blob: a9c7bf8e8b3279455747e3de3001ffa6192b85af [file] [log] [blame]
// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s
// CHECK-DAG: #[[$map_p4:.*]] = affine_map<()[s0] -> (s0 + 4)>
// CHECK-DAG: #[[$map_p8:.*]] = affine_map<()[s0] -> (s0 + 8)>
// CHECK-LABEL: split_vector_transfer_read_2d(
// CHECK-SAME: %[[A:[a-zA-Z0-9_]*]]: memref
// CHECK-SAME: %[[i:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[j:[a-zA-Z0-9_]*]]: index
func.func @split_vector_transfer_read_2d(%A: memref<?x8xf32>, %i: index, %j: index) -> vector<4x8xf32> {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// CHECK-DAG: %[[c8:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// alloca for boundary full tile
// CHECK: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
// %i + 4 <= dim(%A, 0)
// CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
// CHECK: %[[d0:.*]] = memref.dim %[[A]], %[[c0]] : memref<?x8xf32>
// CHECK: %[[cmp0:.*]] = arith.cmpi sle, %[[idx0]], %[[d0]] : index
// %j + 8 <= dim(%A, 1)
// CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
// CHECK: %[[cmp1:.*]] = arith.cmpi sle, %[[idx1]], %[[c8]] : index
// are both conds true
// CHECK: %[[cond:.*]] = arith.andi %[[cmp0]], %[[cmp1]] : i1
// CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32>, index, index) {
// inBounds, just yield %A
// CHECK: scf.yield %[[A]], %[[i]], %[[j]] : memref<?x8xf32>, index, index
// CHECK: } else {
// slow path, fill tmp alloc and yield a memref_casted version of it
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
// CHECK-SAME: memref<?x8xf32>, vector<4x8xf32>
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
// CHECK: store %[[slow]], %[[cast_alloc]][] : memref<vector<4x8xf32>>
// CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] :
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32>
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
// CHECK-SAME: memref<?x8xf32>, index, index
// CHECK: }
// CHECK: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %cst
// CHECK-SAME: {in_bounds = [true, true]} : memref<?x8xf32>, vector<4x8xf32>
%1 = vector.transfer_read %A[%i, %j], %f0 : memref<?x8xf32>, vector<4x8xf32>
return %1: vector<4x8xf32>
}
// CHECK-LABEL: split_vector_transfer_read_strided_2d(
// CHECK-SAME: %[[A:[a-zA-Z0-9_]*]]: memref
// CHECK-SAME: %[[i:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[j:[a-zA-Z0-9_]*]]: index
func.func @split_vector_transfer_read_strided_2d(
%A: memref<7x8xf32, strided<[?, 1], offset: ?>>,
%i: index, %j: index) -> vector<4x8xf32> {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// CHECK-DAG: %[[c7:.*]] = arith.constant 7 : index
// CHECK-DAG: %[[c8:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// alloca for boundary full tile
// CHECK: %[[alloc:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
// %i + 4 <= dim(%A, 0)
// CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
// CHECK: %[[cmp0:.*]] = arith.cmpi sle, %[[idx0]], %[[c7]] : index
// %j + 8 <= dim(%A, 1)
// CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
// CHECK: %[[cmp1:.*]] = arith.cmpi sle, %[[idx1]], %[[c8]] : index
// are both conds true
// CHECK: %[[cond:.*]] = arith.andi %[[cmp0]], %[[cmp1]] : i1
// CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32, strided<[?, 1], offset: ?>>, index, index) {
// inBounds but not cast-compatible: yield a memref_casted form of %A
// CHECK: %[[casted:.*]] = memref.cast %arg0 :
// CHECK-SAME: memref<7x8xf32, strided<[?, 1], offset: ?>> to memref<?x8xf32, strided<[?, 1], offset: ?>>
// CHECK: scf.yield %[[casted]], %[[i]], %[[j]] :
// CHECK-SAME: memref<?x8xf32, strided<[?, 1], offset: ?>>, index, index
// CHECK: } else {
// slow path, fill tmp alloc and yield a memref_casted version of it
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
// CHECK-SAME: memref<7x8xf32, strided<[?, 1], offset: ?>>, vector<4x8xf32>
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
// CHECK: store %[[slow]], %[[cast_alloc]][] :
// CHECK-SAME: memref<vector<4x8xf32>>
// CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] :
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32, strided<[?, 1], offset: ?>>
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
// CHECK-SAME: memref<?x8xf32, strided<[?, 1], offset: ?>>, index, index
// CHECK: }
// CHECK: %[[res:.*]] = vector.transfer_read {{.*}} {in_bounds = [true, true]} :
// CHECK-SAME: memref<?x8xf32, strided<[?, 1], offset: ?>>, vector<4x8xf32>
%1 = vector.transfer_read %A[%i, %j], %f0 :
memref<7x8xf32, strided<[?, 1], offset: ?>>, vector<4x8xf32>
// CHECK: return %[[res]] : vector<4x8xf32>
return %1 : vector<4x8xf32>
}
func.func @split_vector_transfer_read_mem_space(%A: memref<?x8xf32, 3>, %i: index, %j: index) -> vector<4x8xf32> {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// CHECK: scf.if {{.*}} -> (memref<?x8xf32, strided<[8, 1]>>, index, index) {
// inBounds with a different memory space
// CHECK: %[[space_cast:.*]] = memref.memory_space_cast %{{.*}} :
// CHECK-SAME: memref<?x8xf32, 3> to memref<?x8xf32>
// CHECK: %[[cast:.*]] = memref.cast %[[space_cast]] :
// CHECK-SAME: memref<?x8xf32> to memref<?x8xf32, strided<[8, 1]>>
// CHECK: scf.yield %[[cast]], {{.*}} : memref<?x8xf32, strided<[8, 1]>>, index, index
// CHECK: } else {
// slow path, fill tmp alloc and yield a memref_casted version of it
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
// CHECK-SAME: memref<?x8xf32, 3>, vector<4x8xf32>
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
// CHECK: store %[[slow]], %[[cast_alloc]][] : memref<vector<4x8xf32>>
// CHECK: %[[yielded:.*]] = memref.cast %[[alloc]] :
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32, strided<[8, 1]>>
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
// CHECK-SAME: memref<?x8xf32, strided<[8, 1]>>, index, index
// CHECK: }
// CHECK: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %cst
// CHECK-SAME: {in_bounds = [true, true]} : memref<?x8xf32, strided<[8, 1]>>, vector<4x8xf32>
%1 = vector.transfer_read %A[%i, %j], %f0 : memref<?x8xf32, 3>, vector<4x8xf32>
return %1: vector<4x8xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%root : !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer"
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func @split_vector_transfer_write_2d(%V: vector<4x8xf32>, %A: memref<?x8xf32>, %i: index, %j: index) {
vector.transfer_write %V, %A[%i, %j] :
vector<4x8xf32>, memref<?x8xf32>
return
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 4)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 8)>
// CHECK: func @split_vector_transfer_write_2d(
// CHECK-SAME: %[[VEC:.*]]: vector<4x8xf32>,
// CHECK-SAME: %[[DEST:.*]]: memref<?x8xf32>,
// CHECK-SAME: %[[I:.*]]: index,
// CHECK-SAME: %[[J:.*]]: index) {
// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CT:.*]] = arith.constant true
// CHECK: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
// CHECK: %[[VAL_8:.*]] = affine.apply #[[MAP0]]()[%[[I]]]
// CHECK: %[[DIM0:.*]] = memref.dim %[[DEST]], %[[C0]] : memref<?x8xf32>
// CHECK: %[[DIM0_IN:.*]] = arith.cmpi sle, %[[VAL_8]], %[[DIM0]] : index
// CHECK: %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[J]]]
// CHECK: %[[DIM1_IN:.*]] = arith.cmpi sle, %[[DIM1]], %[[C8]] : index
// CHECK: %[[IN_BOUNDS:.*]] = arith.andi %[[DIM0_IN]], %[[DIM1_IN]] : i1
// CHECK: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]] ->
// CHECK-SAME: (memref<?x8xf32>, index, index) {
// CHECK: scf.yield %[[DEST]], %[[I]], %[[J]] : memref<?x8xf32>, index, index
// CHECK: } else {
// CHECK: %[[VAL_15:.*]] = memref.cast %[[TEMP]]
// CHECK-SAME: : memref<4x8xf32> to memref<?x8xf32>
// CHECK: scf.yield %[[VAL_15]], %[[C0]], %[[C0]]
// CHECK-SAME: : memref<?x8xf32>, index, index
// CHECK: }
// CHECK: vector.transfer_write %[[VEC]],
// CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0[%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
// CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref<?x8xf32>
// CHECK: %[[OUT_BOUNDS:.*]] = arith.xori %[[IN_BOUNDS]], %[[CT]] : i1
// CHECK: scf.if %[[OUT_BOUNDS]] {
// CHECK: %[[CASTED:.*]] = vector.type_cast %[[TEMP]]
// CHECK-SAME: : memref<4x8xf32> to memref<vector<4x8xf32>>
// CHECK: %[[RESULT_COPY:.*]] = memref.load %[[CASTED]][]
// CHECK-SAME: : memref<vector<4x8xf32>>
// CHECK: vector.transfer_write %[[RESULT_COPY]],
// CHECK-SAME: %[[DEST]][%[[I]], %[[J]]]
// CHECK-SAME: : vector<4x8xf32>, memref<?x8xf32>
// CHECK: }
// CHECK: return
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%root : !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer"
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func @split_vector_transfer_write_strided_2d(
%V: vector<4x8xf32>, %A: memref<7x8xf32, strided<[?, 1], offset: ?>>,
%i: index, %j: index) {
vector.transfer_write %V, %A[%i, %j] :
vector<4x8xf32>, memref<7x8xf32, strided<[?, 1], offset: ?>>
return
}
// CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 4)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<()[s0] -> (s0 + 8)>
// CHECK: func @split_vector_transfer_write_strided_2d(
// CHECK-SAME: %[[VEC:.*]]: vector<4x8xf32>,
// CHECK-SAME: %[[DEST:.*]]: memref<7x8xf32, strided<[?, 1], offset: ?>>,
// CHECK-SAME: %[[I:.*]]: index,
// CHECK-SAME: %[[J:.*]]: index) {
// CHECK-DAG: %[[C7:.*]] = arith.constant 7 : index
// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CT:.*]] = arith.constant true
// CHECK: %[[TEMP:.*]] = memref.alloca() {alignment = 32 : i64} : memref<4x8xf32>
// CHECK: %[[DIM0:.*]] = affine.apply #[[MAP1]]()[%[[I]]]
// CHECK: %[[DIM0_IN:.*]] = arith.cmpi sle, %[[DIM0]], %[[C7]] : index
// CHECK: %[[DIM1:.*]] = affine.apply #[[MAP2]]()[%[[J]]]
// CHECK: %[[DIM1_IN:.*]] = arith.cmpi sle, %[[DIM1]], %[[C8]] : index
// CHECK: %[[IN_BOUNDS:.*]] = arith.andi %[[DIM0_IN]], %[[DIM1_IN]] : i1
// CHECK: %[[IN_BOUND_DEST:.*]]:3 = scf.if %[[IN_BOUNDS]]
// CHECK-SAME: -> (memref<?x8xf32, strided<[?, 1], offset: ?>>, index, index) {
// CHECK: %[[VAL_15:.*]] = memref.cast %[[DEST]]
// CHECK-SAME: : memref<7x8xf32, strided<[?, 1], offset: ?>> to memref<?x8xf32, strided<[?, 1], offset: ?>>
// CHECK: scf.yield %[[VAL_15]], %[[I]], %[[J]]
// CHECK-SAME: : memref<?x8xf32, strided<[?, 1], offset: ?>>, index, index
// CHECK: } else {
// CHECK: %[[VAL_16:.*]] = memref.cast %[[TEMP]]
// CHECK-SAME: : memref<4x8xf32> to memref<?x8xf32, strided<[?, 1], offset: ?>>
// CHECK: scf.yield %[[VAL_16]], %[[C0]], %[[C0]]
// CHECK-SAME: : memref<?x8xf32, strided<[?, 1], offset: ?>>, index, index
// CHECK: }
// CHECK: vector.transfer_write %[[VEC]],
// CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0
// CHECK-SAME: [%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
// CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref<?x8xf32, strided<[?, 1], offset: ?>>
// CHECK: %[[OUT_BOUNDS:.*]] = arith.xori %[[IN_BOUNDS]], %[[CT]] : i1
// CHECK: scf.if %[[OUT_BOUNDS]] {
// CHECK: %[[VAL_19:.*]] = vector.type_cast %[[TEMP]]
// CHECK-SAME: : memref<4x8xf32> to memref<vector<4x8xf32>>
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_19]][]
// CHECK-SAME: : memref<vector<4x8xf32>>
// CHECK: vector.transfer_write %[[VAL_20]], %[[DEST]][%[[I]], %[[J]]]
// CHECK-SAME: : vector<4x8xf32>, memref<7x8xf32, strided<[?, 1], offset: ?>>
// CHECK: }
// CHECK: return
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%root : !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer"
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func @split_vector_transfer_write_mem_space(%V: vector<4x8xf32>, %A: memref<?x8xf32, 3>, %i: index, %j: index) {
vector.transfer_write %V, %A[%i, %j] :
vector<4x8xf32>, memref<?x8xf32, 3>
return
}
// CHECK: func @split_vector_transfer_write_mem_space(
// CHECK: scf.if {{.*}} -> (memref<?x8xf32, strided<[8, 1]>>, index, index) {
// CHECK: %[[space_cast:.*]] = memref.memory_space_cast %{{.*}} :
// CHECK-SAME: memref<?x8xf32, 3> to memref<?x8xf32>
// CHECK: %[[cast:.*]] = memref.cast %[[space_cast]] :
// CHECK-SAME: memref<?x8xf32> to memref<?x8xf32, strided<[8, 1]>>
// CHECK: scf.yield %[[cast]], {{.*}} : memref<?x8xf32, strided<[8, 1]>>, index, index
// CHECK: } else {
// CHECK: %[[VAL_15:.*]] = memref.cast %[[TEMP]]
// CHECK-SAME: : memref<4x8xf32> to memref<?x8xf32, strided<[8, 1]>>
// CHECK: scf.yield %[[VAL_15]], %[[C0]], %[[C0]]
// CHECK-SAME: : memref<?x8xf32, strided<[8, 1]>>, index, index
// CHECK: }
// CHECK: vector.transfer_write %[[VEC]],
// CHECK-SAME: %[[IN_BOUND_DEST:.*]]#0[%[[IN_BOUND_DEST]]#1, %[[IN_BOUND_DEST]]#2]
// CHECK-SAME: {in_bounds = [true, true]} : vector<4x8xf32>, memref<?x8xf32, strided<[8, 1]>>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%root : !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer"
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func private @fake_side_effecting_fun(%0: vector<2x2xf32>) -> ()
// CHECK-LABEL: transfer_read_within_async_execute
func.func @transfer_read_within_async_execute(%A : memref<?x?xf32>) -> !async.token {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// CHECK-NOT: alloca
// CHECK: async.execute
// CHECK: alloca
%token = async.execute {
%0 = vector.transfer_read %A[%c0, %c0], %f0 : memref<?x?xf32>, vector<2x2xf32>
func.call @fake_side_effecting_fun(%0) : (vector<2x2xf32>) -> ()
async.yield
}
return %token : !async.token
}
// Ensure that `alloca`s are inserted outside of loops even though loops are
// consdered allocation scopes.
// CHECK-LABEL: transfer_read_within_scf_for
func.func @transfer_read_within_scf_for(%A : memref<?x?xf32>, %lb : index, %ub : index, %step : index) {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// CHECK: memref.alloca
// CHECK: scf.for
// CHECK-NOT: memref.alloca
scf.for %i = %lb to %ub step %step {
%0 = vector.transfer_read %A[%c0, %c0], %f0 : memref<?x?xf32>, vector<2x2xf32>
func.call @fake_side_effecting_fun(%0) : (vector<2x2xf32>) -> ()
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%root : !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "vector-transfer"
} : !transform.op<"func.func">
transform.yield
}
}