blob: ff003e486d21c87c665462deafd1b7c8c7a947b9 [file] [log] [blame]
//===- MergeConsecutiveInsertExtractSlicePatterns.cpp ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/ViewLikeInterfaceUtils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
/// Merges consecutive tensor.extract_slice ops into one.
// TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps.
struct MergeConsecutiveExtractSlice : public OpRewritePattern<ExtractSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractSliceOp nextOp,
PatternRewriter &rewriter) const override {
auto prevOp = nextOp.getSource().getDefiningOp<ExtractSliceOp>();
if (!prevOp)
return failure();
SmallVector<OpFoldResult> newOffsets, newSizes, newStrides;
if (failed(affine::mergeOffsetsSizesAndStrides(
rewriter, nextOp.getLoc(), prevOp, nextOp, prevOp.getDroppedDims(),
newOffsets, newSizes, newStrides)))
return failure();
rewriter.replaceOpWithNewOp<ExtractSliceOp>(nextOp, nextOp.getType(),
prevOp.getSource(), newOffsets,
newSizes, newStrides);
return success();
}
};
/// Merges consecutive tensor.insert_slice ops into one.
// TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps.
template <typename OpTy>
struct MergeConsecutiveInsertSlice : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy nextOp,
PatternRewriter &rewriter) const override {
auto prevOp = nextOp.getSource().template getDefiningOp<InsertSliceOp>();
if (!prevOp)
return failure();
if (!prevOp.hasUnitStride() || !nextOp.hasUnitStride())
return failure();
// The first insert_slice op should be rank reducing to make sure we cover
// the full source tensor to be inserted in the second insert_slice op.
SliceVerificationResult result =
isRankReducedType(prevOp.getDestType(), prevOp.getSourceType());
if (result != SliceVerificationResult::Success)
return failure();
// Dynamic dimensions can pass rank reducing check in the above, e.g,
// inserting <?xf32> into <1x?x1xf32>. For such cases we cannot be certain
// the dynamic size covers the full tensor.
if (!prevOp.getSourceType().hasStaticShape() ||
!prevOp.getDestType().hasStaticShape())
return failure();
rewriter.replaceOpWithNewOp<OpTy>(
nextOp, prevOp.getSource(), nextOp.getDest(), nextOp.getMixedOffsets(),
nextOp.getMixedSizes(), nextOp.getMixedStrides());
return success();
}
};
/// Drop redundant rank expansion of insert_slice that are directly followed
/// by extract_slice. E.g.:
/// %0 = tensor.insert_slice ... : tensor<5x10xf32> into tensor<1x1x5x10xf32>
/// %1 = tensor.extract_slice %0[0, 0, 2, 3] [1, 1, 2, 2] [1, 1, 1, 1]
/// : tensor<1x1x5x10xf32> to tensor<2x2xf32>
struct DropRedundantRankExpansionOnExtractSliceOfInsertSlice
: public OpRewritePattern<ExtractSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractSliceOp extractSliceOp,
PatternRewriter &rewriter) const override {
// Nothing to do if no dims are dropped.
llvm::SmallBitVector droppedDims = extractSliceOp.getDroppedDims();
if (droppedDims.none())
return failure();
// Look for tensor.insert_slice op that has an inverse rank expansion.
auto insertSliceOp =
extractSliceOp.getSource().getDefiningOp<InsertSliceOp>();
if (!insertSliceOp)
return failure();
llvm::SmallBitVector expandedDims = insertSliceOp.getDroppedDims();
// TODO: This could be extended to support cases where the dropped dims are
// a subset of the expanded dims.
if (expandedDims != droppedDims)
return failure();
// The tensor.insert_slice may not be redundant if it has multiple users.
if (!insertSliceOp->hasOneUse())
return failure();
// Only consider tensor.insert_slice ops that are pure rank-reductions.
// I.e., no elements are taken from the destination.
if (!isCastLikeInsertSliceOp(insertSliceOp))
return failure();
// Extract directly from the source.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(extractSliceOp);
SmallVector<OpFoldResult> newOffsets, newSizes, newStrides;
for (int64_t i = 0, e = extractSliceOp.getSourceType().getRank(); i < e;
++i) {
if (droppedDims.test(i))
continue;
newOffsets.push_back(extractSliceOp.getMixedOffsets()[i]);
newSizes.push_back(extractSliceOp.getMixedSizes()[i]);
newStrides.push_back(extractSliceOp.getMixedStrides()[i]);
}
rewriter.replaceOpWithNewOp<ExtractSliceOp>(
extractSliceOp, /*source=*/insertSliceOp.getSource(), newOffsets,
newSizes, newStrides);
rewriter.eraseOp(insertSliceOp);
return success();
}
};
/// Drop redundant rank expansion of insert_slice that direclty follows
/// extract_slice.
///
/// This can be done when the insert_slice op purely expands ranks (adds unit
/// dims) and the extrace_slice drops corresponding unit dims. For example:
///
/// %extracted_slice = tensor.extract_slice %in[0, 0] [1, 8] [1, 1]
/// : tensor<2x8xf32> to tensor<8xf32>
/// %inserted_slice = tensor.insert_slice %extracted_slice
/// into %dest[0, 0] [1, 8] [1, 1]
/// : tensor<8xf32> into tensor<1x8xf32>
///
/// can be folded into:
///
/// %extracted_slice = tensor.extract_slice %in[0, 0] [1, 8] [1, 1]
/// : tensor<2x8xf32> to tensor<1x8xf32>
struct DropRedundantRankExpansionOnInsertSliceOfExtractSlice final
: public OpRewritePattern<tensor::InsertSliceOp> {
using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::InsertSliceOp insertSliceOp,
PatternRewriter &rewriter) const override {
auto extractSliceOp =
insertSliceOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
if (!extractSliceOp) {
return rewriter.notifyMatchFailure(insertSliceOp,
"source is not extract_slice");
}
// Can't fold if the extract_slice op has other users.
if (!extractSliceOp->hasOneUse()) {
return rewriter.notifyMatchFailure(insertSliceOp,
"source has multi-uses");
}
// Check if the insert_slice op purely expands ranks (add unit dims).
if (!isCastLikeInsertSliceOp(insertSliceOp)) {
return rewriter.notifyMatchFailure(insertSliceOp,
"insert_slice is not cast-like");
}
llvm::SmallBitVector extractDroppedDims = extractSliceOp.getDroppedDims();
llvm::SmallBitVector insertDroppedDims = insertSliceOp.getDroppedDims();
// Can't fold if the insert_slice op expands to more dims.
if (extractDroppedDims.size() < insertDroppedDims.size()) {
return rewriter.notifyMatchFailure(insertSliceOp,
"insert_slice expands more dims");
}
// Try to match the extract dropped dims to the insert dropped dims. This is
// done by scanning the dims of extract_slice and find the left-most one can
// match the dim of insert_slice. If a match is found, advance the dim of
// insert_slice to match the next one.
unsigned insertDimPos = 0;
for (unsigned extractDimPos = 0; extractDimPos < extractDroppedDims.size();
++extractDimPos) {
// Matched all dims.
if (insertDimPos == insertDroppedDims.size())
break;
bool isExtractDropped = extractDroppedDims[extractDimPos];
bool isInsertDropped = insertDroppedDims[insertDimPos];
// Match if both sides drop/keep the dim. Advance and match the next dim
// of insert_slice.
if (isExtractDropped == isInsertDropped) {
insertDimPos += 1;
} else if (!isExtractDropped && isInsertDropped) {
// Not enough extract dropped dims to match the insert dropped dims.
return rewriter.notifyMatchFailure(insertSliceOp,
"insert_slice drops more unit dims");
}
// If the dim is dropped by extract_slice and not by insert_slice, look
// the next dim of extract_slice to see if it can match the current dim of
// insert_slice.
}
// Can't match some insert dims.
if (insertDimPos != insertDroppedDims.size()) {
return rewriter.notifyMatchFailure(insertSliceOp,
"insert_slice has unmatched dims");
}
rewriter.replaceOpWithNewOp<tensor::ExtractSliceOp>(
insertSliceOp, insertSliceOp.getType(), extractSliceOp.getSource(),
extractSliceOp.getMixedOffsets(), extractSliceOp.getMixedSizes(),
extractSliceOp.getMixedStrides());
rewriter.eraseOp(extractSliceOp);
return success();
}
};
} // namespace
void mlir::tensor::populateMergeConsecutiveInsertExtractSlicePatterns(
RewritePatternSet &patterns) {
patterns.add<MergeConsecutiveExtractSlice,
MergeConsecutiveInsertSlice<InsertSliceOp>,
MergeConsecutiveInsertSlice<ParallelInsertSliceOp>>(
patterns.getContext());
}
void mlir::tensor::populateDropRedundantInsertSliceRankExpansionPatterns(
RewritePatternSet &patterns) {
patterns.add<DropRedundantRankExpansionOnExtractSliceOfInsertSlice,
DropRedundantRankExpansionOnInsertSliceOfExtractSlice>(
patterns.getContext());
}