| //====----- OutlineShapeComputation.cpp -----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/Shape/Analysis/ShapeMappingAnalysis.h" |
| #include "mlir/Dialect/Shape/IR/Shape.h" |
| #include "mlir/Dialect/Shape/Transforms/Passes.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/IR/IRMapping.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/Support/Debug.h" |
| #include <queue> |
| #include <vector> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_OUTLINESHAPECOMPUTATIONPASS |
| #include "mlir/Dialect/Shape/Transforms/Passes.h.inc" |
| } // namespace mlir |
| |
| #define DEBUG_TYPE "outline-shape-computation" |
| |
| using namespace mlir; |
| |
| namespace { |
| |
| // A Value is an input of the cluster if it is an operand of an operation in the |
| // cluster and its defining operation is not in the cluster. |
| SmallVector<Value, 4> |
| getInputsOfCluster(const llvm::SmallVector<Operation *, 8> &cluster) { |
| SmallVector<Value, 4> inputs; |
| llvm::SmallDenseSet<Value> inputSet; |
| llvm::SmallDenseSet<Operation *> opSet; |
| for (Operation *op : cluster) { |
| bool inserted = opSet.insert(op).second; |
| (void)inserted; |
| assert(inserted && "cluster contains duplicate operations"); |
| } |
| |
| for (Operation *op : cluster) { |
| for (Value operand : op->getOperands()) { |
| Operation *operandOp = operand.getDefiningOp(); |
| if (opSet.contains(operandOp)) { |
| // Skip if defining op is in the cluster. |
| continue; |
| } |
| if (inputSet.insert(operand).second) |
| inputs.push_back(operand); |
| } |
| } |
| return inputs; |
| } |
| |
| // Create a shape.func representing the shape computation for `shape`. |
| std::pair<shape::FuncOp, SmallVector<Value>> |
| createFuncFromCluster(OpBuilder &b, const SmallVector<Operation *, 8> &cluster, |
| Value shape, StringRef fnName, Location loc) { |
| SmallVector<Value, 4> inputs = getInputsOfCluster(cluster); |
| auto fnType = |
| cluster.empty() |
| ? b.getFunctionType(shape.getType(), shape.getType()) |
| : b.getFunctionType(ValueRange(inputs).getTypes(), shape.getType()); |
| shape::FuncOp fnOp = shape::FuncOp::create(b, loc, fnName, fnType); |
| Block *block = fnOp.addEntryBlock(); |
| b.setInsertionPointToEnd(block); |
| IRMapping bvm; |
| if (cluster.empty()) { |
| bvm.map(shape, fnOp.getArgument(0)); |
| } else { |
| for (auto inputAndArg : llvm::zip(inputs, fnOp.getArguments())) |
| bvm.map(std::get<0>(inputAndArg), std::get<1>(inputAndArg)); |
| } |
| |
| for (Operation *op : cluster) |
| b.clone(*op, bvm); |
| llvm::SmallVector<Value, 4> fnReturns; |
| fnReturns.push_back(bvm.lookupOrDefault(shape)); |
| |
| shape::ReturnOp::create(b, loc, fnReturns); |
| fnOp.setPrivate(); |
| return std::make_pair(fnOp, inputs); |
| } |
| |
| // The operations in the cluster might be unsorted, which could be inconvenient |
| // when creating shape.func op. |
| DenseMap<Value, SmallVector<Operation *, 8>> |
| getOrderedClusters(const DenseMap<Value, DenseSet<Operation *>> &clusters, |
| func::FuncOp funcOp) { |
| // Compute all clusters that each operation is in |
| DenseMap<Operation *, SmallVector<Value>> op2Shapes; |
| for (const auto &it : clusters) { |
| Value shape = it.first; |
| const DenseSet<Operation *> &cluster = it.second; |
| for (Operation *cOp : cluster) |
| op2Shapes[cOp].push_back(shape); |
| } |
| |
| // Iterate through all operations in order. Get all the clusters `cOp` belongs |
| // to and construct the new ordered cluster as it traverses. |
| DenseMap<Value, SmallVector<Operation *, 8>> orderedClusters; |
| funcOp.walk([&](Operation *op) { |
| auto it = op2Shapes.find(op); |
| if (it != op2Shapes.end()) { |
| Operation *cOp = it->first; |
| for (Value shape : it->second) |
| orderedClusters[shape].push_back(cOp); |
| } |
| }); |
| |
| return orderedClusters; |
| } |
| |
| void constructShapeFunc( |
| const std::vector<shape::WithOp> &allWithOps, MLIRContext *context, |
| DenseMap<Value, SmallVector<Operation *, 8>> &clusters, |
| SymbolTable &symbolTable, |
| DenseMap<Value, shape::ShapeMappingValue> &dynShape2ShapeFunc, |
| func::FuncOp funcOp, shape::ShapeMappingAnalysis &shapeMappingAnalysis) { |
| std::string shapeCalculationNamePrefix = "shape_cal_"; |
| int shapeCalculationNameIdx = 0; |
| OpBuilder builder(context); |
| |
| // Construct a shape function |
| for (shape::WithOp withOp : allWithOps) { |
| Value value = withOp.getOperand(); |
| Value shape = withOp.getShape(); |
| RankedTensorType rankedType = dyn_cast<RankedTensorType>(value.getType()); |
| if (rankedType == nullptr) |
| continue; |
| |
| const SmallVector<Operation *, 8> &cluster = clusters[shape]; |
| shape::ShapeMappingValue shapeMappingValue; |
| auto it = dynShape2ShapeFunc.find(shape); |
| if (it == dynShape2ShapeFunc.end()) { |
| std::string name = shapeCalculationNamePrefix + |
| std::to_string(shapeCalculationNameIdx++); |
| Location loc = value.getLoc(); |
| builder.setInsertionPointAfter(funcOp); |
| auto pair = createFuncFromCluster(builder, cluster, shape, name, loc); |
| const SmallVector<Value> &inputs = pair.second; |
| shape::FuncOp shapeFuncOp = pair.first; |
| StringAttr insertedName = symbolTable.insert(shapeFuncOp); |
| auto symbol = FlatSymbolRefAttr::get(context, insertedName); |
| |
| shapeMappingValue.funcSymbol = symbol; |
| shapeMappingValue.inputs = inputs; |
| } else { |
| shapeMappingValue = it->second; |
| } |
| dynShape2ShapeFunc[shape] = shapeMappingValue; |
| shapeMappingAnalysis.shapeMapping.insert( |
| std::make_pair(value, shapeMappingValue)); |
| } |
| } |
| |
| struct OutlineShapeComputationPass |
| : public impl::OutlineShapeComputationPassBase< |
| OutlineShapeComputationPass> { |
| |
| void runOnOperation() override; |
| |
| private: |
| bool calOnlyUsedByWithShapesRecursively(Operation *op, Value prevOutput); |
| |
| void getClusterFromValue(Value shape, |
| DenseMap<Value, DenseSet<Operation *>> &clusters); |
| |
| DenseMap<Value, SmallVector<Operation *, 8>> |
| constructClustersForEachShape(const std::vector<shape::WithOp> &allWithOps, |
| func::FuncOp funcOp); |
| |
| DenseSet<Operation *> onlyUsedByWithShapes; |
| }; |
| |
| class TensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> { |
| using OpRewritePattern<tensor::DimOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::DimOp op, |
| PatternRewriter &rewriter) const override { |
| auto shapeOf = |
| shape::ShapeOfOp::create(rewriter, op.getLoc(), op.getSource()); |
| rewriter.replaceOpWithNewOp<shape::GetExtentOp>(op, op.getType(), shapeOf, |
| op.getIndex()); |
| return success(); |
| } |
| }; |
| |
| void OutlineShapeComputationPass::runOnOperation() { |
| ModuleOp moduleOp = getOperation(); |
| SymbolTable symbolTable(moduleOp); |
| DenseMap<Value, shape::ShapeMappingValue> dynShape2ShapeFunc; |
| auto &shapeMappingAnalysis = getAnalysis<shape::ShapeMappingAnalysis>(); |
| // TODO: This is as we populate this analysis during a pass that mutates. This |
| // pass currently requires 1 single module being compiled. |
| shapeMappingAnalysis.shapeMapping.clear(); |
| markAnalysesPreserved<shape::ShapeMappingAnalysis>(); |
| |
| moduleOp.walk([&](func::FuncOp funcOp) { |
| MLIRContext *context = funcOp.getContext(); |
| RewritePatternSet prevPatterns(context); |
| prevPatterns.insert<TensorDimOpRewriter>(context); |
| if (failed(applyPatternsGreedily(funcOp, std::move(prevPatterns)))) |
| return signalPassFailure(); |
| |
| // initialize class member `onlyUsedByWithShapes` |
| onlyUsedByWithShapes.clear(); |
| funcOp.walk([&](Operation *op) { |
| calOnlyUsedByWithShapesRecursively(op, /*prevOutput=*/nullptr); |
| }); |
| LLVM_DEBUG({ |
| llvm::dbgs() << "onlyUsedByWithShapes table: \n"; |
| for (auto it : onlyUsedByWithShapes) |
| llvm::dbgs() << *it << "\n"; |
| }); |
| |
| // collect all the shape.with_shape ops. |
| std::vector<shape::WithOp> allWithOps; |
| funcOp.walk([&](shape::WithOp withOp) { allWithOps.push_back(withOp); }); |
| |
| DenseMap<Value, SmallVector<Operation *, 8>> clusters = |
| constructClustersForEachShape(allWithOps, funcOp); |
| constructShapeFunc(allWithOps, context, clusters, symbolTable, |
| dynShape2ShapeFunc, funcOp, shapeMappingAnalysis); |
| |
| for (shape::WithOp withOp : allWithOps) { |
| Value value = withOp.getOperand(); |
| for (Operation *user : |
| llvm::make_early_inc_range(withOp.getResult().getUsers())) { |
| if (auto valueOf = llvm::dyn_cast<shape::ValueOfOp>(user)) { |
| // For pattern like |
| // %1 = shape.with_shape %arg1, %0 |
| // %2 = shape.value_of %1 |
| // because shape.value doesn't care the shape, the shape.with_shape is |
| // redundant. |
| // If type of %arg1 and %2 has same type, just |
| // replaced %2 with %arg1. |
| // If type of %arg1 has different type like !shape.value_shape, |
| // transform into |
| // %2 = shape.value_of %arg1 |
| if (valueOf.getType() == value.getType()) |
| valueOf.replaceAllUsesWith(value); |
| else |
| valueOf.setOperand(value); |
| } |
| } |
| } |
| |
| // Apply patterns, note this also performs DCE. |
| if (failed(applyPatternsGreedily(funcOp, {}))) |
| return signalPassFailure(); |
| }); |
| } |
| |
| DenseMap<Value, SmallVector<Operation *, 8>> |
| OutlineShapeComputationPass::constructClustersForEachShape( |
| const std::vector<shape::WithOp> &allWithOps, func::FuncOp funcOp) { |
| DenseMap<Value, DenseSet<Operation *>> clusters; |
| for (shape::WithOp withOp : allWithOps) { |
| Value shape = withOp.getShape(); |
| if (clusters.count(shape) == 0) |
| getClusterFromValue(shape, clusters); |
| } |
| return getOrderedClusters(clusters, funcOp); |
| } |
| |
| // The output of a cluster is the `shape`, and the inputs are the outputs of |
| // operations who are not in `onlyUsedByWithShapes` |
| void OutlineShapeComputationPass::getClusterFromValue( |
| Value shape, DenseMap<Value, DenseSet<Operation *>> &clusters) { |
| DenseSet<Operation *> cluster; |
| |
| DenseSet<Operation *> visited; |
| std::queue<Operation *> queue; |
| |
| // defOp == nullptr means shape is the argument of the func op |
| if (Operation *defOp = shape.getDefiningOp()) { |
| visited.insert(defOp); |
| queue.push(defOp); |
| } |
| while (!queue.empty()) { |
| Operation *op = queue.front(); |
| queue.pop(); |
| if (onlyUsedByWithShapes.contains(op)) { |
| cluster.insert(op); |
| for (Value inp : op->getOperands()) { |
| Operation *inpDefOp = inp.getDefiningOp(); |
| if (nullptr != inpDefOp && visited.insert(inpDefOp).second) |
| queue.push(inpDefOp); |
| } |
| } |
| } |
| |
| clusters[shape] = std::move(cluster); |
| } |
| |
| // Returns whether `op` is a shape.with_shape, or all the users' of `op` |
| // eventually point to the shape operand of shape.with_shape ops |
| bool OutlineShapeComputationPass::calOnlyUsedByWithShapesRecursively( |
| Operation *op, Value prevOutput) { |
| if (onlyUsedByWithShapes.contains(op)) |
| return true; |
| |
| if (auto withOp = llvm::dyn_cast<shape::WithOp>(op)) |
| return withOp.getShape() == prevOutput; |
| |
| if (op->use_empty()) |
| return false; |
| |
| for (Value oup : op->getResults()) |
| for (Operation *user : oup.getUsers()) |
| if (!calOnlyUsedByWithShapesRecursively(user, oup)) |
| return false; |
| |
| onlyUsedByWithShapes.insert(op); |
| return true; |
| } |
| |
| } // namespace |