blob: 55282e8334abd723ea484a189754fa992611f308 [file] [log] [blame]
// RUN: mlir-opt %s -test-affine-reify-value-bounds -verify-diagnostics \
// RUN: -split-input-file | FileCheck %s
// CHECK: #[[$map:.*]] = affine_map<()[s0, s1] -> (s0 + s1)>
// CHECK-LABEL: func @affine_apply(
// CHECK-SAME: %[[a:.*]]: index, %[[b:.*]]: index
// CHECK: %[[apply:.*]] = affine.apply #[[$map]]()[%[[a]], %[[b]]]
// CHECK: %[[apply:.*]] = affine.apply #[[$map]]()[%[[a]], %[[b]]]
// CHECK: return %[[apply]]
func.func @affine_apply(%a: index, %b: index) -> index {
%0 = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%a, %b]
%1 = "test.reify_bound"(%0) : (index) -> (index)
return %1 : index
}
// -----
// CHECK-LABEL: func @affine_max_lb(
// CHECK-SAME: %[[a:.*]]: index
// CHECK: %[[c2:.*]] = arith.constant 2 : index
// CHECK: return %[[c2]]
func.func @affine_max_lb(%a: index) -> (index) {
// Note: There are two LBs: s0 and 2. FlatAffineValueConstraints always
// returns the constant one at the moment.
%1 = affine.max affine_map<()[s0] -> (s0, 2)>()[%a]
%2 = "test.reify_bound"(%1) {type = "LB"}: (index) -> (index)
return %2 : index
}
// -----
func.func @affine_max_ub(%a: index) -> (index) {
%1 = affine.max affine_map<()[s0] -> (s0, 2)>()[%a]
// expected-error @below{{could not reify bound}}
%2 = "test.reify_bound"(%1) {type = "UB"}: (index) -> (index)
return %2 : index
}
// -----
// CHECK-LABEL: func @affine_min_ub(
// CHECK-SAME: %[[a:.*]]: index
// CHECK: %[[c3:.*]] = arith.constant 3 : index
// CHECK: return %[[c3]]
func.func @affine_min_ub(%a: index) -> (index) {
// Note: There are two UBs: s0 + 1 and 3. FlatAffineValueConstraints always
// returns the constant one at the moment.
%1 = affine.min affine_map<()[s0] -> (s0, 2)>()[%a]
%2 = "test.reify_bound"(%1) {type = "UB"}: (index) -> (index)
return %2 : index
}
// -----
func.func @affine_min_lb(%a: index) -> (index) {
%1 = affine.min affine_map<()[s0] -> (s0, 2)>()[%a]
// expected-error @below{{could not reify bound}}
%2 = "test.reify_bound"(%1) {type = "LB"}: (index) -> (index)
return %2 : index
}
// -----
// CHECK-LABEL: func @composed_affine_apply(
// CHECK: %[[cst:.*]] = arith.constant -8 : index
// CHECK: return %[[cst]]
func.func @composed_affine_apply(%i1 : index) -> (index) {
// The ValueBoundsOpInterface implementation of affine.apply fully composes
// the affine map (and its operands) with other affine.apply ops drawn from
// its operands before adding it to the constraint set. This is to work
// around a limitation in `FlatLinearConstraints`, which can currently not
// compute a constant bound for %s. (The affine map simplification logic can
// simplify %s to -8.)
%i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1)
%i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1)
%s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3]
%reified = "test.reify_constant_bound"(%s) {type = "EQ"} : (index) -> (index)
return %reified : index
}
// -----
// Test for affine::fullyComposeAndCheckIfEqual
func.func @composed_are_equal(%i1 : index) {
%i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1)
%i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1)
%s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3]
// expected-remark @below{{different}}
"test.are_equal"(%i2, %i3) {compose} : (index, index) -> ()
return
}