsigned i = 0, e = lvlShape.size(); i < e; i++) { |
| if (ShapedType::isDynamic(lvlShape[i])) { |
| Value sz = arith::AddIOp::create(rewriter, loc, maxLvlCrds[i], |
| constantIndex(rewriter, loc, 1)); |
| dynLvlSzs.push_back(sz); |
| } |
| } |
| |
| assert(dynSz.empty()); // should have consumed all. |
| rewriter.startOpModification(op); |
| op->setOperands(dynLvlSzs); |
| op.getResult().setType(stt.getDemappedType()); |
| rewriter.finalizeOpModification(op); |
| rewriter.setInsertionPointAfter(op); |
| |
| Value t = genRemap(rewriter, stt.getEncoding(), op.getResult()); |
| rewriter.replaceAllUsesExcept(op.getResult(), t, t.getDefiningOp()); |
| return success(); |
| } |
| }; |
| |
| struct TensorInsertDemapper |
| : public DemapInsRewriter<TensorInsertDemapper, tensor::InsertOp> { |
| using DemapInsRewriter::DemapInsRewriter; |
| LogicalResult rewriteOp(tensor::InsertOp op, OpAdaptor adaptor, |
| PatternRewriter &rewriter) const { |
| if (!hasAnySparseResult(op) || !hasAnyNonIdentityOperandsOrResults(op)) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| auto stt = getSparseTensorType(op.getResult()); |
| ValueRange lvlCrd = stt.translateCrds(rewriter, loc, op.getIndices(), |
| CrdTransDirectionKind::dim2lvl); |
| auto insertOp = tensor::InsertOp::create(rewriter, loc, op.getScalar(), |
| adaptor.getDest(), lvlCrd); |
| |
| Value out = genRemap(rewriter, stt.getEncoding(), insertOp.getResult()); |
| rewriter.replaceOp(op, out); |
| return success(); |
| } |
| }; |
| |
| struct SparseAssembleDemapper : public OpRewritePattern<AssembleOp> { |
| using OpRewritePattern::OpRewritePattern; |
| LogicalResult matchAndRewrite(AssembleOp op, |
| PatternRewriter &rewriter) const override { |
| if (!hasAnyNonIdentityOperandsOrResults(op)) |
| return failure(); |
| |
| assert(hasAnySparseResult(op)); |
| auto stt = getSparseTensorType(op.getResult()); |
| rewriter.modifyOpInPlace( |
| op, [&op, &stt]() { op.getResult().setType(stt.getDemappedType()); }); |
| rewriter.setInsertionPointAfter(op); |
| Value out = genRemap(rewriter, stt.getEncoding(), op.getResult()); |
| rewriter.replaceAllUsesExcept(op, out, out.getDefiningOp()); |
| return success(); |
| } |
| }; |
| |
| struct SparseDisassembleDemapper |
| : public DemapInsRewriter<SparseDisassembleDemapper, DisassembleOp> { |
| using DemapInsRewriter::DemapInsRewriter; |
| LogicalResult rewriteOp(DisassembleOp op, OpAdaptor adaptor, |
| PatternRewriter &rewriter) const { |
| if (!hasAnyNonIdentityOperandsOrResults(op)) |
| return failure(); |
| |
| assert(hasAnySparseOperandOrResult(op)); |
| rewriter.modifyOpInPlace(op, [&op, &adaptor]() { |
| op.getTensorMutable().assign(adaptor.getTensor()); |
| }); |
| return success(); |
| } |
| }; |
| |
| struct ForeachOpDemapper |
| : public DemapInsRewriter<ForeachOpDemapper, ForeachOp> { |
| using DemapInsRewriter::DemapInsRewriter; |
| LogicalResult rewriteOp(ForeachOp op, OpAdaptor adaptor, |
| PatternRewriter &rewriter) const { |
| // Only handle operations with sparse input/output with non-identity dim2lvl |
| // maps. |
| if (!hasAnyNonIdentityOperandsOrResults(op)) |
| return failure(); |
| |
| // TODO: demap constant as well. |
| if (auto constOp = op.getTensor().getDefiningOp<arith::ConstantOp>()) |
| if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| // Cache the type information since we update the foreach op in-place. |
| auto srcStt = getSparseTensorType(op.getTensor()); |
| SmallVector<Type> prevRetTps(op.getResultTypes()); |
| |
| rewriter.startOpModification(op); |
| op.getTensorMutable().assign(adaptor.getTensor()); |
| op.getInitArgsMutable().assign(adaptor.getInitArgs()); |
| // Update results' types. |
| for (auto r : op.getResults()) |
| if (auto stt = tryGetSparseTensorType(r); stt && !stt->isIdentity()) |
| r.setType(stt->getDemappedType()); |
| |
| Level lvlRank = getSparseTensorType(adaptor.getTensor()).getLvlRank(); |
| // Update the foreach body. |
| SmallVector<Type> blockArgTps(lvlRank, rewriter.getIndexType()); |
| blockArgTps.push_back(srcStt.getElementType()); |
| blockArgTps.append(adaptor.getInitArgs().getTypes().begin(), |
| adaptor.getInitArgs().getTypes().end()); |
| Block *body = op.getBody(); |
| // Block Args: [dimCrd, val, initArgs] |
| unsigned preArgNum = body->getNumArguments(); |
| for (Type t : blockArgTps) |
| body->addArgument(t, loc); |
| |
| // Block Args: [dimCrd, val, initArgs, lvlCrds, val, DemappedArgs] |
| rewriter.setInsertionPointToStart(body); |
| ValueRange lvlCrds = body->getArguments().slice(preArgNum, lvlRank); |
| |
| ValueRange dimCrds = srcStt.translateCrds(rewriter, loc, lvlCrds, |
| CrdTransDirectionKind::lvl2dim); |
| rewriter.replaceAllUsesWith( |
| body->getArguments().take_front(srcStt.getDimRank()), dimCrds); |
| body->eraseArguments(0, srcStt.getDimRank()); |
| // Block Args: [val, initArgs, lvlCrds, val, DemappedArgs] |
| unsigned numInitArgs = op.getInitArgs().size(); |
| rewriter.replaceAllUsesWith(body->getArgument(0), |
| body->getArgument(lvlRank + numInitArgs + 1)); |
| body->eraseArgument(0); |
| // Block Args: [initArgs, lvlCrds, val, DemappedArgs] |
| ValueRange srcArgs = body->getArguments().take_front(numInitArgs); |
| ValueRange dstArgs = body->getArguments().take_back(numInitArgs); |
| // Remap back before replacement. |
| SmallVector<Value> reMappedArgs = |
| remapValueRange(rewriter, srcArgs.getTypes(), dstArgs); |
| rewriter.replaceAllUsesWith(srcArgs, reMappedArgs); |
| body->eraseArguments(0, numInitArgs); |
| // Block Args: [lvlCrds, DemappedArgs] and we are done. |
| |
| // Update yield operations. |
| if (numInitArgs != 0) { |
| rewriter.setInsertionPointToEnd(body); |
| auto yield = llvm::cast<YieldOp>(body->getTerminator()); |
| if (auto stt = tryGetSparseTensorType(yield.getSingleResult()); |
| stt && !stt->isIdentity()) { |
| Value y = |
| genDemap(rewriter, stt->getEncoding(), yield.getSingleResult()); |
| YieldOp::create(rewriter, loc, y); |
| rewriter.eraseOp(yield); |
| } |
| } |
| rewriter.finalizeOpModification(op); |
| |
| rewriter.setInsertionPointAfter(op); |
| SmallVector<Value> outs = |
| remapValueRange(rewriter, prevRetTps, op.getResults()); |
| |
| // Replace all the uses of the foreach results, expect the use in |
| // reinterpret_map used to remap the output. |
| for (auto [from, to] : llvm::zip(op.getResults(), outs)) |
| rewriter.replaceAllUsesExcept(from, to, to.getDefiningOp()); |
| |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::populateSparseReinterpretMap(RewritePatternSet &patterns, |
| ReinterpretMapScope scope) { |
| if (scope == ReinterpretMapScope::kAll || |
| scope == ReinterpretMapScope::kGenericOnly) { |
| patterns.add<GenericOpReinterpretMap, GenericOpScheduler>( |
| patterns.getContext()); |
| } |
| if (scope == ReinterpretMapScope::kAll || |
| scope == ReinterpretMapScope::kExceptGeneric) { |
| patterns.add<TensorAllocDemapper<bufferization::AllocTensorOp>, |
| TensorAllocDemapper<tensor::EmptyOp>, SparseAssembleDemapper, |
| SparseDisassembleDemapper, TensorInsertDemapper, |
| ForeachOpDemapper>(patterns.getContext()); |
| } |
| } |