| //===- MergeConsecutiveInsertExtractSlicePatterns.cpp ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Affine/ViewLikeInterfaceUtils.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Tensor/Transforms/Transforms.h" |
| #include "mlir/Dialect/Tensor/Utils/Utils.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/OpDefinition.h" |
| #include "mlir/IR/PatternMatch.h" |
| |
| using namespace mlir; |
| using namespace mlir::tensor; |
| |
| namespace { |
| /// Merges consecutive tensor.extract_slice ops into one. |
| // TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps. |
| struct MergeConsecutiveExtractSlice : public OpRewritePattern<ExtractSliceOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ExtractSliceOp nextOp, |
| PatternRewriter &rewriter) const override { |
| auto prevOp = nextOp.getSource().getDefiningOp<ExtractSliceOp>(); |
| if (!prevOp) |
| return failure(); |
| |
| SmallVector<OpFoldResult> newOffsets, newSizes, newStrides; |
| if (failed(affine::mergeOffsetsSizesAndStrides( |
| rewriter, nextOp.getLoc(), prevOp, nextOp, prevOp.getDroppedDims(), |
| newOffsets, newSizes, newStrides))) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<ExtractSliceOp>(nextOp, nextOp.getType(), |
| prevOp.getSource(), newOffsets, |
| newSizes, newStrides); |
| return success(); |
| } |
| }; |
| |
| /// Merges consecutive tensor.insert_slice ops into one. |
| // TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps. |
| template <typename OpTy> |
| struct MergeConsecutiveInsertSlice : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy nextOp, |
| PatternRewriter &rewriter) const override { |
| auto prevOp = nextOp.getSource().template getDefiningOp<InsertSliceOp>(); |
| if (!prevOp) |
| return failure(); |
| |
| if (!prevOp.hasUnitStride() || !nextOp.hasUnitStride()) |
| return failure(); |
| |
| // The first insert_slice op should be rank reducing to make sure we cover |
| // the full source tensor to be inserted in the second insert_slice op. |
| SliceVerificationResult result = |
| isRankReducedType(prevOp.getDestType(), prevOp.getSourceType()); |
| if (result != SliceVerificationResult::Success) |
| return failure(); |
| |
| // Dynamic dimensions can pass rank reducing check in the above, e.g, |
| // inserting <?xf32> into <1x?x1xf32>. For such cases we cannot be certain |
| // the dynamic size covers the full tensor. |
| if (!prevOp.getSourceType().hasStaticShape() || |
| !prevOp.getDestType().hasStaticShape()) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<OpTy>( |
| nextOp, prevOp.getSource(), nextOp.getDest(), nextOp.getMixedOffsets(), |
| nextOp.getMixedSizes(), nextOp.getMixedStrides()); |
| return success(); |
| } |
| }; |
| |
| /// Drop redundant rank expansion of insert_slice that are directly followed |
| /// by extract_slice. E.g.: |
| /// %0 = tensor.insert_slice ... : tensor<5x10xf32> into tensor<1x1x5x10xf32> |
| /// %1 = tensor.extract_slice %0[0, 0, 2, 3] [1, 1, 2, 2] [1, 1, 1, 1] |
| /// : tensor<1x1x5x10xf32> to tensor<2x2xf32> |
| struct DropRedundantRankExpansionOnExtractSliceOfInsertSlice |
| : public OpRewritePattern<ExtractSliceOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ExtractSliceOp extractSliceOp, |
| PatternRewriter &rewriter) const override { |
| // Nothing to do if no dims are dropped. |
| llvm::SmallBitVector droppedDims = extractSliceOp.getDroppedDims(); |
| if (droppedDims.none()) |
| return failure(); |
| |
| // Look for tensor.insert_slice op that has an inverse rank expansion. |
| auto insertSliceOp = |
| extractSliceOp.getSource().getDefiningOp<InsertSliceOp>(); |
| if (!insertSliceOp) |
| return failure(); |
| llvm::SmallBitVector expandedDims = insertSliceOp.getDroppedDims(); |
| |
| // TODO: This could be extended to support cases where the dropped dims are |
| // a subset of the expanded dims. |
| if (expandedDims != droppedDims) |
| return failure(); |
| |
| // The tensor.insert_slice may not be redundant if it has multiple users. |
| if (!insertSliceOp->hasOneUse()) |
| return failure(); |
| |
| // Only consider tensor.insert_slice ops that are pure rank-reductions. |
| // I.e., no elements are taken from the destination. |
| if (!isCastLikeInsertSliceOp(insertSliceOp)) |
| return failure(); |
| |
| // Extract directly from the source. |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(extractSliceOp); |
| SmallVector<OpFoldResult> newOffsets, newSizes, newStrides; |
| for (int64_t i = 0, e = extractSliceOp.getSourceType().getRank(); i < e; |
| ++i) { |
| if (droppedDims.test(i)) |
| continue; |
| newOffsets.push_back(extractSliceOp.getMixedOffsets()[i]); |
| newSizes.push_back(extractSliceOp.getMixedSizes()[i]); |
| newStrides.push_back(extractSliceOp.getMixedStrides()[i]); |
| } |
| rewriter.replaceOpWithNewOp<ExtractSliceOp>( |
| extractSliceOp, /*source=*/insertSliceOp.getSource(), newOffsets, |
| newSizes, newStrides); |
| rewriter.eraseOp(insertSliceOp); |
| return success(); |
| } |
| }; |
| |
| /// Drop redundant rank expansion of insert_slice that direclty follows |
| /// extract_slice. |
| /// |
| /// This can be done when the insert_slice op purely expands ranks (adds unit |
| /// dims) and the extrace_slice drops corresponding unit dims. For example: |
| /// |
| /// %extracted_slice = tensor.extract_slice %in[0, 0] [1, 8] [1, 1] |
| /// : tensor<2x8xf32> to tensor<8xf32> |
| /// %inserted_slice = tensor.insert_slice %extracted_slice |
| /// into %dest[0, 0] [1, 8] [1, 1] |
| /// : tensor<8xf32> into tensor<1x8xf32> |
| /// |
| /// can be folded into: |
| /// |
| /// %extracted_slice = tensor.extract_slice %in[0, 0] [1, 8] [1, 1] |
| /// : tensor<2x8xf32> to tensor<1x8xf32> |
| struct DropRedundantRankExpansionOnInsertSliceOfExtractSlice final |
| : public OpRewritePattern<tensor::InsertSliceOp> { |
| using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::InsertSliceOp insertSliceOp, |
| PatternRewriter &rewriter) const override { |
| auto extractSliceOp = |
| insertSliceOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); |
| if (!extractSliceOp) { |
| return rewriter.notifyMatchFailure(insertSliceOp, |
| "source is not extract_slice"); |
| } |
| |
| // Can't fold if the extract_slice op has other users. |
| if (!extractSliceOp->hasOneUse()) { |
| return rewriter.notifyMatchFailure(insertSliceOp, |
| "source has multi-uses"); |
| } |
| |
| // Check if the insert_slice op purely expands ranks (add unit dims). |
| if (!isCastLikeInsertSliceOp(insertSliceOp)) { |
| return rewriter.notifyMatchFailure(insertSliceOp, |
| "insert_slice is not cast-like"); |
| } |
| |
| llvm::SmallBitVector extractDroppedDims = extractSliceOp.getDroppedDims(); |
| llvm::SmallBitVector insertDroppedDims = insertSliceOp.getDroppedDims(); |
| // Can't fold if the insert_slice op expands to more dims. |
| if (extractDroppedDims.size() < insertDroppedDims.size()) { |
| return rewriter.notifyMatchFailure(insertSliceOp, |
| "insert_slice expands more dims"); |
| } |
| |
| // Try to match the extract dropped dims to the insert dropped dims. This is |
| // done by scanning the dims of extract_slice and find the left-most one can |
| // match the dim of insert_slice. If a match is found, advance the dim of |
| // insert_slice to match the next one. |
| unsigned insertDimPos = 0; |
| for (unsigned extractDimPos = 0; extractDimPos < extractDroppedDims.size(); |
| ++extractDimPos) { |
| // Matched all dims. |
| if (insertDimPos == insertDroppedDims.size()) |
| break; |
| |
| bool isExtractDropped = extractDroppedDims[extractDimPos]; |
| bool isInsertDropped = insertDroppedDims[insertDimPos]; |
| // Match if both sides drop/keep the dim. Advance and match the next dim |
| // of insert_slice. |
| if (isExtractDropped == isInsertDropped) { |
| insertDimPos += 1; |
| } else if (!isExtractDropped && isInsertDropped) { |
| // Not enough extract dropped dims to match the insert dropped dims. |
| return rewriter.notifyMatchFailure(insertSliceOp, |
| "insert_slice drops more unit dims"); |
| } |
| // If the dim is dropped by extract_slice and not by insert_slice, look |
| // the next dim of extract_slice to see if it can match the current dim of |
| // insert_slice. |
| } |
| // Can't match some insert dims. |
| if (insertDimPos != insertDroppedDims.size()) { |
| return rewriter.notifyMatchFailure(insertSliceOp, |
| "insert_slice has unmatched dims"); |
| } |
| |
| rewriter.replaceOpWithNewOp<tensor::ExtractSliceOp>( |
| insertSliceOp, insertSliceOp.getType(), extractSliceOp.getSource(), |
| extractSliceOp.getMixedOffsets(), extractSliceOp.getMixedSizes(), |
| extractSliceOp.getMixedStrides()); |
| rewriter.eraseOp(extractSliceOp); |
| |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void mlir::tensor::populateMergeConsecutiveInsertExtractSlicePatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<MergeConsecutiveExtractSlice, |
| MergeConsecutiveInsertSlice<InsertSliceOp>, |
| MergeConsecutiveInsertSlice<ParallelInsertSliceOp>>( |
| patterns.getContext()); |
| } |
| |
| void mlir::tensor::populateDropRedundantInsertSliceRankExpansionPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<DropRedundantRankExpansionOnExtractSliceOfInsertSlice, |
| DropRedundantRankExpansionOnInsertSliceOfExtractSlice>( |
| patterns.getContext()); |
| } |