blob: f8101aba5c6277ffd0eb994b071b06b262dba34a [file] [log] [blame]
//===-- DWARFASTParserClang.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <cstdlib>
#include "DWARFASTParser.h"
#include "DWARFASTParserClang.h"
#include "DWARFDebugInfo.h"
#include "DWARFDeclContext.h"
#include "DWARFDefines.h"
#include "SymbolFileDWARF.h"
#include "SymbolFileDWARFDebugMap.h"
#include "SymbolFileDWARFDwo.h"
#include "UniqueDWARFASTType.h"
#include "Plugins/ExpressionParser/Clang/ClangASTImporter.h"
#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
#include "Plugins/ExpressionParser/Clang/ClangUtil.h"
#include "Plugins/Language/ObjC/ObjCLanguage.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Value.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Symbol/TypeList.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Language.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Type.h"
#include "llvm/Demangle/Demangle.h"
#include <map>
#include <memory>
#include <optional>
#include <vector>
//#define ENABLE_DEBUG_PRINTF // COMMENT OUT THIS LINE PRIOR TO CHECKIN
#ifdef ENABLE_DEBUG_PRINTF
#include <cstdio>
#define DEBUG_PRINTF(fmt, ...) printf(fmt, __VA_ARGS__)
#else
#define DEBUG_PRINTF(fmt, ...)
#endif
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::dwarf;
using namespace lldb_private::plugin::dwarf;
DWARFASTParserClang::DWARFASTParserClang(TypeSystemClang &ast)
: DWARFASTParser(Kind::DWARFASTParserClang), m_ast(ast),
m_die_to_decl_ctx(), m_decl_ctx_to_die() {}
DWARFASTParserClang::~DWARFASTParserClang() = default;
static bool DeclKindIsCXXClass(clang::Decl::Kind decl_kind) {
switch (decl_kind) {
case clang::Decl::CXXRecord:
case clang::Decl::ClassTemplateSpecialization:
return true;
default:
break;
}
return false;
}
ClangASTImporter &DWARFASTParserClang::GetClangASTImporter() {
if (!m_clang_ast_importer_up) {
m_clang_ast_importer_up = std::make_unique<ClangASTImporter>();
}
return *m_clang_ast_importer_up;
}
/// Detect a forward declaration that is nested in a DW_TAG_module.
static bool IsClangModuleFwdDecl(const DWARFDIE &Die) {
if (!Die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0))
return false;
auto Parent = Die.GetParent();
while (Parent.IsValid()) {
if (Parent.Tag() == DW_TAG_module)
return true;
Parent = Parent.GetParent();
}
return false;
}
static DWARFDIE GetContainingClangModuleDIE(const DWARFDIE &die) {
if (die.IsValid()) {
DWARFDIE top_module_die;
// Now make sure this DIE is scoped in a DW_TAG_module tag and return true
// if so
for (DWARFDIE parent = die.GetParent(); parent.IsValid();
parent = parent.GetParent()) {
const dw_tag_t tag = parent.Tag();
if (tag == DW_TAG_module)
top_module_die = parent;
else if (tag == DW_TAG_compile_unit || tag == DW_TAG_partial_unit)
break;
}
return top_module_die;
}
return DWARFDIE();
}
static lldb::ModuleSP GetContainingClangModule(const DWARFDIE &die) {
if (die.IsValid()) {
DWARFDIE clang_module_die = GetContainingClangModuleDIE(die);
if (clang_module_die) {
const char *module_name = clang_module_die.GetName();
if (module_name)
return die.GetDWARF()->GetExternalModule(
lldb_private::ConstString(module_name));
}
}
return lldb::ModuleSP();
}
// Returns true if the given artificial field name should be ignored when
// parsing the DWARF.
static bool ShouldIgnoreArtificialField(llvm::StringRef FieldName) {
return FieldName.starts_with("_vptr$")
// gdb emit vtable pointer as "_vptr.classname"
|| FieldName.starts_with("_vptr.");
}
/// Returns true for C++ constructs represented by clang::CXXRecordDecl
static bool TagIsRecordType(dw_tag_t tag) {
switch (tag) {
case DW_TAG_class_type:
case DW_TAG_structure_type:
case DW_TAG_union_type:
return true;
default:
return false;
}
}
TypeSP DWARFASTParserClang::ParseTypeFromClangModule(const SymbolContext &sc,
const DWARFDIE &die,
Log *log) {
ModuleSP clang_module_sp = GetContainingClangModule(die);
if (!clang_module_sp)
return TypeSP();
// If this type comes from a Clang module, recursively look in the
// DWARF section of the .pcm file in the module cache. Clang
// generates DWO skeleton units as breadcrumbs to find them.
std::vector<lldb_private::CompilerContext> die_context = die.GetDeclContext();
TypeQuery query(die_context, TypeQueryOptions::e_module_search |
TypeQueryOptions::e_find_one);
TypeResults results;
// The type in the Clang module must have the same language as the current CU.
query.AddLanguage(SymbolFileDWARF::GetLanguageFamily(*die.GetCU()));
clang_module_sp->FindTypes(query, results);
TypeSP pcm_type_sp = results.GetTypeMap().FirstType();
if (!pcm_type_sp) {
// Since this type is defined in one of the Clang modules imported
// by this symbol file, search all of them. Instead of calling
// sym_file->FindTypes(), which would return this again, go straight
// to the imported modules.
auto &sym_file = die.GetCU()->GetSymbolFileDWARF();
// Well-formed clang modules never form cycles; guard against corrupted
// ones by inserting the current file.
results.AlreadySearched(&sym_file);
sym_file.ForEachExternalModule(
*sc.comp_unit, results.GetSearchedSymbolFiles(), [&](Module &module) {
module.FindTypes(query, results);
pcm_type_sp = results.GetTypeMap().FirstType();
return (bool)pcm_type_sp;
});
}
if (!pcm_type_sp)
return TypeSP();
// We found a real definition for this type in the Clang module, so lets use
// it and cache the fact that we found a complete type for this die.
lldb_private::CompilerType pcm_type = pcm_type_sp->GetForwardCompilerType();
lldb_private::CompilerType type =
GetClangASTImporter().CopyType(m_ast, pcm_type);
if (!type)
return TypeSP();
// Under normal operation pcm_type is a shallow forward declaration
// that gets completed later. This is necessary to support cyclic
// data structures. If, however, pcm_type is already complete (for
// example, because it was loaded for a different target before),
// the definition needs to be imported right away, too.
// Type::ResolveClangType() effectively ignores the ResolveState
// inside type_sp and only looks at IsDefined(), so it never calls
// ClangASTImporter::ASTImporterDelegate::ImportDefinitionTo(),
// which does extra work for Objective-C classes. This would result
// in only the forward declaration to be visible.
if (pcm_type.IsDefined())
GetClangASTImporter().RequireCompleteType(ClangUtil::GetQualType(type));
SymbolFileDWARF *dwarf = die.GetDWARF();
auto type_sp = dwarf->MakeType(
die.GetID(), pcm_type_sp->GetName(), pcm_type_sp->GetByteSize(nullptr),
nullptr, LLDB_INVALID_UID, Type::eEncodingInvalid,
&pcm_type_sp->GetDeclaration(), type, Type::ResolveState::Forward,
TypePayloadClang(GetOwningClangModule(die)));
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
clang::TagDecl *tag_decl = TypeSystemClang::GetAsTagDecl(type);
if (tag_decl) {
LinkDeclContextToDIE(tag_decl, die);
} else {
clang::DeclContext *defn_decl_ctx = GetCachedClangDeclContextForDIE(die);
if (defn_decl_ctx)
LinkDeclContextToDIE(defn_decl_ctx, die);
}
return type_sp;
}
static void ForcefullyCompleteType(CompilerType type) {
bool started = TypeSystemClang::StartTagDeclarationDefinition(type);
lldbassert(started && "Unable to start a class type definition.");
TypeSystemClang::CompleteTagDeclarationDefinition(type);
const clang::TagDecl *td = ClangUtil::GetAsTagDecl(type);
auto ts_sp = type.GetTypeSystem();
auto ts = ts_sp.dyn_cast_or_null<TypeSystemClang>();
if (ts)
ts->SetDeclIsForcefullyCompleted(td);
}
/// This function serves a similar purpose as RequireCompleteType above, but it
/// avoids completing the type if it is not immediately necessary. It only
/// ensures we _can_ complete the type later.
static void PrepareContextToReceiveMembers(TypeSystemClang &ast,
ClangASTImporter &ast_importer,
clang::DeclContext *decl_ctx,
DWARFDIE die,
const char *type_name_cstr) {
auto *tag_decl_ctx = clang::dyn_cast<clang::TagDecl>(decl_ctx);
if (!tag_decl_ctx)
return; // Non-tag context are always ready.
// We have already completed the type, or we have found its definition and are
// ready to complete it later (cf. ParseStructureLikeDIE).
if (tag_decl_ctx->isCompleteDefinition() || tag_decl_ctx->isBeingDefined())
return;
// We reach this point of the tag was present in the debug info as a
// declaration only. If it was imported from another AST context (in the
// gmodules case), we can complete the type by doing a full import.
// If this type was not imported from an external AST, there's nothing to do.
CompilerType type = ast.GetTypeForDecl(tag_decl_ctx);
if (type && ast_importer.CanImport(type)) {
auto qual_type = ClangUtil::GetQualType(type);
if (ast_importer.RequireCompleteType(qual_type))
return;
die.GetDWARF()->GetObjectFile()->GetModule()->ReportError(
"Unable to complete the Decl context for DIE {0} at offset "
"{1:x16}.\nPlease file a bug report.",
type_name_cstr ? type_name_cstr : "", die.GetOffset());
}
// We don't have a type definition and/or the import failed. We must
// forcefully complete the type to avoid crashes.
ForcefullyCompleteType(type);
}
ParsedDWARFTypeAttributes::ParsedDWARFTypeAttributes(const DWARFDIE &die) {
DWARFAttributes attributes = die.GetAttributes();
for (size_t i = 0; i < attributes.Size(); ++i) {
dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (!attributes.ExtractFormValueAtIndex(i, form_value))
continue;
switch (attr) {
default:
break;
case DW_AT_abstract_origin:
abstract_origin = form_value;
break;
case DW_AT_accessibility:
accessibility =
DWARFASTParser::GetAccessTypeFromDWARF(form_value.Unsigned());
break;
case DW_AT_artificial:
is_artificial = form_value.Boolean();
break;
case DW_AT_bit_stride:
bit_stride = form_value.Unsigned();
break;
case DW_AT_byte_size:
byte_size = form_value.Unsigned();
break;
case DW_AT_alignment:
alignment = form_value.Unsigned();
break;
case DW_AT_byte_stride:
byte_stride = form_value.Unsigned();
break;
case DW_AT_calling_convention:
calling_convention = form_value.Unsigned();
break;
case DW_AT_containing_type:
containing_type = form_value;
break;
case DW_AT_decl_file:
// die.GetCU() can differ if DW_AT_specification uses DW_FORM_ref_addr.
decl.SetFile(
attributes.CompileUnitAtIndex(i)->GetFile(form_value.Unsigned()));
break;
case DW_AT_decl_line:
decl.SetLine(form_value.Unsigned());
break;
case DW_AT_decl_column:
decl.SetColumn(form_value.Unsigned());
break;
case DW_AT_declaration:
is_forward_declaration = form_value.Boolean();
break;
case DW_AT_encoding:
encoding = form_value.Unsigned();
break;
case DW_AT_enum_class:
is_scoped_enum = form_value.Boolean();
break;
case DW_AT_explicit:
is_explicit = form_value.Boolean();
break;
case DW_AT_external:
if (form_value.Unsigned())
storage = clang::SC_Extern;
break;
case DW_AT_inline:
is_inline = form_value.Boolean();
break;
case DW_AT_linkage_name:
case DW_AT_MIPS_linkage_name:
mangled_name = form_value.AsCString();
break;
case DW_AT_name:
name.SetCString(form_value.AsCString());
break;
case DW_AT_object_pointer:
object_pointer = form_value.Reference();
break;
case DW_AT_signature:
signature = form_value;
break;
case DW_AT_specification:
specification = form_value;
break;
case DW_AT_type:
type = form_value;
break;
case DW_AT_virtuality:
is_virtual = form_value.Boolean();
break;
case DW_AT_APPLE_objc_complete_type:
is_complete_objc_class = form_value.Signed();
break;
case DW_AT_APPLE_objc_direct:
is_objc_direct_call = true;
break;
case DW_AT_APPLE_runtime_class:
class_language = (LanguageType)form_value.Signed();
break;
case DW_AT_GNU_vector:
is_vector = form_value.Boolean();
break;
case DW_AT_export_symbols:
exports_symbols = form_value.Boolean();
break;
case DW_AT_rvalue_reference:
ref_qual = clang::RQ_RValue;
break;
case DW_AT_reference:
ref_qual = clang::RQ_LValue;
break;
}
}
}
static std::string GetUnitName(const DWARFDIE &die) {
if (DWARFUnit *unit = die.GetCU())
return unit->GetAbsolutePath().GetPath();
return "<missing DWARF unit path>";
}
TypeSP DWARFASTParserClang::ParseTypeFromDWARF(const SymbolContext &sc,
const DWARFDIE &die,
bool *type_is_new_ptr) {
if (type_is_new_ptr)
*type_is_new_ptr = false;
if (!die)
return nullptr;
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
SymbolFileDWARF *dwarf = die.GetDWARF();
if (log) {
DWARFDIE context_die;
clang::DeclContext *context =
GetClangDeclContextContainingDIE(die, &context_die);
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"DWARFASTParserClang::ParseTypeFromDWARF "
"(die = {0:x16}, decl_ctx = {1:p} (die "
"{2:x16})) {3} ({4}) name = '{5}')",
die.GetOffset(), static_cast<void *>(context), context_die.GetOffset(),
DW_TAG_value_to_name(die.Tag()), die.Tag(), die.GetName());
}
Type *type_ptr = dwarf->GetDIEToType().lookup(die.GetDIE());
if (type_ptr == DIE_IS_BEING_PARSED)
return nullptr;
if (type_ptr)
return type_ptr->shared_from_this();
// Set a bit that lets us know that we are currently parsing this
dwarf->GetDIEToType()[die.GetDIE()] = DIE_IS_BEING_PARSED;
ParsedDWARFTypeAttributes attrs(die);
if (DWARFDIE signature_die = attrs.signature.Reference()) {
if (TypeSP type_sp =
ParseTypeFromDWARF(sc, signature_die, type_is_new_ptr)) {
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
if (clang::DeclContext *decl_ctx =
GetCachedClangDeclContextForDIE(signature_die))
LinkDeclContextToDIE(decl_ctx, die);
return type_sp;
}
return nullptr;
}
if (type_is_new_ptr)
*type_is_new_ptr = true;
const dw_tag_t tag = die.Tag();
TypeSP type_sp;
switch (tag) {
case DW_TAG_typedef:
case DW_TAG_base_type:
case DW_TAG_pointer_type:
case DW_TAG_reference_type:
case DW_TAG_rvalue_reference_type:
case DW_TAG_const_type:
case DW_TAG_restrict_type:
case DW_TAG_volatile_type:
case DW_TAG_LLVM_ptrauth_type:
case DW_TAG_atomic_type:
case DW_TAG_unspecified_type: {
type_sp = ParseTypeModifier(sc, die, attrs);
break;
}
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type: {
type_sp = ParseStructureLikeDIE(sc, die, attrs);
break;
}
case DW_TAG_enumeration_type: {
type_sp = ParseEnum(sc, die, attrs);
break;
}
case DW_TAG_inlined_subroutine:
case DW_TAG_subprogram:
case DW_TAG_subroutine_type: {
type_sp = ParseSubroutine(die, attrs);
break;
}
case DW_TAG_array_type: {
type_sp = ParseArrayType(die, attrs);
break;
}
case DW_TAG_ptr_to_member_type: {
type_sp = ParsePointerToMemberType(die, attrs);
break;
}
default:
dwarf->GetObjectFile()->GetModule()->ReportError(
"[{0:x16}]: unhandled type tag {1:x4} ({2}), "
"please file a bug and "
"attach the file at the start of this error message",
die.GetOffset(), tag, DW_TAG_value_to_name(tag));
break;
}
// TODO: We should consider making the switch above exhaustive to simplify
// control flow in ParseTypeFromDWARF. Then, we could simply replace this
// return statement with a call to llvm_unreachable.
return UpdateSymbolContextScopeForType(sc, die, type_sp);
}
static std::optional<uint32_t>
ExtractDataMemberLocation(DWARFDIE const &die, DWARFFormValue const &form_value,
ModuleSP module_sp) {
// With DWARF 3 and later, if the value is an integer constant,
// this form value is the offset in bytes from the beginning of
// the containing entity.
if (!form_value.BlockData())
return form_value.Unsigned();
Value initialValue(0);
Value memberOffset(0);
const DWARFDataExtractor &debug_info_data = die.GetData();
uint32_t block_length = form_value.Unsigned();
uint32_t block_offset =
form_value.BlockData() - debug_info_data.GetDataStart();
if (!DWARFExpression::Evaluate(
nullptr, // ExecutionContext *
nullptr, // RegisterContext *
module_sp, DataExtractor(debug_info_data, block_offset, block_length),
die.GetCU(), eRegisterKindDWARF, &initialValue, nullptr, memberOffset,
nullptr)) {
return {};
}
return memberOffset.ResolveValue(nullptr).UInt();
}
static TypePayloadClang GetPtrAuthMofidierPayload(const DWARFDIE &die) {
auto getAttr = [&](llvm::dwarf::Attribute Attr, unsigned defaultValue = 0) {
return die.GetAttributeValueAsUnsigned(Attr, defaultValue);
};
const unsigned key = getAttr(DW_AT_LLVM_ptrauth_key);
const bool addr_disc = getAttr(DW_AT_LLVM_ptrauth_address_discriminated);
const unsigned extra = getAttr(DW_AT_LLVM_ptrauth_extra_discriminator);
const bool isapointer = getAttr(DW_AT_LLVM_ptrauth_isa_pointer);
const bool authenticates_null_values =
getAttr(DW_AT_LLVM_ptrauth_authenticates_null_values);
const unsigned authentication_mode_int = getAttr(
DW_AT_LLVM_ptrauth_authentication_mode,
static_cast<unsigned>(clang::PointerAuthenticationMode::SignAndAuth));
clang::PointerAuthenticationMode authentication_mode =
clang::PointerAuthenticationMode::SignAndAuth;
if (authentication_mode_int >=
static_cast<unsigned>(clang::PointerAuthenticationMode::None) &&
authentication_mode_int <=
static_cast<unsigned>(
clang::PointerAuthenticationMode::SignAndAuth)) {
authentication_mode =
static_cast<clang::PointerAuthenticationMode>(authentication_mode_int);
} else {
die.GetDWARF()->GetObjectFile()->GetModule()->ReportError(
"[{0:x16}]: invalid pointer authentication mode method {1:x4}",
die.GetOffset(), authentication_mode_int);
}
auto ptr_auth = clang::PointerAuthQualifier::Create(
key, addr_disc, extra, authentication_mode, isapointer,
authenticates_null_values);
return TypePayloadClang(ptr_auth.getAsOpaqueValue());
}
lldb::TypeSP
DWARFASTParserClang::ParseTypeModifier(const SymbolContext &sc,
const DWARFDIE &die,
ParsedDWARFTypeAttributes &attrs) {
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
SymbolFileDWARF *dwarf = die.GetDWARF();
const dw_tag_t tag = die.Tag();
LanguageType cu_language = SymbolFileDWARF::GetLanguage(*die.GetCU());
Type::ResolveState resolve_state = Type::ResolveState::Unresolved;
Type::EncodingDataType encoding_data_type = Type::eEncodingIsUID;
TypePayloadClang payload(GetOwningClangModule(die));
TypeSP type_sp;
CompilerType clang_type;
if (tag == DW_TAG_typedef) {
// DeclContext will be populated when the clang type is materialized in
// Type::ResolveCompilerType.
PrepareContextToReceiveMembers(
m_ast, GetClangASTImporter(),
GetClangDeclContextContainingDIE(die, nullptr), die,
attrs.name.GetCString());
if (attrs.type.IsValid()) {
// Try to parse a typedef from the (DWARF embedded in the) Clang
// module file first as modules can contain typedef'ed
// structures that have no names like:
//
// typedef struct { int a; } Foo;
//
// In this case we will have a structure with no name and a
// typedef named "Foo" that points to this unnamed
// structure. The name in the typedef is the only identifier for
// the struct, so always try to get typedefs from Clang modules
// if possible.
//
// The type_sp returned will be empty if the typedef doesn't
// exist in a module file, so it is cheap to call this function
// just to check.
//
// If we don't do this we end up creating a TypeSP that says
// this is a typedef to type 0x123 (the DW_AT_type value would
// be 0x123 in the DW_TAG_typedef), and this is the unnamed
// structure type. We will have a hard time tracking down an
// unnammed structure type in the module debug info, so we make
// sure we don't get into this situation by always resolving
// typedefs from the module.
const DWARFDIE encoding_die = attrs.type.Reference();
// First make sure that the die that this is typedef'ed to _is_
// just a declaration (DW_AT_declaration == 1), not a full
// definition since template types can't be represented in
// modules since only concrete instances of templates are ever
// emitted and modules won't contain those
if (encoding_die &&
encoding_die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0) == 1) {
type_sp = ParseTypeFromClangModule(sc, die, log);
if (type_sp)
return type_sp;
}
}
}
DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\") type => 0x%8.8lx\n", die.GetID(),
DW_TAG_value_to_name(tag), type_name_cstr,
encoding_uid.Reference());
switch (tag) {
default:
break;
case DW_TAG_unspecified_type:
if (attrs.name == "nullptr_t" || attrs.name == "decltype(nullptr)") {
resolve_state = Type::ResolveState::Full;
clang_type = m_ast.GetBasicType(eBasicTypeNullPtr);
break;
}
// Fall through to base type below in case we can handle the type
// there...
[[fallthrough]];
case DW_TAG_base_type:
resolve_state = Type::ResolveState::Full;
clang_type = m_ast.GetBuiltinTypeForDWARFEncodingAndBitSize(
attrs.name.GetStringRef(), attrs.encoding,
attrs.byte_size.value_or(0) * 8);
break;
case DW_TAG_pointer_type:
encoding_data_type = Type::eEncodingIsPointerUID;
break;
case DW_TAG_reference_type:
encoding_data_type = Type::eEncodingIsLValueReferenceUID;
break;
case DW_TAG_rvalue_reference_type:
encoding_data_type = Type::eEncodingIsRValueReferenceUID;
break;
case DW_TAG_typedef:
encoding_data_type = Type::eEncodingIsTypedefUID;
break;
case DW_TAG_const_type:
encoding_data_type = Type::eEncodingIsConstUID;
break;
case DW_TAG_restrict_type:
encoding_data_type = Type::eEncodingIsRestrictUID;
break;
case DW_TAG_volatile_type:
encoding_data_type = Type::eEncodingIsVolatileUID;
break;
case DW_TAG_LLVM_ptrauth_type:
encoding_data_type = Type::eEncodingIsLLVMPtrAuthUID;
payload = GetPtrAuthMofidierPayload(die);
break;
case DW_TAG_atomic_type:
encoding_data_type = Type::eEncodingIsAtomicUID;
break;
}
if (!clang_type && (encoding_data_type == Type::eEncodingIsPointerUID ||
encoding_data_type == Type::eEncodingIsTypedefUID)) {
if (tag == DW_TAG_pointer_type) {
DWARFDIE target_die = die.GetReferencedDIE(DW_AT_type);
if (target_die.GetAttributeValueAsUnsigned(DW_AT_APPLE_block, 0)) {
// Blocks have a __FuncPtr inside them which is a pointer to a
// function of the proper type.
for (DWARFDIE child_die : target_die.children()) {
if (!strcmp(child_die.GetAttributeValueAsString(DW_AT_name, ""),
"__FuncPtr")) {
DWARFDIE function_pointer_type =
child_die.GetReferencedDIE(DW_AT_type);
if (function_pointer_type) {
DWARFDIE function_type =
function_pointer_type.GetReferencedDIE(DW_AT_type);
bool function_type_is_new_pointer;
TypeSP lldb_function_type_sp = ParseTypeFromDWARF(
sc, function_type, &function_type_is_new_pointer);
if (lldb_function_type_sp) {
clang_type = m_ast.CreateBlockPointerType(
lldb_function_type_sp->GetForwardCompilerType());
encoding_data_type = Type::eEncodingIsUID;
attrs.type.Clear();
resolve_state = Type::ResolveState::Full;
}
}
break;
}
}
}
}
if (cu_language == eLanguageTypeObjC ||
cu_language == eLanguageTypeObjC_plus_plus) {
if (attrs.name) {
if (attrs.name == "id") {
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' "
"is Objective-C 'id' built-in type.",
die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(),
die.GetName());
clang_type = m_ast.GetBasicType(eBasicTypeObjCID);
encoding_data_type = Type::eEncodingIsUID;
attrs.type.Clear();
resolve_state = Type::ResolveState::Full;
} else if (attrs.name == "Class") {
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' "
"is Objective-C 'Class' built-in type.",
die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(),
die.GetName());
clang_type = m_ast.GetBasicType(eBasicTypeObjCClass);
encoding_data_type = Type::eEncodingIsUID;
attrs.type.Clear();
resolve_state = Type::ResolveState::Full;
} else if (attrs.name == "SEL") {
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' "
"is Objective-C 'selector' built-in type.",
die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(),
die.GetName());
clang_type = m_ast.GetBasicType(eBasicTypeObjCSel);
encoding_data_type = Type::eEncodingIsUID;
attrs.type.Clear();
resolve_state = Type::ResolveState::Full;
}
} else if (encoding_data_type == Type::eEncodingIsPointerUID &&
attrs.type.IsValid()) {
// Clang sometimes erroneously emits id as objc_object*. In that
// case we fix up the type to "id".
const DWARFDIE encoding_die = attrs.type.Reference();
if (encoding_die && encoding_die.Tag() == DW_TAG_structure_type) {
llvm::StringRef struct_name = encoding_die.GetName();
if (struct_name == "objc_object") {
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF::ParseType (die = {0:x16}) {1} ({2}) '{3}' "
"is 'objc_object*', which we overrode to 'id'.",
die.GetOffset(), DW_TAG_value_to_name(die.Tag()), die.Tag(),
die.GetName());
clang_type = m_ast.GetBasicType(eBasicTypeObjCID);
encoding_data_type = Type::eEncodingIsUID;
attrs.type.Clear();
resolve_state = Type::ResolveState::Full;
}
}
}
}
}
type_sp = dwarf->MakeType(die.GetID(), attrs.name, attrs.byte_size, nullptr,
attrs.type.Reference().GetID(), encoding_data_type,
&attrs.decl, clang_type, resolve_state, payload);
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
return type_sp;
}
ConstString
DWARFASTParserClang::GetDIEClassTemplateParams(const DWARFDIE &die) {
if (llvm::StringRef(die.GetName()).contains("<"))
return ConstString();
TypeSystemClang::TemplateParameterInfos template_param_infos;
if (ParseTemplateParameterInfos(die, template_param_infos)) {
return ConstString(m_ast.PrintTemplateParams(template_param_infos));
}
return ConstString();
}
TypeSP DWARFASTParserClang::ParseEnum(const SymbolContext &sc,
const DWARFDIE &die,
ParsedDWARFTypeAttributes &attrs) {
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
SymbolFileDWARF *dwarf = die.GetDWARF();
const dw_tag_t tag = die.Tag();
TypeSP type_sp;
if (attrs.is_forward_declaration) {
type_sp = ParseTypeFromClangModule(sc, die, log);
if (type_sp)
return type_sp;
type_sp = dwarf->FindDefinitionTypeForDWARFDeclContext(die);
if (!type_sp) {
SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile();
if (debug_map_symfile) {
// We weren't able to find a full declaration in this DWARF,
// see if we have a declaration anywhere else...
type_sp = debug_map_symfile->FindDefinitionTypeForDWARFDeclContext(die);
}
}
if (type_sp) {
if (log) {
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF({0:p}) - {1:x16}}: {2} ({3}) type \"{4}\" is a "
"forward declaration, complete type is {5:x8}",
static_cast<void *>(this), die.GetOffset(),
DW_TAG_value_to_name(tag), tag, attrs.name.GetCString(),
type_sp->GetID());
}
// We found a real definition for this type elsewhere so lets use
// it and cache the fact that we found a complete type for this
// die
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
clang::DeclContext *defn_decl_ctx =
GetCachedClangDeclContextForDIE(dwarf->GetDIE(type_sp->GetID()));
if (defn_decl_ctx)
LinkDeclContextToDIE(defn_decl_ctx, die);
return type_sp;
}
}
DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(),
DW_TAG_value_to_name(tag), type_name_cstr);
CompilerType enumerator_clang_type;
if (attrs.type.IsValid()) {
Type *enumerator_type = dwarf->ResolveTypeUID(attrs.type.Reference(), true);
if (enumerator_type)
enumerator_clang_type = enumerator_type->GetFullCompilerType();
}
if (!enumerator_clang_type) {
if (attrs.byte_size) {
enumerator_clang_type = m_ast.GetBuiltinTypeForDWARFEncodingAndBitSize(
"", DW_ATE_signed, *attrs.byte_size * 8);
} else {
enumerator_clang_type = m_ast.GetBasicType(eBasicTypeInt);
}
}
CompilerType clang_type = m_ast.CreateEnumerationType(
attrs.name.GetStringRef(), GetClangDeclContextContainingDIE(die, nullptr),
GetOwningClangModule(die), attrs.decl, enumerator_clang_type,
attrs.is_scoped_enum);
LinkDeclContextToDIE(TypeSystemClang::GetDeclContextForType(clang_type), die);
type_sp =
dwarf->MakeType(die.GetID(), attrs.name, attrs.byte_size, nullptr,
attrs.type.Reference().GetID(), Type::eEncodingIsUID,
&attrs.decl, clang_type, Type::ResolveState::Forward,
TypePayloadClang(GetOwningClangModule(die)));
if (TypeSystemClang::StartTagDeclarationDefinition(clang_type)) {
if (die.HasChildren()) {
bool is_signed = false;
enumerator_clang_type.IsIntegerType(is_signed);
ParseChildEnumerators(clang_type, is_signed,
type_sp->GetByteSize(nullptr).value_or(0), die);
}
TypeSystemClang::CompleteTagDeclarationDefinition(clang_type);
} else {
dwarf->GetObjectFile()->GetModule()->ReportError(
"DWARF DIE at {0:x16} named \"{1}\" was not able to start its "
"definition.\nPlease file a bug and attach the file at the "
"start of this error message",
die.GetOffset(), attrs.name.GetCString());
}
return type_sp;
}
static clang::CallingConv
ConvertDWARFCallingConventionToClang(const ParsedDWARFTypeAttributes &attrs) {
switch (attrs.calling_convention) {
case llvm::dwarf::DW_CC_normal:
return clang::CC_C;
case llvm::dwarf::DW_CC_BORLAND_stdcall:
return clang::CC_X86StdCall;
case llvm::dwarf::DW_CC_BORLAND_msfastcall:
return clang::CC_X86FastCall;
case llvm::dwarf::DW_CC_LLVM_vectorcall:
return clang::CC_X86VectorCall;
case llvm::dwarf::DW_CC_BORLAND_pascal:
return clang::CC_X86Pascal;
case llvm::dwarf::DW_CC_LLVM_Win64:
return clang::CC_Win64;
case llvm::dwarf::DW_CC_LLVM_X86_64SysV:
return clang::CC_X86_64SysV;
case llvm::dwarf::DW_CC_LLVM_X86RegCall:
return clang::CC_X86RegCall;
default:
break;
}
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
LLDB_LOG(log, "Unsupported DW_AT_calling_convention value: {0}",
attrs.calling_convention);
// Use the default calling convention as a fallback.
return clang::CC_C;
}
TypeSP
DWARFASTParserClang::ParseSubroutine(const DWARFDIE &die,
const ParsedDWARFTypeAttributes &attrs) {
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
SymbolFileDWARF *dwarf = die.GetDWARF();
const dw_tag_t tag = die.Tag();
bool is_variadic = false;
bool is_static = false;
bool has_template_params = false;
unsigned type_quals = 0;
std::string object_pointer_name;
if (attrs.object_pointer) {
const char *object_pointer_name_cstr = attrs.object_pointer.GetName();
if (object_pointer_name_cstr)
object_pointer_name = object_pointer_name_cstr;
}
DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(),
DW_TAG_value_to_name(tag), type_name_cstr);
CompilerType return_clang_type;
Type *func_type = nullptr;
if (attrs.type.IsValid())
func_type = dwarf->ResolveTypeUID(attrs.type.Reference(), true);
if (func_type)
return_clang_type = func_type->GetForwardCompilerType();
else
return_clang_type = m_ast.GetBasicType(eBasicTypeVoid);
std::vector<CompilerType> function_param_types;
std::vector<clang::ParmVarDecl *> function_param_decls;
// Parse the function children for the parameters
DWARFDIE decl_ctx_die;
clang::DeclContext *containing_decl_ctx =
GetClangDeclContextContainingDIE(die, &decl_ctx_die);
const clang::Decl::Kind containing_decl_kind =
containing_decl_ctx->getDeclKind();
bool is_cxx_method = DeclKindIsCXXClass(containing_decl_kind);
// Start off static. This will be set to false in
// ParseChildParameters(...) if we find a "this" parameters as the
// first parameter
if (is_cxx_method) {
is_static = true;
}
if (die.HasChildren()) {
bool skip_artificial = true;
ParseChildParameters(containing_decl_ctx, die, skip_artificial, is_static,
is_variadic, has_template_params,
function_param_types, function_param_decls,
type_quals);
}
bool ignore_containing_context = false;
// Check for templatized class member functions. If we had any
// DW_TAG_template_type_parameter or DW_TAG_template_value_parameter
// the DW_TAG_subprogram DIE, then we can't let this become a method in
// a class. Why? Because templatized functions are only emitted if one
// of the templatized methods is used in the current compile unit and
// we will end up with classes that may or may not include these member
// functions and this means one class won't match another class
// definition and it affects our ability to use a class in the clang
// expression parser. So for the greater good, we currently must not
// allow any template member functions in a class definition.
if (is_cxx_method && has_template_params) {
ignore_containing_context = true;
is_cxx_method = false;
}
clang::CallingConv calling_convention =
ConvertDWARFCallingConventionToClang(attrs);
// clang_type will get the function prototype clang type after this
// call
CompilerType clang_type =
m_ast.CreateFunctionType(return_clang_type, function_param_types.data(),
function_param_types.size(), is_variadic,
type_quals, calling_convention, attrs.ref_qual);
if (attrs.name) {
bool type_handled = false;
if (tag == DW_TAG_subprogram || tag == DW_TAG_inlined_subroutine) {
std::optional<const ObjCLanguage::MethodName> objc_method =
ObjCLanguage::MethodName::Create(attrs.name.GetStringRef(), true);
if (objc_method) {
CompilerType class_opaque_type;
ConstString class_name(objc_method->GetClassName());
if (class_name) {
TypeSP complete_objc_class_type_sp(
dwarf->FindCompleteObjCDefinitionTypeForDIE(DWARFDIE(),
class_name, false));
if (complete_objc_class_type_sp) {
CompilerType type_clang_forward_type =
complete_objc_class_type_sp->GetForwardCompilerType();
if (TypeSystemClang::IsObjCObjectOrInterfaceType(
type_clang_forward_type))
class_opaque_type = type_clang_forward_type;
}
}
if (class_opaque_type) {
clang::ObjCMethodDecl *objc_method_decl =
m_ast.AddMethodToObjCObjectType(
class_opaque_type, attrs.name.GetCString(), clang_type,
attrs.is_artificial, is_variadic, attrs.is_objc_direct_call);
type_handled = objc_method_decl != nullptr;
if (type_handled) {
LinkDeclContextToDIE(objc_method_decl, die);
m_ast.SetMetadataAsUserID(objc_method_decl, die.GetID());
} else {
dwarf->GetObjectFile()->GetModule()->ReportError(
"[{0:x16}]: invalid Objective-C method {1:x4} ({2}), "
"please file a bug and attach the file at the start of "
"this error message",
die.GetOffset(), tag, DW_TAG_value_to_name(tag));
}
}
} else if (is_cxx_method) {
// Look at the parent of this DIE and see if it is a class or
// struct and see if this is actually a C++ method
Type *class_type = dwarf->ResolveType(decl_ctx_die);
if (class_type) {
if (class_type->GetID() != decl_ctx_die.GetID() ||
IsClangModuleFwdDecl(decl_ctx_die)) {
// We uniqued the parent class of this function to another
// class so we now need to associate all dies under
// "decl_ctx_die" to DIEs in the DIE for "class_type"...
DWARFDIE class_type_die = dwarf->GetDIE(class_type->GetID());
if (class_type_die) {
std::vector<DWARFDIE> failures;
CopyUniqueClassMethodTypes(decl_ctx_die, class_type_die,
class_type, failures);
// FIXME do something with these failures that's
// smarter than just dropping them on the ground.
// Unfortunately classes don't like having stuff added
// to them after their definitions are complete...
Type *type_ptr = dwarf->GetDIEToType()[die.GetDIE()];
if (type_ptr && type_ptr != DIE_IS_BEING_PARSED) {
return type_ptr->shared_from_this();
}
}
}
if (attrs.specification.IsValid()) {
// We have a specification which we are going to base our
// function prototype off of, so we need this type to be
// completed so that the m_die_to_decl_ctx for the method in
// the specification has a valid clang decl context.
class_type->GetForwardCompilerType();
// If we have a specification, then the function type should
// have been made with the specification and not with this
// die.
DWARFDIE spec_die = attrs.specification.Reference();
clang::DeclContext *spec_clang_decl_ctx =
GetClangDeclContextForDIE(spec_die);
if (spec_clang_decl_ctx) {
LinkDeclContextToDIE(spec_clang_decl_ctx, die);
} else {
dwarf->GetObjectFile()->GetModule()->ReportWarning(
"{0:x8}: DW_AT_specification({1:x16}"
") has no decl\n",
die.GetID(), spec_die.GetOffset());
}
type_handled = true;
} else if (attrs.abstract_origin.IsValid()) {
// We have a specification which we are going to base our
// function prototype off of, so we need this type to be
// completed so that the m_die_to_decl_ctx for the method in
// the abstract origin has a valid clang decl context.
class_type->GetForwardCompilerType();
DWARFDIE abs_die = attrs.abstract_origin.Reference();
clang::DeclContext *abs_clang_decl_ctx =
GetClangDeclContextForDIE(abs_die);
if (abs_clang_decl_ctx) {
LinkDeclContextToDIE(abs_clang_decl_ctx, die);
} else {
dwarf->GetObjectFile()->GetModule()->ReportWarning(
"{0:x8}: DW_AT_abstract_origin({1:x16}"
") has no decl\n",
die.GetID(), abs_die.GetOffset());
}
type_handled = true;
} else {
CompilerType class_opaque_type =
class_type->GetForwardCompilerType();
if (TypeSystemClang::IsCXXClassType(class_opaque_type)) {
if (class_opaque_type.IsBeingDefined()) {
if (!is_static && !die.HasChildren()) {
// We have a C++ member function with no children (this
// pointer!) and clang will get mad if we try and make
// a function that isn't well formed in the DWARF, so
// we will just skip it...
type_handled = true;
} else {
llvm::PrettyStackTraceFormat stack_trace(
"SymbolFileDWARF::ParseType() is adding a method "
"%s to class %s in DIE 0x%8.8" PRIx64 " from %s",
attrs.name.GetCString(),
class_type->GetName().GetCString(), die.GetID(),
dwarf->GetObjectFile()->GetFileSpec().GetPath().c_str());
const bool is_attr_used = false;
// Neither GCC 4.2 nor clang++ currently set a valid
// accessibility in the DWARF for C++ methods...
// Default to public for now...
const auto accessibility = attrs.accessibility == eAccessNone
? eAccessPublic
: attrs.accessibility;
clang::CXXMethodDecl *cxx_method_decl =
m_ast.AddMethodToCXXRecordType(
class_opaque_type.GetOpaqueQualType(),
attrs.name.GetCString(), attrs.mangled_name,
clang_type, accessibility, attrs.is_virtual,
is_static, attrs.is_inline, attrs.is_explicit,
is_attr_used, attrs.is_artificial);
type_handled = cxx_method_decl != nullptr;
// Artificial methods are always handled even when we
// don't create a new declaration for them.
type_handled |= attrs.is_artificial;
if (cxx_method_decl) {
LinkDeclContextToDIE(cxx_method_decl, die);
ClangASTMetadata metadata;
metadata.SetUserID(die.GetID());
if (!object_pointer_name.empty()) {
metadata.SetObjectPtrName(object_pointer_name.c_str());
LLDB_LOGF(log,
"Setting object pointer name: %s on method "
"object %p.\n",
object_pointer_name.c_str(),
static_cast<void *>(cxx_method_decl));
}
m_ast.SetMetadata(cxx_method_decl, metadata);
} else {
ignore_containing_context = true;
}
}
} else {
// We were asked to parse the type for a method in a
// class, yet the class hasn't been asked to complete
// itself through the clang::ExternalASTSource protocol,
// so we need to just have the class complete itself and
// do things the right way, then our
// DIE should then have an entry in the
// dwarf->GetDIEToType() map. First
// we need to modify the dwarf->GetDIEToType() so it
// doesn't think we are trying to parse this DIE
// anymore...
dwarf->GetDIEToType()[die.GetDIE()] = NULL;
// Now we get the full type to force our class type to
// complete itself using the clang::ExternalASTSource
// protocol which will parse all base classes and all
// methods (including the method for this DIE).
class_type->GetFullCompilerType();
// The type for this DIE should have been filled in the
// function call above.
Type *type_ptr = dwarf->GetDIEToType()[die.GetDIE()];
if (type_ptr && type_ptr != DIE_IS_BEING_PARSED) {
return type_ptr->shared_from_this();
}
// The previous comment isn't actually true if the class wasn't
// resolved using the current method's parent DIE as source
// data. We need to ensure that we look up the method correctly
// in the class and then link the method's DIE to the unique
// CXXMethodDecl appropriately.
type_handled = true;
}
}
}
}
}
}
if (!type_handled) {
clang::FunctionDecl *function_decl = nullptr;
clang::FunctionDecl *template_function_decl = nullptr;
if (attrs.abstract_origin.IsValid()) {
DWARFDIE abs_die = attrs.abstract_origin.Reference();
if (dwarf->ResolveType(abs_die)) {
function_decl = llvm::dyn_cast_or_null<clang::FunctionDecl>(
GetCachedClangDeclContextForDIE(abs_die));
if (function_decl) {
LinkDeclContextToDIE(function_decl, die);
}
}
}
if (!function_decl) {
char *name_buf = nullptr;
llvm::StringRef name = attrs.name.GetStringRef();
// We currently generate function templates with template parameters in
// their name. In order to get closer to the AST that clang generates
// we want to strip these from the name when creating the AST.
if (attrs.mangled_name) {
llvm::ItaniumPartialDemangler D;
if (!D.partialDemangle(attrs.mangled_name)) {
name_buf = D.getFunctionBaseName(nullptr, nullptr);
name = name_buf;
}
}
// We just have a function that isn't part of a class
function_decl = m_ast.CreateFunctionDeclaration(
ignore_containing_context ? m_ast.GetTranslationUnitDecl()
: containing_decl_ctx,
GetOwningClangModule(die), name, clang_type, attrs.storage,
attrs.is_inline);
std::free(name_buf);
if (has_template_params) {
TypeSystemClang::TemplateParameterInfos template_param_infos;
ParseTemplateParameterInfos(die, template_param_infos);
template_function_decl = m_ast.CreateFunctionDeclaration(
ignore_containing_context ? m_ast.GetTranslationUnitDecl()
: containing_decl_ctx,
GetOwningClangModule(die), attrs.name.GetStringRef(), clang_type,
attrs.storage, attrs.is_inline);
clang::FunctionTemplateDecl *func_template_decl =
m_ast.CreateFunctionTemplateDecl(
containing_decl_ctx, GetOwningClangModule(die),
template_function_decl, template_param_infos);
m_ast.CreateFunctionTemplateSpecializationInfo(
template_function_decl, func_template_decl, template_param_infos);
}
lldbassert(function_decl);
if (function_decl) {
// Attach an asm(<mangled_name>) label to the FunctionDecl.
// This ensures that clang::CodeGen emits function calls
// using symbols that are mangled according to the DW_AT_linkage_name.
// If we didn't do this, the external symbols wouldn't exactly
// match the mangled name LLDB knows about and the IRExecutionUnit
// would have to fall back to searching object files for
// approximately matching function names. The motivating
// example is generating calls to ABI-tagged template functions.
// This is done separately for member functions in
// AddMethodToCXXRecordType.
if (attrs.mangled_name)
function_decl->addAttr(clang::AsmLabelAttr::CreateImplicit(
m_ast.getASTContext(), attrs.mangled_name, /*literal=*/false));
LinkDeclContextToDIE(function_decl, die);
if (!function_param_decls.empty()) {
m_ast.SetFunctionParameters(function_decl, function_param_decls);
if (template_function_decl)
m_ast.SetFunctionParameters(template_function_decl,
function_param_decls);
}
ClangASTMetadata metadata;
metadata.SetUserID(die.GetID());
if (!object_pointer_name.empty()) {
metadata.SetObjectPtrName(object_pointer_name.c_str());
LLDB_LOGF(log,
"Setting object pointer name: %s on function "
"object %p.",
object_pointer_name.c_str(),
static_cast<void *>(function_decl));
}
m_ast.SetMetadata(function_decl, metadata);
}
}
}
}
return dwarf->MakeType(
die.GetID(), attrs.name, std::nullopt, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, &attrs.decl, clang_type, Type::ResolveState::Full);
}
TypeSP
DWARFASTParserClang::ParseArrayType(const DWARFDIE &die,
const ParsedDWARFTypeAttributes &attrs) {
SymbolFileDWARF *dwarf = die.GetDWARF();
DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(),
DW_TAG_value_to_name(tag), type_name_cstr);
DWARFDIE type_die = attrs.type.Reference();
Type *element_type = dwarf->ResolveTypeUID(type_die, true);
if (!element_type)
return nullptr;
std::optional<SymbolFile::ArrayInfo> array_info = ParseChildArrayInfo(die);
uint32_t byte_stride = attrs.byte_stride;
uint32_t bit_stride = attrs.bit_stride;
if (array_info) {
byte_stride = array_info->byte_stride;
bit_stride = array_info->bit_stride;
}
if (byte_stride == 0 && bit_stride == 0)
byte_stride = element_type->GetByteSize(nullptr).value_or(0);
CompilerType array_element_type = element_type->GetForwardCompilerType();
TypeSystemClang::RequireCompleteType(array_element_type);
uint64_t array_element_bit_stride = byte_stride * 8 + bit_stride;
CompilerType clang_type;
if (array_info && array_info->element_orders.size() > 0) {
uint64_t num_elements = 0;
auto end = array_info->element_orders.rend();
for (auto pos = array_info->element_orders.rbegin(); pos != end; ++pos) {
num_elements = *pos;
clang_type = m_ast.CreateArrayType(array_element_type, num_elements,
attrs.is_vector);
array_element_type = clang_type;
array_element_bit_stride = num_elements
? array_element_bit_stride * num_elements
: array_element_bit_stride;
}
} else {
clang_type =
m_ast.CreateArrayType(array_element_type, 0, attrs.is_vector);
}
ConstString empty_name;
TypeSP type_sp =
dwarf->MakeType(die.GetID(), empty_name, array_element_bit_stride / 8,
nullptr, type_die.GetID(), Type::eEncodingIsUID,
&attrs.decl, clang_type, Type::ResolveState::Full);
type_sp->SetEncodingType(element_type);
const clang::Type *type = ClangUtil::GetQualType(clang_type).getTypePtr();
m_ast.SetMetadataAsUserID(type, die.GetID());
return type_sp;
}
TypeSP DWARFASTParserClang::ParsePointerToMemberType(
const DWARFDIE &die, const ParsedDWARFTypeAttributes &attrs) {
SymbolFileDWARF *dwarf = die.GetDWARF();
Type *pointee_type = dwarf->ResolveTypeUID(attrs.type.Reference(), true);
Type *class_type =
dwarf->ResolveTypeUID(attrs.containing_type.Reference(), true);
// Check to make sure pointers are not NULL before attempting to
// dereference them.
if ((class_type == nullptr) || (pointee_type == nullptr))
return nullptr;
CompilerType pointee_clang_type = pointee_type->GetForwardCompilerType();
CompilerType class_clang_type = class_type->GetForwardCompilerType();
CompilerType clang_type = TypeSystemClang::CreateMemberPointerType(
class_clang_type, pointee_clang_type);
if (std::optional<uint64_t> clang_type_size =
clang_type.GetByteSize(nullptr)) {
return dwarf->MakeType(die.GetID(), attrs.name, *clang_type_size, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, nullptr,
clang_type, Type::ResolveState::Forward);
}
return nullptr;
}
void DWARFASTParserClang::ParseInheritance(
const DWARFDIE &die, const DWARFDIE &parent_die,
const CompilerType class_clang_type, const AccessType default_accessibility,
const lldb::ModuleSP &module_sp,
std::vector<std::unique_ptr<clang::CXXBaseSpecifier>> &base_classes,
ClangASTImporter::LayoutInfo &layout_info) {
auto ast =
class_clang_type.GetTypeSystem().dyn_cast_or_null<TypeSystemClang>();
if (ast == nullptr)
return;
// TODO: implement DW_TAG_inheritance type parsing.
DWARFAttributes attributes = die.GetAttributes();
if (attributes.Size() == 0)
return;
DWARFFormValue encoding_form;
AccessType accessibility = default_accessibility;
bool is_virtual = false;
bool is_base_of_class = true;
off_t member_byte_offset = 0;
for (uint32_t i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_type:
encoding_form = form_value;
break;
case DW_AT_data_member_location:
if (auto maybe_offset =
ExtractDataMemberLocation(die, form_value, module_sp))
member_byte_offset = *maybe_offset;
break;
case DW_AT_accessibility:
accessibility =
DWARFASTParser::GetAccessTypeFromDWARF(form_value.Unsigned());
break;
case DW_AT_virtuality:
is_virtual = form_value.Boolean();
break;
default:
break;
}
}
}
Type *base_class_type = die.ResolveTypeUID(encoding_form.Reference());
if (base_class_type == nullptr) {
module_sp->ReportError("{0:x16}: DW_TAG_inheritance failed to "
"resolve the base class at {1:x16}"
" from enclosing type {2:x16}. \nPlease file "
"a bug and attach the file at the start of "
"this error message",
die.GetOffset(),
encoding_form.Reference().GetOffset(),
parent_die.GetOffset());
return;
}
CompilerType base_class_clang_type = base_class_type->GetFullCompilerType();
assert(base_class_clang_type);
if (TypeSystemClang::IsObjCObjectOrInterfaceType(class_clang_type)) {
ast->SetObjCSuperClass(class_clang_type, base_class_clang_type);
return;
}
std::unique_ptr<clang::CXXBaseSpecifier> result =
ast->CreateBaseClassSpecifier(base_class_clang_type.GetOpaqueQualType(),
accessibility, is_virtual,
is_base_of_class);
if (!result)
return;
base_classes.push_back(std::move(result));
if (is_virtual) {
// Do not specify any offset for virtual inheritance. The DWARF
// produced by clang doesn't give us a constant offset, but gives
// us a DWARF expressions that requires an actual object in memory.
// the DW_AT_data_member_location for a virtual base class looks
// like:
// DW_AT_data_member_location( DW_OP_dup, DW_OP_deref,
// DW_OP_constu(0x00000018), DW_OP_minus, DW_OP_deref,
// DW_OP_plus )
// Given this, there is really no valid response we can give to
// clang for virtual base class offsets, and this should eventually
// be removed from LayoutRecordType() in the external
// AST source in clang.
} else {
layout_info.base_offsets.insert(std::make_pair(
ast->GetAsCXXRecordDecl(base_class_clang_type.GetOpaqueQualType()),
clang::CharUnits::fromQuantity(member_byte_offset)));
}
}
TypeSP DWARFASTParserClang::UpdateSymbolContextScopeForType(
const SymbolContext &sc, const DWARFDIE &die, TypeSP type_sp) {
if (!type_sp)
return type_sp;
SymbolFileDWARF *dwarf = die.GetDWARF();
DWARFDIE sc_parent_die = SymbolFileDWARF::GetParentSymbolContextDIE(die);
dw_tag_t sc_parent_tag = sc_parent_die.Tag();
SymbolContextScope *symbol_context_scope = nullptr;
if (sc_parent_tag == DW_TAG_compile_unit ||
sc_parent_tag == DW_TAG_partial_unit) {
symbol_context_scope = sc.comp_unit;
} else if (sc.function != nullptr && sc_parent_die) {
symbol_context_scope =
sc.function->GetBlock(true).FindBlockByID(sc_parent_die.GetID());
if (symbol_context_scope == nullptr)
symbol_context_scope = sc.function;
} else {
symbol_context_scope = sc.module_sp.get();
}
if (symbol_context_scope != nullptr)
type_sp->SetSymbolContextScope(symbol_context_scope);
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
return type_sp;
}
std::string
DWARFASTParserClang::GetCPlusPlusQualifiedName(const DWARFDIE &die) {
if (!die.IsValid())
return "";
const char *name = die.GetName();
if (!name)
return "";
std::string qualified_name;
DWARFDIE parent_decl_ctx_die = die.GetParentDeclContextDIE();
// TODO: change this to get the correct decl context parent....
while (parent_decl_ctx_die) {
// The name may not contain template parameters due to
// -gsimple-template-names; we must reconstruct the full name from child
// template parameter dies via GetDIEClassTemplateParams().
const dw_tag_t parent_tag = parent_decl_ctx_die.Tag();
switch (parent_tag) {
case DW_TAG_namespace: {
if (const char *namespace_name = parent_decl_ctx_die.GetName()) {
qualified_name.insert(0, "::");
qualified_name.insert(0, namespace_name);
} else {
qualified_name.insert(0, "(anonymous namespace)::");
}
parent_decl_ctx_die = parent_decl_ctx_die.GetParentDeclContextDIE();
break;
}
case DW_TAG_class_type:
case DW_TAG_structure_type:
case DW_TAG_union_type: {
if (const char *class_union_struct_name = parent_decl_ctx_die.GetName()) {
qualified_name.insert(
0, GetDIEClassTemplateParams(parent_decl_ctx_die).AsCString(""));
qualified_name.insert(0, "::");
qualified_name.insert(0, class_union_struct_name);
}
parent_decl_ctx_die = parent_decl_ctx_die.GetParentDeclContextDIE();
break;
}
default:
parent_decl_ctx_die.Clear();
break;
}
}
if (qualified_name.empty())
qualified_name.append("::");
qualified_name.append(name);
qualified_name.append(GetDIEClassTemplateParams(die).AsCString(""));
return qualified_name;
}
TypeSP
DWARFASTParserClang::ParseStructureLikeDIE(const SymbolContext &sc,
const DWARFDIE &die,
ParsedDWARFTypeAttributes &attrs) {
TypeSP type_sp;
CompilerType clang_type;
const dw_tag_t tag = die.Tag();
SymbolFileDWARF *dwarf = die.GetDWARF();
LanguageType cu_language = SymbolFileDWARF::GetLanguage(*die.GetCU());
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
// UniqueDWARFASTType is large, so don't create a local variables on the
// stack, put it on the heap. This function is often called recursively and
// clang isn't good at sharing the stack space for variables in different
// blocks.
auto unique_ast_entry_up = std::make_unique<UniqueDWARFASTType>();
ConstString unique_typename(attrs.name);
Declaration unique_decl(attrs.decl);
if (attrs.name) {
if (Language::LanguageIsCPlusPlus(cu_language)) {
// For C++, we rely solely upon the one definition rule that says
// only one thing can exist at a given decl context. We ignore the
// file and line that things are declared on.
std::string qualified_name = GetCPlusPlusQualifiedName(die);
if (!qualified_name.empty())
unique_typename = ConstString(qualified_name);
unique_decl.Clear();
}
if (dwarf->GetUniqueDWARFASTTypeMap().Find(
unique_typename, die, unique_decl, attrs.byte_size.value_or(-1),
*unique_ast_entry_up)) {
type_sp = unique_ast_entry_up->m_type_sp;
if (type_sp) {
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
LinkDeclContextToDIE(
GetCachedClangDeclContextForDIE(unique_ast_entry_up->m_die), die);
return type_sp;
}
}
}
DEBUG_PRINTF("0x%8.8" PRIx64 ": %s (\"%s\")\n", die.GetID(),
DW_TAG_value_to_name(tag), type_name_cstr);
int tag_decl_kind = -1;
AccessType default_accessibility = eAccessNone;
if (tag == DW_TAG_structure_type) {
tag_decl_kind = llvm::to_underlying(clang::TagTypeKind::Struct);
default_accessibility = eAccessPublic;
} else if (tag == DW_TAG_union_type) {
tag_decl_kind = llvm::to_underlying(clang::TagTypeKind::Union);
default_accessibility = eAccessPublic;
} else if (tag == DW_TAG_class_type) {
tag_decl_kind = llvm::to_underlying(clang::TagTypeKind::Class);
default_accessibility = eAccessPrivate;
}
if (attrs.byte_size && *attrs.byte_size == 0 && attrs.name &&
!die.HasChildren() && cu_language == eLanguageTypeObjC) {
// Work around an issue with clang at the moment where forward
// declarations for objective C classes are emitted as:
// DW_TAG_structure_type [2]
// DW_AT_name( "ForwardObjcClass" )
// DW_AT_byte_size( 0x00 )
// DW_AT_decl_file( "..." )
// DW_AT_decl_line( 1 )
//
// Note that there is no DW_AT_declaration and there are no children,
// and the byte size is zero.
attrs.is_forward_declaration = true;
}
if (attrs.class_language == eLanguageTypeObjC ||
attrs.class_language == eLanguageTypeObjC_plus_plus) {
if (!attrs.is_complete_objc_class &&
die.Supports_DW_AT_APPLE_objc_complete_type()) {
// We have a valid eSymbolTypeObjCClass class symbol whose name
// matches the current objective C class that we are trying to find
// and this DIE isn't the complete definition (we checked
// is_complete_objc_class above and know it is false), so the real
// definition is in here somewhere
type_sp =
dwarf->FindCompleteObjCDefinitionTypeForDIE(die, attrs.name, true);
if (!type_sp) {
SymbolFileDWARFDebugMap *debug_map_symfile =
dwarf->GetDebugMapSymfile();
if (debug_map_symfile) {
// We weren't able to find a full declaration in this DWARF,
// see if we have a declaration anywhere else...
type_sp = debug_map_symfile->FindCompleteObjCDefinitionTypeForDIE(
die, attrs.name, true);
}
}
if (type_sp) {
if (log) {
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF({0:p}) - {1:x16}: {2} ({3}) type \"{4}\" is an "
"incomplete objc type, complete type is {5:x8}",
static_cast<void *>(this), die.GetOffset(),
DW_TAG_value_to_name(tag), tag, attrs.name.GetCString(),
type_sp->GetID());
}
// We found a real definition for this type elsewhere so lets use
// it and cache the fact that we found a complete type for this
// die
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
return type_sp;
}
}
}
if (attrs.is_forward_declaration) {
// We have a forward declaration to a type and we need to try and
// find a full declaration. We look in the current type index just in
// case we have a forward declaration followed by an actual
// declarations in the DWARF. If this fails, we need to look
// elsewhere...
if (log) {
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF({0:p}) - {1:x16}: {2} ({3}) type \"{4}\" is a "
"forward declaration, trying to find complete type",
static_cast<void *>(this), die.GetOffset(), DW_TAG_value_to_name(tag),
tag, attrs.name.GetCString());
}
// See if the type comes from a Clang module and if so, track down
// that type.
type_sp = ParseTypeFromClangModule(sc, die, log);
if (type_sp)
return type_sp;
// type_sp = FindDefinitionTypeForDIE (dwarf_cu, die,
// type_name_const_str);
type_sp = dwarf->FindDefinitionTypeForDWARFDeclContext(die);
if (!type_sp) {
SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile();
if (debug_map_symfile) {
// We weren't able to find a full declaration in this DWARF, see
// if we have a declaration anywhere else...
type_sp = debug_map_symfile->FindDefinitionTypeForDWARFDeclContext(die);
}
}
if (type_sp) {
if (log) {
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF({0:p}) - {1:x16}: {2} ({3}) type \"{4}\" is a "
"forward declaration, complete type is {5:x8}",
static_cast<void *>(this), die.GetOffset(),
DW_TAG_value_to_name(tag), tag, attrs.name.GetCString(),
type_sp->GetID());
}
// We found a real definition for this type elsewhere so lets use
// it and cache the fact that we found a complete type for this die
dwarf->GetDIEToType()[die.GetDIE()] = type_sp.get();
clang::DeclContext *defn_decl_ctx =
GetCachedClangDeclContextForDIE(dwarf->GetDIE(type_sp->GetID()));
if (defn_decl_ctx)
LinkDeclContextToDIE(defn_decl_ctx, die);
return type_sp;
}
}
assert(tag_decl_kind != -1);
UNUSED_IF_ASSERT_DISABLED(tag_decl_kind);
bool clang_type_was_created = false;
clang::DeclContext *decl_ctx = GetClangDeclContextContainingDIE(die, nullptr);
PrepareContextToReceiveMembers(m_ast, GetClangASTImporter(), decl_ctx, die,
attrs.name.GetCString());
if (attrs.accessibility == eAccessNone && decl_ctx) {
// Check the decl context that contains this class/struct/union. If
// it is a class we must give it an accessibility.
const clang::Decl::Kind containing_decl_kind = decl_ctx->getDeclKind();
if (DeclKindIsCXXClass(containing_decl_kind))
attrs.accessibility = default_accessibility;
}
ClangASTMetadata metadata;
metadata.SetUserID(die.GetID());
metadata.SetIsDynamicCXXType(dwarf->ClassOrStructIsVirtual(die));
TypeSystemClang::TemplateParameterInfos template_param_infos;
if (ParseTemplateParameterInfos(die, template_param_infos)) {
clang::ClassTemplateDecl *class_template_decl =
m_ast.ParseClassTemplateDecl(
decl_ctx, GetOwningClangModule(die), attrs.accessibility,
attrs.name.GetCString(), tag_decl_kind, template_param_infos);
if (!class_template_decl) {
if (log) {
dwarf->GetObjectFile()->GetModule()->LogMessage(
log,
"SymbolFileDWARF({0:p}) - {1:x16}: {2} ({3}) type \"{4}\" "
"clang::ClassTemplateDecl failed to return a decl.",
static_cast<void *>(this), die.GetOffset(),
DW_TAG_value_to_name(tag), tag, attrs.name.GetCString());
}
return TypeSP();
}
clang::ClassTemplateSpecializationDecl *class_specialization_decl =
m_ast.CreateClassTemplateSpecializationDecl(
decl_ctx, GetOwningClangModule(die), class_template_decl,
tag_decl_kind, template_param_infos);
clang_type =
m_ast.CreateClassTemplateSpecializationType(class_specialization_decl);
clang_type_was_created = true;
m_ast.SetMetadata(class_template_decl, metadata);
m_ast.SetMetadata(class_specialization_decl, metadata);
}
if (!clang_type_was_created) {
clang_type_was_created = true;
clang_type = m_ast.CreateRecordType(
decl_ctx, GetOwningClangModule(die), attrs.accessibility,
attrs.name.GetCString(), tag_decl_kind, attrs.class_language, &metadata,
attrs.exports_symbols);
}
// Store a forward declaration to this class type in case any
// parameters in any class methods need it for the clang types for
// function prototypes.
LinkDeclContextToDIE(m_ast.GetDeclContextForType(clang_type), die);
type_sp = dwarf->MakeType(
die.GetID(), attrs.name, attrs.byte_size, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, &attrs.decl, clang_type,
Type::ResolveState::Forward,
TypePayloadClang(OptionalClangModuleID(), attrs.is_complete_objc_class));
// Add our type to the unique type map so we don't end up creating many
// copies of the same type over and over in the ASTContext for our
// module
unique_ast_entry_up->m_type_sp = type_sp;
unique_ast_entry_up->m_die = die;
unique_ast_entry_up->m_declaration = unique_decl;
unique_ast_entry_up->m_byte_size = attrs.byte_size.value_or(0);
dwarf->GetUniqueDWARFASTTypeMap().Insert(unique_typename,
*unique_ast_entry_up);
if (!attrs.is_forward_declaration) {
// Always start the definition for a class type so that if the class
// has child classes or types that require the class to be created
// for use as their decl contexts the class will be ready to accept
// these child definitions.
if (!die.HasChildren()) {
// No children for this struct/union/class, lets finish it
if (TypeSystemClang::StartTagDeclarationDefinition(clang_type)) {
TypeSystemClang::CompleteTagDeclarationDefinition(clang_type);
} else {
dwarf->GetObjectFile()->GetModule()->ReportError(
"DWARF DIE at {0:x16} named \"{1}\" was not able to start "
"its "
"definition.\nPlease file a bug and attach the file at the "
"start of this error message",
die.GetOffset(), attrs.name.GetCString());
}
// Setting authority byte size and alignment for empty structures.
//
// If the byte size or alignmenet of the record is specified then
// overwrite the ones that would be computed by Clang.
// This is only needed as LLDB's TypeSystemClang is always in C++ mode,
// but some compilers such as GCC and Clang give empty structs a size of 0
// in C mode (in contrast to the size of 1 for empty structs that would be
// computed in C++ mode).
if (attrs.byte_size || attrs.alignment) {
clang::RecordDecl *record_decl =
TypeSystemClang::GetAsRecordDecl(clang_type);
if (record_decl) {
ClangASTImporter::LayoutInfo layout;
layout.bit_size = attrs.byte_size.value_or(0) * 8;
layout.alignment = attrs.alignment.value_or(0) * 8;
GetClangASTImporter().SetRecordLayout(record_decl, layout);
}
}
} else if (clang_type_was_created) {
// Start the definition if the class is not objective C since the
// underlying decls respond to isCompleteDefinition(). Objective
// C decls don't respond to isCompleteDefinition() so we can't
// start the declaration definition right away. For C++
// class/union/structs we want to start the definition in case the
// class is needed as the declaration context for a contained class
// or type without the need to complete that type..
if (attrs.class_language != eLanguageTypeObjC &&
attrs.class_language != eLanguageTypeObjC_plus_plus)
TypeSystemClang::StartTagDeclarationDefinition(clang_type);
// Leave this as a forward declaration until we need to know the
// details of the type. lldb_private::Type will automatically call
// the SymbolFile virtual function
// "SymbolFileDWARF::CompleteType(Type *)" When the definition
// needs to be defined.
assert(!dwarf->GetForwardDeclCompilerTypeToDIE().count(
ClangUtil::RemoveFastQualifiers(clang_type)
.GetOpaqueQualType()) &&
"Type already in the forward declaration map!");
// Can't assume m_ast.GetSymbolFile() is actually a
// SymbolFileDWARF, it can be a SymbolFileDWARFDebugMap for Apple
// binaries.
dwarf->GetForwardDeclCompilerTypeToDIE().try_emplace(
ClangUtil::RemoveFastQualifiers(clang_type).GetOpaqueQualType(),
*die.GetDIERef());
m_ast.SetHasExternalStorage(clang_type.GetOpaqueQualType(), true);
}
}
// If we made a clang type, set the trivial abi if applicable: We only
// do this for pass by value - which implies the Trivial ABI. There
// isn't a way to assert that something that would normally be pass by
// value is pass by reference, so we ignore that attribute if set.
if (attrs.calling_convention == llvm::dwarf::DW_CC_pass_by_value) {
clang::CXXRecordDecl *record_decl =
m_ast.GetAsCXXRecordDecl(clang_type.GetOpaqueQualType());
if (record_decl && record_decl->getDefinition()) {
record_decl->setHasTrivialSpecialMemberForCall();
}
}
if (attrs.calling_convention == llvm::dwarf::DW_CC_pass_by_reference) {
clang::CXXRecordDecl *record_decl =
m_ast.GetAsCXXRecordDecl(clang_type.GetOpaqueQualType());
if (record_decl)
record_decl->setArgPassingRestrictions(
clang::RecordArgPassingKind::CannotPassInRegs);
}
return type_sp;
}
// DWARF parsing functions
class DWARFASTParserClang::DelayedAddObjCClassProperty {
public:
DelayedAddObjCClassProperty(
const CompilerType &class_opaque_type, const char *property_name,
const CompilerType &property_opaque_type, // The property type is only
// required if you don't have an
// ivar decl
const char *property_setter_name, const char *property_getter_name,
uint32_t property_attributes, const ClangASTMetadata *metadata)
: m_class_opaque_type(class_opaque_type), m_property_name(property_name),
m_property_opaque_type(property_opaque_type),
m_property_setter_name(property_setter_name),
m_property_getter_name(property_getter_name),
m_property_attributes(property_attributes) {
if (metadata != nullptr) {
m_metadata_up = std::make_unique<ClangASTMetadata>();
*m_metadata_up = *metadata;
}
}
DelayedAddObjCClassProperty(const DelayedAddObjCClassProperty &rhs) {
*this = rhs;
}
DelayedAddObjCClassProperty &
operator=(const DelayedAddObjCClassProperty &rhs) {
m_class_opaque_type = rhs.m_class_opaque_type;
m_property_name = rhs.m_property_name;
m_property_opaque_type = rhs.m_property_opaque_type;
m_property_setter_name = rhs.m_property_setter_name;
m_property_getter_name = rhs.m_property_getter_name;
m_property_attributes = rhs.m_property_attributes;
if (rhs.m_metadata_up) {
m_metadata_up = std::make_unique<ClangASTMetadata>();
*m_metadata_up = *rhs.m_metadata_up;
}
return *this;
}
bool Finalize() {
return TypeSystemClang::AddObjCClassProperty(
m_class_opaque_type, m_property_name, m_property_opaque_type,
/*ivar_decl=*/nullptr, m_property_setter_name, m_property_getter_name,
m_property_attributes, m_metadata_up.get());
}
private:
CompilerType m_class_opaque_type;
const char *m_property_name;
CompilerType m_property_opaque_type;
const char *m_property_setter_name;
const char *m_property_getter_name;
uint32_t m_property_attributes;
std::unique_ptr<ClangASTMetadata> m_metadata_up;
};
bool DWARFASTParserClang::ParseTemplateDIE(
const DWARFDIE &die,
TypeSystemClang::TemplateParameterInfos &template_param_infos) {
const dw_tag_t tag = die.Tag();
bool is_template_template_argument = false;
switch (tag) {
case DW_TAG_GNU_template_parameter_pack: {
template_param_infos.SetParameterPack(
std::make_unique<TypeSystemClang::TemplateParameterInfos>());
for (DWARFDIE child_die : die.children()) {
if (!ParseTemplateDIE(child_die, template_param_infos.GetParameterPack()))
return false;
}
if (const char *name = die.GetName()) {
template_param_infos.SetPackName(name);
}
return true;
}
case DW_TAG_GNU_template_template_param:
is_template_template_argument = true;
[[fallthrough]];
case DW_TAG_template_type_parameter:
case DW_TAG_template_value_parameter: {
DWARFAttributes attributes = die.GetAttributes();
if (attributes.Size() == 0)
return true;
const char *name = nullptr;
const char *template_name = nullptr;
CompilerType clang_type;
uint64_t uval64 = 0;
bool uval64_valid = false;
bool is_default_template_arg = false;
DWARFFormValue form_value;
for (size_t i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
switch (attr) {
case DW_AT_name:
if (attributes.ExtractFormValueAtIndex(i, form_value))
name = form_value.AsCString();
break;
case DW_AT_GNU_template_name:
if (attributes.ExtractFormValueAtIndex(i, form_value))
template_name = form_value.AsCString();
break;
case DW_AT_type:
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
Type *lldb_type = die.ResolveTypeUID(form_value.Reference());
if (lldb_type)
clang_type = lldb_type->GetForwardCompilerType();
}
break;
case DW_AT_const_value:
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
uval64_valid = true;
uval64 = form_value.Unsigned();
}
break;
case DW_AT_default_value:
if (attributes.ExtractFormValueAtIndex(i, form_value))
is_default_template_arg = form_value.Boolean();
break;
default:
break;
}
}
clang::ASTContext &ast = m_ast.getASTContext();
if (!clang_type)
clang_type = m_ast.GetBasicType(eBasicTypeVoid);
if (!is_template_template_argument) {
bool is_signed = false;
// Get the signed value for any integer or enumeration if available
clang_type.IsIntegerOrEnumerationType(is_signed);
if (name && !name[0])
name = nullptr;
if (tag == DW_TAG_template_value_parameter && uval64_valid) {
std::optional<uint64_t> size = clang_type.GetBitSize(nullptr);
if (!size)
return false;
llvm::APInt apint(*size, uval64, is_signed);
template_param_infos.InsertArg(
name, clang::TemplateArgument(ast, llvm::APSInt(apint, !is_signed),
ClangUtil::GetQualType(clang_type),
is_default_template_arg));
} else {
template_param_infos.InsertArg(
name, clang::TemplateArgument(ClangUtil::GetQualType(clang_type),
/*isNullPtr*/ false,
is_default_template_arg));
}
} else {
auto *tplt_type = m_ast.CreateTemplateTemplateParmDecl(template_name);
template_param_infos.InsertArg(
name, clang::TemplateArgument(clang::TemplateName(tplt_type),
is_default_template_arg));
}
}
return true;
default:
break;
}
return false;
}
bool DWARFASTParserClang::ParseTemplateParameterInfos(
const DWARFDIE &parent_die,
TypeSystemClang::TemplateParameterInfos &template_param_infos) {
if (!parent_die)
return false;
for (DWARFDIE die : parent_die.children()) {
const dw_tag_t tag = die.Tag();
switch (tag) {
case DW_TAG_template_type_parameter:
case DW_TAG_template_value_parameter:
case DW_TAG_GNU_template_parameter_pack:
case DW_TAG_GNU_template_template_param:
ParseTemplateDIE(die, template_param_infos);
break;
default:
break;
}
}
return !template_param_infos.IsEmpty() ||
template_param_infos.hasParameterPack();
}
bool DWARFASTParserClang::CompleteRecordType(const DWARFDIE &die,
lldb_private::Type *type,
CompilerType &clang_type) {
const dw_tag_t tag = die.Tag();
SymbolFileDWARF *dwarf = die.GetDWARF();
ClangASTImporter::LayoutInfo layout_info;
std::vector<DWARFDIE> contained_type_dies;
if (die.HasChildren()) {
const bool type_is_objc_object_or_interface =
TypeSystemClang::IsObjCObjectOrInterfaceType(clang_type);
if (type_is_objc_object_or_interface) {
// For objective C we don't start the definition when the class is
// created.
TypeSystemClang::StartTagDeclarationDefinition(clang_type);
}
AccessType default_accessibility = eAccessNone;
if (tag == DW_TAG_structure_type) {
default_accessibility = eAccessPublic;
} else if (tag == DW_TAG_union_type) {
default_accessibility = eAccessPublic;
} else if (tag == DW_TAG_class_type) {
default_accessibility = eAccessPrivate;
}
std::vector<std::unique_ptr<clang::CXXBaseSpecifier>> bases;
// Parse members and base classes first
std::vector<DWARFDIE> member_function_dies;
DelayedPropertyList delayed_properties;
ParseChildMembers(die, clang_type, bases, member_function_dies,
contained_type_dies, delayed_properties,
default_accessibility, layout_info);
// Now parse any methods if there were any...
for (const DWARFDIE &die : member_function_dies)
dwarf->ResolveType(die);
if (type_is_objc_object_or_interface) {
ConstString class_name(clang_type.GetTypeName());
if (class_name) {
dwarf->GetObjCMethods(class_name, [&](DWARFDIE method_die) {
method_die.ResolveType();
return true;
});
for (DelayedAddObjCClassProperty &property : delayed_properties)
property.Finalize();
}
}
if (!bases.empty()) {
// Make sure all base classes refer to complete types and not forward
// declarations. If we don't do this, clang will crash with an
// assertion in the call to clang_type.TransferBaseClasses()
for (const auto &base_class : bases) {
clang::TypeSourceInfo *type_source_info =
base_class->getTypeSourceInfo();
if (type_source_info)
TypeSystemClang::RequireCompleteType(
m_ast.GetType(type_source_info->getType()));
}
m_ast.TransferBaseClasses(clang_type.GetOpaqueQualType(),
std::move(bases));
}
}
m_ast.AddMethodOverridesForCXXRecordType(clang_type.GetOpaqueQualType());
TypeSystemClang::BuildIndirectFields(clang_type);
TypeSystemClang::CompleteTagDeclarationDefinition(clang_type);
if (!layout_info.field_offsets.empty() || !layout_info.base_offsets.empty() ||
!layout_info.vbase_offsets.empty()) {
if (type)
layout_info.bit_size = type->GetByteSize(nullptr).value_or(0) * 8;
if (layout_info.bit_size == 0)
layout_info.bit_size =
die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
if (layout_info.alignment == 0)
layout_info.alignment =
die.GetAttributeValueAsUnsigned(llvm::dwarf::DW_AT_alignment, 0) * 8;
clang::CXXRecordDecl *record_decl =
m_ast.GetAsCXXRecordDecl(clang_type.GetOpaqueQualType());
if (record_decl)
GetClangASTImporter().SetRecordLayout(record_decl, layout_info);
}
// Now parse all contained types inside of the class. We make forward
// declarations to all classes, but we need the CXXRecordDecl to have decls
// for all contained types because we don't get asked for them via the
// external AST support.
for (const DWARFDIE &die : contained_type_dies)
dwarf->ResolveType(die);
return (bool)clang_type;
}
bool DWARFASTParserClang::CompleteEnumType(const DWARFDIE &die,
lldb_private::Type *type,
CompilerType &clang_type) {
if (TypeSystemClang::StartTagDeclarationDefinition(clang_type)) {
if (die.HasChildren()) {
bool is_signed = false;
clang_type.IsIntegerType(is_signed);
ParseChildEnumerators(clang_type, is_signed,
type->GetByteSize(nullptr).value_or(0), die);
}
TypeSystemClang::CompleteTagDeclarationDefinition(clang_type);
}
return (bool)clang_type;
}
bool DWARFASTParserClang::CompleteTypeFromDWARF(const DWARFDIE &die,
lldb_private::Type *type,
CompilerType &clang_type) {
SymbolFileDWARF *dwarf = die.GetDWARF();
std::lock_guard<std::recursive_mutex> guard(
dwarf->GetObjectFile()->GetModule()->GetMutex());
// Disable external storage for this type so we don't get anymore
// clang::ExternalASTSource queries for this type.
m_ast.SetHasExternalStorage(clang_type.GetOpaqueQualType(), false);
if (!die)
return false;
const dw_tag_t tag = die.Tag();
assert(clang_type);
switch (tag) {
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
return CompleteRecordType(die, type, clang_type);
case DW_TAG_enumeration_type:
return CompleteEnumType(die, type, clang_type);
default:
assert(false && "not a forward clang type decl!");
break;
}
return false;
}
void DWARFASTParserClang::EnsureAllDIEsInDeclContextHaveBeenParsed(
lldb_private::CompilerDeclContext decl_context) {
auto opaque_decl_ctx =
(clang::DeclContext *)decl_context.GetOpaqueDeclContext();
for (auto it = m_decl_ctx_to_die.find(opaque_decl_ctx);
it != m_decl_ctx_to_die.end() && it->first == opaque_decl_ctx;
it = m_decl_ctx_to_die.erase(it))
for (DWARFDIE decl : it->second.children())
GetClangDeclForDIE(decl);
}
CompilerDecl DWARFASTParserClang::GetDeclForUIDFromDWARF(const DWARFDIE &die) {
clang::Decl *clang_decl = GetClangDeclForDIE(die);
if (clang_decl != nullptr)
return m_ast.GetCompilerDecl(clang_decl);
return {};
}
CompilerDeclContext
DWARFASTParserClang::GetDeclContextForUIDFromDWARF(const DWARFDIE &die) {
clang::DeclContext *clang_decl_ctx = GetClangDeclContextForDIE(die);
if (clang_decl_ctx)
return m_ast.CreateDeclContext(clang_decl_ctx);
return {};
}
CompilerDeclContext
DWARFASTParserClang::GetDeclContextContainingUIDFromDWARF(const DWARFDIE &die) {
clang::DeclContext *clang_decl_ctx =
GetClangDeclContextContainingDIE(die, nullptr);
if (clang_decl_ctx)
return m_ast.CreateDeclContext(clang_decl_ctx);
return {};
}
size_t DWARFASTParserClang::ParseChildEnumerators(
lldb_private::CompilerType &clang_type, bool is_signed,
uint32_t enumerator_byte_size, const DWARFDIE &parent_die) {
if (!parent_die)
return 0;
size_t enumerators_added = 0;
for (DWARFDIE die : parent_die.children()) {
const dw_tag_t tag = die.Tag();
if (tag != DW_TAG_enumerator)
continue;
DWARFAttributes attributes = die.GetAttributes();
if (attributes.Size() == 0)
continue;
const char *name = nullptr;
bool got_value = false;
int64_t enum_value = 0;
Declaration decl;
for (size_t i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_const_value:
got_value = true;
if (is_signed)
enum_value = form_value.Signed();
else
enum_value = form_value.Unsigned();
break;
case DW_AT_name:
name = form_value.AsCString();
break;
case DW_AT_description:
default:
case DW_AT_decl_file:
decl.SetFile(
attributes.CompileUnitAtIndex(i)->GetFile(form_value.Unsigned()));
break;
case DW_AT_decl_line:
decl.SetLine(form_value.Unsigned());
break;
case DW_AT_decl_column:
decl.SetColumn(form_value.Unsigned());
break;
case DW_AT_sibling:
break;
}
}
}
if (name && name[0] && got_value) {
m_ast.AddEnumerationValueToEnumerationType(
clang_type, decl, name, enum_value, enumerator_byte_size * 8);
++enumerators_added;
}
}
return enumerators_added;
}
ConstString
DWARFASTParserClang::ConstructDemangledNameFromDWARF(const DWARFDIE &die) {
bool is_static = false;
bool is_variadic = false;
bool has_template_params = false;
unsigned type_quals = 0;
std::vector<CompilerType> param_types;
std::vector<clang::ParmVarDecl *> param_decls;
StreamString sstr;
DWARFDeclContext decl_ctx = SymbolFileDWARF::GetDWARFDeclContext(die);
sstr << decl_ctx.GetQualifiedName();
clang::DeclContext *containing_decl_ctx =
GetClangDeclContextContainingDIE(die, nullptr);
ParseChildParameters(containing_decl_ctx, die, true, is_static, is_variadic,
has_template_params, param_types, param_decls,
type_quals);
sstr << "(";
for (size_t i = 0; i < param_types.size(); i++) {
if (i > 0)
sstr << ", ";
sstr << param_types[i].GetTypeName();
}
if (is_variadic)
sstr << ", ...";
sstr << ")";
if (type_quals & clang::Qualifiers::Const)
sstr << " const";
return ConstString(sstr.GetString());
}
Function *
DWARFASTParserClang::ParseFunctionFromDWARF(CompileUnit &comp_unit,
const DWARFDIE &die,
const AddressRange &func_range) {
assert(func_range.GetBaseAddress().IsValid());
DWARFRangeList func_ranges;
const char *name = nullptr;
const char *mangled = nullptr;
std::optional<int> decl_file;
std::optional<int> decl_line;
std::optional<int> decl_column;
std::optional<int> call_file;
std::optional<int> call_line;
std::optional<int> call_column;
DWARFExpressionList frame_base;
const dw_tag_t tag = die.Tag();
if (tag != DW_TAG_subprogram)
return nullptr;
if (die.GetDIENamesAndRanges(name, mangled, func_ranges, decl_file, decl_line,
decl_column, call_file, call_line, call_column,
&frame_base)) {
Mangled func_name;
if (mangled)
func_name.SetValue(ConstString(mangled));
else if ((die.GetParent().Tag() == DW_TAG_compile_unit ||
die.GetParent().Tag() == DW_TAG_partial_unit) &&
Language::LanguageIsCPlusPlus(
SymbolFileDWARF::GetLanguage(*die.GetCU())) &&
!Language::LanguageIsObjC(
SymbolFileDWARF::GetLanguage(*die.GetCU())) &&
name && strcmp(name, "main") != 0) {
// If the mangled name is not present in the DWARF, generate the
// demangled name using the decl context. We skip if the function is
// "main" as its name is never mangled.
func_name.SetValue(ConstructDemangledNameFromDWARF(die));
} else
func_name.SetValue(ConstString(name));
FunctionSP func_sp;
std::unique_ptr<Declaration> decl_up;
if (decl_file || decl_line || decl_column)
decl_up = std::make_unique<Declaration>(
die.GetCU()->GetFile(decl_file ? *decl_file : 0),
decl_line ? *decl_line : 0, decl_column ? *decl_column : 0);
SymbolFileDWARF *dwarf = die.GetDWARF();
// Supply the type _only_ if it has already been parsed
Type *func_type = dwarf->GetDIEToType().lookup(die.GetDIE());
assert(func_type == nullptr || func_type != DIE_IS_BEING_PARSED);
const user_id_t func_user_id = die.GetID();
func_sp =
std::make_shared<Function>(&comp_unit,
func_user_id, // UserID is the DIE offset
func_user_id, func_name, func_type,
func_range); // first address range
if (func_sp.get() != nullptr) {
if (frame_base.IsValid())
func_sp->GetFrameBaseExpression() = frame_base;
comp_unit.AddFunction(func_sp);
return func_sp.get();
}
}
return nullptr;
}
namespace {
/// Parsed form of all attributes that are relevant for parsing Objective-C
/// properties.
struct PropertyAttributes {
explicit PropertyAttributes(const DWARFDIE &die);
const char *prop_name = nullptr;
const char *prop_getter_name = nullptr;
const char *prop_setter_name = nullptr;
/// \see clang::ObjCPropertyAttribute
uint32_t prop_attributes = 0;
};
struct DiscriminantValue {
explicit DiscriminantValue(const DWARFDIE &die, ModuleSP module_sp);
uint32_t byte_offset;
uint32_t byte_size;
DWARFFormValue type_ref;
};
struct VariantMember {
explicit VariantMember(DWARFDIE &die, ModuleSP module_sp);
bool IsDefault() const;
std::optional<uint32_t> discr_value;
DWARFFormValue type_ref;
ConstString variant_name;
uint32_t byte_offset;
ConstString GetName() const;
};
struct VariantPart {
explicit VariantPart(const DWARFDIE &die, const DWARFDIE &parent_die,
ModuleSP module_sp);
std::vector<VariantMember> &members();
DiscriminantValue &discriminant();
private:
std::vector<VariantMember> _members;
DiscriminantValue _discriminant;
};
} // namespace
ConstString VariantMember::GetName() const { return this->variant_name; }
bool VariantMember::IsDefault() const { return !discr_value; }
VariantMember::VariantMember(DWARFDIE &die, lldb::ModuleSP module_sp) {
assert(die.Tag() == llvm::dwarf::DW_TAG_variant);
this->discr_value =
die.GetAttributeValueAsOptionalUnsigned(DW_AT_discr_value);
for (auto child_die : die.children()) {
switch (child_die.Tag()) {
case llvm::dwarf::DW_TAG_member: {
DWARFAttributes attributes = child_die.GetAttributes();
for (std::size_t i = 0; i < attributes.Size(); ++i) {
DWARFFormValue form_value;
const dw_attr_t attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_name:
variant_name = ConstString(form_value.AsCString());
break;
case DW_AT_type:
type_ref = form_value;
break;
case DW_AT_data_member_location:
if (auto maybe_offset =
ExtractDataMemberLocation(die, form_value, module_sp))
byte_offset = *maybe_offset;
break;
default:
break;
}
}
}
break;
}
default:
break;
}
break;
}
}
DiscriminantValue::DiscriminantValue(const DWARFDIE &die, ModuleSP module_sp) {
auto referenced_die = die.GetReferencedDIE(DW_AT_discr);
DWARFAttributes attributes = referenced_die.GetAttributes();
for (std::size_t i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_type:
type_ref = form_value;
break;
case DW_AT_data_member_location:
if (auto maybe_offset =
ExtractDataMemberLocation(die, form_value, module_sp))
byte_offset = *maybe_offset;
break;
default:
break;
}
}
}
}
VariantPart::VariantPart(const DWARFDIE &die, const DWARFDIE &parent_die,
lldb::ModuleSP module_sp)
: _members(), _discriminant(die, module_sp) {
for (auto child : die.children()) {
if (child.Tag() == llvm::dwarf::DW_TAG_variant) {
_members.push_back(VariantMember(child, module_sp));
}
}
}
std::vector<VariantMember> &VariantPart::members() { return this->_members; }
DiscriminantValue &VariantPart::discriminant() { return this->_discriminant; }
DWARFASTParserClang::MemberAttributes::MemberAttributes(
const DWARFDIE &die, const DWARFDIE &parent_die, ModuleSP module_sp) {
DWARFAttributes attributes = die.GetAttributes();
for (size_t i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_name:
name = form_value.AsCString();
break;
case DW_AT_type:
encoding_form = form_value;
break;
case DW_AT_bit_offset:
bit_offset = form_value.Signed();
break;
case DW_AT_bit_size:
bit_size = form_value.Unsigned();
break;
case DW_AT_byte_size:
byte_size = form_value.Unsigned();
break;
case DW_AT_const_value:
const_value_form = form_value;
break;
case DW_AT_data_bit_offset:
data_bit_offset = form_value.Unsigned();
break;
case DW_AT_data_member_location:
if (auto maybe_offset =
ExtractDataMemberLocation(die, form_value, module_sp))
member_byte_offset = *maybe_offset;
break;
case DW_AT_accessibility:
accessibility =
DWARFASTParser::GetAccessTypeFromDWARF(form_value.Unsigned());
break;
case DW_AT_artificial:
is_artificial = form_value.Boolean();
break;
case DW_AT_declaration:
is_declaration = form_value.Boolean();
break;
default:
break;
}
}
}
// Clang has a DWARF generation bug where sometimes it represents
// fields that are references with bad byte size and bit size/offset
// information such as:
//
// DW_AT_byte_size( 0x00 )
// DW_AT_bit_size( 0x40 )
// DW_AT_bit_offset( 0xffffffffffffffc0 )
//
// So check the bit offset to make sure it is sane, and if the values
// are not sane, remove them. If we don't do this then we will end up
// with a crash if we try to use this type in an expression when clang
// becomes unhappy with its recycled debug info.
if (byte_size.value_or(0) == 0 && bit_offset < 0) {
bit_size = 0;
bit_offset = 0;
}
}
PropertyAttributes::PropertyAttributes(const DWARFDIE &die) {
DWARFAttributes attributes = die.GetAttributes();
for (size_t i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_APPLE_property_name:
prop_name = form_value.AsCString();
break;
case DW_AT_APPLE_property_getter:
prop_getter_name = form_value.AsCString();
break;
case DW_AT_APPLE_property_setter:
prop_setter_name = form_value.AsCString();
break;
case DW_AT_APPLE_property_attribute:
prop_attributes = form_value.Unsigned();
break;
default:
break;
}
}
}
if (!prop_name)
return;
ConstString fixed_setter;
// Check if the property getter/setter were provided as full names.
// We want basenames, so we extract them.
if (prop_getter_name && prop_getter_name[0] == '-') {
std::optional<const ObjCLanguage::MethodName> prop_getter_method =
ObjCLanguage::MethodName::Create(prop_getter_name, true);
if (prop_getter_method)
prop_getter_name =
ConstString(prop_getter_method->GetSelector()).GetCString();
}
if (prop_setter_name && prop_setter_name[0] == '-') {
std::optional<const ObjCLanguage::MethodName> prop_setter_method =
ObjCLanguage::MethodName::Create(prop_setter_name, true);
if (prop_setter_method)
prop_setter_name =
ConstString(prop_setter_method->GetSelector()).GetCString();
}
// If the names haven't been provided, they need to be filled in.
if (!prop_getter_name)
prop_getter_name = prop_name;
if (!prop_setter_name && prop_name[0] &&
!(prop_attributes & DW_APPLE_PROPERTY_readonly)) {
StreamString ss;
ss.Printf("set%c%s:", toupper(prop_name[0]), &prop_name[1]);
fixed_setter.SetString(ss.GetString());
prop_setter_name = fixed_setter.GetCString();
}
}
void DWARFASTParserClang::ParseObjCProperty(
const DWARFDIE &die, const DWARFDIE &parent_die,
const lldb_private::CompilerType &class_clang_type,
DelayedPropertyList &delayed_properties) {
// This function can only parse DW_TAG_APPLE_property.
assert(die.Tag() == DW_TAG_APPLE_property);
ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule();
const MemberAttributes attrs(die, parent_die, module_sp);
const PropertyAttributes propAttrs(die);
if (!propAttrs.prop_name) {
module_sp->ReportError("{0:x8}: DW_TAG_APPLE_property has no name.",
die.GetID());
return;
}
Type *member_type = die.ResolveTypeUID(attrs.encoding_form.Reference());
if (!member_type) {
module_sp->ReportError(
"{0:x8}: DW_TAG_APPLE_property '{1}' refers to type {2:x16}"
" which was unable to be parsed",
die.GetID(), propAttrs.prop_name,
attrs.encoding_form.Reference().GetOffset());
return;
}
ClangASTMetadata metadata;
metadata.SetUserID(die.GetID());
delayed_properties.push_back(DelayedAddObjCClassProperty(
class_clang_type, propAttrs.prop_name,
member_type->GetLayoutCompilerType(), propAttrs.prop_setter_name,
propAttrs.prop_getter_name, propAttrs.prop_attributes, &metadata));
}
llvm::Expected<llvm::APInt> DWARFASTParserClang::ExtractIntFromFormValue(
const CompilerType &int_type, const DWARFFormValue &form_value) const {
clang::QualType qt = ClangUtil::GetQualType(int_type);
assert(qt->isIntegralOrEnumerationType());
auto ts_ptr = int_type.GetTypeSystem().dyn_cast_or_null<TypeSystemClang>();
if (!ts_ptr)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"TypeSystem not clang");
TypeSystemClang &ts = *ts_ptr;
clang::ASTContext &ast = ts.getASTContext();
const unsigned type_bits = ast.getIntWidth(qt);
const bool is_unsigned = qt->isUnsignedIntegerType();
// The maximum int size supported at the moment by this function. Limited
// by the uint64_t return type of DWARFFormValue::Signed/Unsigned.
constexpr std::size_t max_bit_size = 64;
// For values bigger than 64 bit (e.g. __int128_t values),
// DWARFFormValue's Signed/Unsigned functions will return wrong results so
// emit an error for now.
if (type_bits > max_bit_size) {
auto msg = llvm::formatv("Can only parse integers with up to {0} bits, but "
"given integer has {1} bits.",
max_bit_size, type_bits);
return llvm::createStringError(llvm::inconvertibleErrorCode(), msg.str());
}
// Construct an APInt with the maximum bit size and the given integer.
llvm::APInt result(max_bit_size, form_value.Unsigned(), !is_unsigned);
// Calculate how many bits are required to represent the input value.
// For unsigned types, take the number of active bits in the APInt.
// For signed types, ask APInt how many bits are required to represent the
// signed integer.
const unsigned required_bits =
is_unsigned ? result.getActiveBits() : result.getSignificantBits();
// If the input value doesn't fit into the integer type, return an error.
if (required_bits > type_bits) {
std::string value_as_str = is_unsigned
? std::to_string(form_value.Unsigned())
: std::to_string(form_value.Signed());
auto msg = llvm::formatv("Can't store {0} value {1} in integer with {2} "
"bits.",
(is_unsigned ? "unsigned" : "signed"),
value_as_str, type_bits);
return llvm::createStringError(llvm::inconvertibleErrorCode(), msg.str());
}
// Trim the result to the bit width our the int type.
if (result.getBitWidth() > type_bits)
result = result.trunc(type_bits);
return result;
}
void DWARFASTParserClang::CreateStaticMemberVariable(
const DWARFDIE &die, const MemberAttributes &attrs,
const lldb_private::CompilerType &class_clang_type) {
Log *log = GetLog(DWARFLog::TypeCompletion | DWARFLog::Lookups);
assert(die.Tag() == DW_TAG_member || die.Tag() == DW_TAG_variable);
Type *var_type = die.ResolveTypeUID(attrs.encoding_form.Reference());
if (!var_type)
return;
auto accessibility =
attrs.accessibility == eAccessNone ? eAccessPublic : attrs.accessibility;
CompilerType ct = var_type->GetForwardCompilerType();
clang::VarDecl *v = TypeSystemClang::AddVariableToRecordType(
class_clang_type, attrs.name, ct, accessibility);
if (!v) {
LLDB_LOG(log, "Failed to add variable to the record type");
return;
}
bool unused;
// TODO: Support float/double static members as well.
if (!ct.IsIntegerOrEnumerationType(unused) || !attrs.const_value_form)
return;
llvm::Expected<llvm::APInt> const_value_or_err =
ExtractIntFromFormValue(ct, *attrs.const_value_form);
if (!const_value_or_err) {
LLDB_LOG_ERROR(log, const_value_or_err.takeError(),
"Failed to add const value to variable {1}: {0}",
v->getQualifiedNameAsString());
return;
}
TypeSystemClang::SetIntegerInitializerForVariable(v, *const_value_or_err);
}
void DWARFASTParserClang::ParseSingleMember(
const DWARFDIE &die, const DWARFDIE &parent_die,
const lldb_private::CompilerType &class_clang_type,
lldb::AccessType default_accessibility,
lldb_private::ClangASTImporter::LayoutInfo &layout_info,
FieldInfo &last_field_info) {
// This function can only parse DW_TAG_member.
assert(die.Tag() == DW_TAG_member);
ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule();
const dw_tag_t tag = die.Tag();
// Get the parent byte size so we can verify any members will fit
const uint64_t parent_byte_size =
parent_die.GetAttributeValueAsUnsigned(DW_AT_byte_size, UINT64_MAX);
const uint64_t parent_bit_size =
parent_byte_size == UINT64_MAX ? UINT64_MAX : parent_byte_size * 8;
const MemberAttributes attrs(die, parent_die, module_sp);
// Handle static members, which are typically members without
// locations. However, GCC doesn't emit DW_AT_data_member_location
// for any union members (regardless of linkage).
// Non-normative text pre-DWARFv5 recommends marking static
// data members with an DW_AT_external flag. Clang emits this consistently
// whereas GCC emits it only for static data members if not part of an
// anonymous namespace. The flag that is consistently emitted for static
// data members is DW_AT_declaration, so we check it instead.
// The following block is only necessary to support DWARFv4 and earlier.
// Starting with DWARFv5, static data members are marked DW_AT_variable so we
// can consistently detect them on both GCC and Clang without below heuristic.
if (attrs.member_byte_offset == UINT32_MAX &&
attrs.data_bit_offset == UINT64_MAX && attrs.is_declaration) {
CreateStaticMemberVariable(die, attrs, class_clang_type);
return;
}
Type *member_type = die.ResolveTypeUID(attrs.encoding_form.Reference());
if (!member_type) {
if (attrs.name)
module_sp->ReportError(
"{0:x8}: DW_TAG_member '{1}' refers to type {2:x16}"
" which was unable to be parsed",
die.GetID(), attrs.name, attrs.encoding_form.Reference().GetOffset());
else
module_sp->ReportError("{0:x8}: DW_TAG_member refers to type {1:x16}"
" which was unable to be parsed",
die.GetID(),
attrs.encoding_form.Reference().GetOffset());
return;
}
const uint64_t character_width = 8;
const uint64_t word_width = 32;
CompilerType member_clang_type = member_type->GetLayoutCompilerType();
const auto accessibility = attrs.accessibility == eAccessNone
? default_accessibility
: attrs.accessibility;
uint64_t field_bit_offset = (attrs.member_byte_offset == UINT32_MAX
? 0
: (attrs.member_byte_offset * 8ULL));
if (attrs.bit_size > 0) {
FieldInfo this_field_info;
this_field_info.bit_offset = field_bit_offset;
this_field_info.bit_size = attrs.bit_size;
if (attrs.data_bit_offset != UINT64_MAX) {
this_field_info.bit_offset = attrs.data_bit_offset;
} else {
auto byte_size = attrs.byte_size;
if (!byte_size)
byte_size = member_type->GetByteSize(nullptr);
ObjectFile *objfile = die.GetDWARF()->GetObjectFile();
if (objfile->GetByteOrder() == eByteOrderLittle) {
this_field_info.bit_offset += byte_size.value_or(0) * 8;
this_field_info.bit_offset -= (attrs.bit_offset + attrs.bit_size);
} else {
this_field_info.bit_offset += attrs.bit_offset;
}
}
// The ObjC runtime knows the byte offset but we still need to provide
// the bit-offset in the layout. It just means something different then
// what it does in C and C++. So we skip this check for ObjC types.
//
// We also skip this for fields of a union since they will all have a
// zero offset.
if (!TypeSystemClang::IsObjCObjectOrInterfaceType(class_clang_type) &&
!(parent_die.Tag() == DW_TAG_union_type &&
this_field_info.bit_offset == 0) &&
((this_field_info.bit_offset >= parent_bit_size) ||
(last_field_info.IsBitfield() &&
!last_field_info.NextBitfieldOffsetIsValid(
this_field_info.bit_offset)))) {
ObjectFile *objfile = die.GetDWARF()->GetObjectFile();
objfile->GetModule()->ReportWarning(
"{0:x16}: {1} ({2}) bitfield named \"{3}\" has invalid "
"bit offset ({4:x8}) member will be ignored. Please file a bug "
"against the "
"compiler and include the preprocessed output for {5}\n",
die.GetID(), DW_TAG_value_to_name(tag), tag, attrs.name,
this_field_info.bit_offset, GetUnitName(parent_die).c_str());
return;
}
// Update the field bit offset we will report for layout
field_bit_offset = this_field_info.bit_offset;
// Objective-C has invalid DW_AT_bit_offset values in older
// versions of clang, so we have to be careful and only insert
// unnamed bitfields if we have a new enough clang.
bool detect_unnamed_bitfields = true;
if (TypeSystemClang::IsObjCObjectOrInterfaceType(class_clang_type))
detect_unnamed_bitfields =
die.GetCU()->Supports_unnamed_objc_bitfields();
if (detect_unnamed_bitfields) {
std::optional<FieldInfo> unnamed_field_info;
uint64_t last_field_end =
last_field_info.bit_offset + last_field_info.bit_size;
if (!last_field_info.IsBitfield()) {
// The last field was not a bit-field...
// but if it did take up the entire word then we need to extend
// last_field_end so the bit-field does not step into the last
// fields padding.
if (last_field_end != 0 && ((last_field_end % word_width) != 0))
last_field_end += word_width - (last_field_end % word_width);
}
if (ShouldCreateUnnamedBitfield(last_field_info, last_field_end,
this_field_info, layout_info)) {
unnamed_field_info = FieldInfo{};
unnamed_field_info->bit_size =
this_field_info.bit_offset - last_field_end;
unnamed_field_info->bit_offset = last_field_end;
}
if (unnamed_field_info) {
clang::FieldDecl *unnamed_bitfield_decl =
TypeSystemClang::AddFieldToRecordType(
class_clang_type, llvm::StringRef(),
m_ast.GetBuiltinTypeForEncodingAndBitSize(eEncodingSint,
word_width),
accessibility, unnamed_field_info->bit_size);
layout_info.field_offsets.insert(std::make_pair(
unnamed_bitfield_decl, unnamed_field_info->bit_offset));
}
}
last_field_info = this_field_info;
last_field_info.SetIsBitfield(true);
} else {
last_field_info.bit_offset = field_bit_offset;
if (std::optional<uint64_t> clang_type_size =
member_type->GetByteSize(nullptr)) {
last_field_info.bit_size = *clang_type_size * character_width;
}
last_field_info.SetIsBitfield(false);
}
// Don't turn artificial members such as vtable pointers into real FieldDecls
// in our AST. Clang will re-create those articial members and they would
// otherwise just overlap in the layout with the FieldDecls we add here.
// This needs to be done after updating FieldInfo which keeps track of where
// field start/end so we don't later try to fill the space of this
// artificial member with (unnamed bitfield) padding.
if (attrs.is_artificial && ShouldIgnoreArtificialField(attrs.name)) {
last_field_info.SetIsArtificial(true);
return;
}
if (!member_clang_type.IsCompleteType())
member_clang_type.GetCompleteType();
{
// Older versions of clang emit the same DWARF for array[0] and array[1]. If
// the current field is at the end of the structure, then there is
// definitely no room for extra elements and we override the type to
// array[0]. This was fixed by f454dfb6b5af.
CompilerType member_array_element_type;
uint64_t member_array_size;
bool member_array_is_incomplete;
if (member_clang_type.IsArrayType(&member_array_element_type,
&member_array_size,
&member_array_is_incomplete) &&
!member_array_is_incomplete) {
uint64_t parent_byte_size =
parent_die.GetAttributeValueAsUnsigned(DW_AT_byte_size, UINT64_MAX);
if (attrs.member_byte_offset >= parent_byte_size) {
if (member_array_size != 1 &&
(member_array_size != 0 ||
attrs.member_byte_offset > parent_byte_size)) {
module_sp->ReportError(
"{0:x8}: DW_TAG_member '{1}' refers to type {2:x16}"
" which extends beyond the bounds of {3:x8}",
die.GetID(), attrs.name,
attrs.encoding_form.Reference().GetOffset(), parent_die.GetID());
}
member_clang_type =
m_ast.CreateArrayType(member_array_element_type, 0, false);
}
}
}
TypeSystemClang::RequireCompleteType(member_clang_type);
clang::FieldDecl *field_decl = TypeSystemClang::AddFieldToRecordType(
class_clang_type, attrs.name, member_clang_type, accessibility,
attrs.bit_size);
m_ast.SetMetadataAsUserID(field_decl, die.GetID());
layout_info.field_offsets.insert(
std::make_pair(field_decl, field_bit_offset));
}
bool DWARFASTParserClang::ParseChildMembers(
const DWARFDIE &parent_die, CompilerType &class_clang_type,
std::vector<std::unique_ptr<clang::CXXBaseSpecifier>> &base_classes,
std::vector<DWARFDIE> &member_function_dies,
std::vector<DWARFDIE> &contained_type_dies,
DelayedPropertyList &delayed_properties,
const AccessType default_accessibility,
ClangASTImporter::LayoutInfo &layout_info) {
if (!parent_die)
return false;
FieldInfo last_field_info;
ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule();
auto ts = class_clang_type.GetTypeSystem();
auto ast = ts.dyn_cast_or_null<TypeSystemClang>();
if (ast == nullptr)
return false;
for (DWARFDIE die : parent_die.children()) {
dw_tag_t tag = die.Tag();
switch (tag) {
case DW_TAG_APPLE_property:
ParseObjCProperty(die, parent_die, class_clang_type, delayed_properties);
break;
case DW_TAG_variant_part:
if (die.GetCU()->GetDWARFLanguageType() == eLanguageTypeRust) {
ParseRustVariantPart(die, parent_die, class_clang_type,
default_accessibility, layout_info);
}
break;
case DW_TAG_variable: {
const MemberAttributes attrs(die, parent_die, module_sp);
CreateStaticMemberVariable(die, attrs, class_clang_type);
} break;
case DW_TAG_member:
ParseSingleMember(die, parent_die, class_clang_type,
default_accessibility, layout_info, last_field_info);
break;
case DW_TAG_subprogram:
// Let the type parsing code handle this one for us.
member_function_dies.push_back(die);
break;
case DW_TAG_inheritance:
ParseInheritance(die, parent_die, class_clang_type, default_accessibility,
module_sp, base_classes, layout_info);
break;
default:
if (llvm::dwarf::isType(tag))
contained_type_dies.push_back(die);
break;
}
}
return true;
}
size_t DWARFASTParserClang::ParseChildParameters(
clang::DeclContext *containing_decl_ctx, const DWARFDIE &parent_die,
bool skip_artificial, bool &is_static, bool &is_variadic,
bool &has_template_params, std::vector<CompilerType> &function_param_types,
std::vector<clang::ParmVarDecl *> &function_param_decls,
unsigned &type_quals) {
if (!parent_die)
return 0;
size_t arg_idx = 0;
for (DWARFDIE die : parent_die.children()) {
const dw_tag_t tag = die.Tag();
switch (tag) {
case DW_TAG_formal_parameter: {
DWARFAttributes attributes = die.GetAttributes();
if (attributes.Size() == 0) {
arg_idx++;
break;
}
const char *name = nullptr;
DWARFFormValue param_type_die_form;
bool is_artificial = false;
// one of None, Auto, Register, Extern, Static, PrivateExtern
clang::StorageClass storage = clang::SC_None;
uint32_t i;
for (i = 0; i < attributes.Size(); ++i) {
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
switch (attr) {
case DW_AT_name:
name = form_value.AsCString();
break;
case DW_AT_type:
param_type_die_form = form_value;
break;
case DW_AT_artificial:
is_artificial = form_value.Boolean();
break;
case DW_AT_location:
case DW_AT_const_value:
case DW_AT_default_value:
case DW_AT_description:
case DW_AT_endianity:
case DW_AT_is_optional:
case DW_AT_segment:
case DW_AT_variable_parameter:
default:
case DW_AT_abstract_origin:
case DW_AT_sibling:
break;
}
}
}
bool skip = false;
if (skip_artificial && is_artificial) {
// In order to determine if a C++ member function is "const" we
// have to look at the const-ness of "this"...
if (arg_idx == 0 &&
DeclKindIsCXXClass(containing_decl_ctx->getDeclKind()) &&
// Often times compilers omit the "this" name for the
// specification DIEs, so we can't rely upon the name being in
// the formal parameter DIE...
(name == nullptr || ::strcmp(name, "this") == 0)) {
Type *this_type = die.ResolveTypeUID(param_type_die_form.Reference());
if (this_type) {
uint32_t encoding_mask = this_type->GetEncodingMask();
if (encoding_mask & Type::eEncodingIsPointerUID) {
is_static = false;
if (encoding_mask & (1u << Type::eEncodingIsConstUID))
type_quals |= clang::Qualifiers::Const;
if (encoding_mask & (1u << Type::eEncodingIsVolatileUID))
type_quals |= clang::Qualifiers::Volatile;
}
}
}
skip = true;
}
if (!skip) {
Type *type = die.ResolveTypeUID(param_type_die_form.Reference());
if (type) {
function_param_types.push_back(type->GetForwardCompilerType());
clang::ParmVarDecl *param_var_decl = m_ast.CreateParameterDeclaration(
containing_decl_ctx, GetOwningClangModule(die), name,
type->GetForwardCompilerType(), storage);
assert(param_var_decl);
function_param_decls.push_back(param_var_decl);
m_ast.SetMetadataAsUserID(param_var_decl, die.GetID());
}
}
arg_idx++;
} break;
case DW_TAG_unspecified_parameters:
is_variadic = true;
break;
case DW_TAG_template_type_parameter:
case DW_TAG_template_value_parameter:
case DW_TAG_GNU_template_parameter_pack:
// The one caller of this was never using the template_param_infos, and
// the local variable was taking up a large amount of stack space in
// SymbolFileDWARF::ParseType() so this was removed. If we ever need the
// template params back, we can add them back.
// ParseTemplateDIE (dwarf_cu, die, template_param_infos);
has_template_params = true;
break;
default:
break;
}
}
return arg_idx;
}
clang::Decl *DWARFASTParserClang::GetClangDeclForDIE(const DWARFDIE &die) {
if (!die)
return nullptr;
switch (die.Tag()) {
case DW_TAG_constant:
case DW_TAG_formal_parameter:
case DW_TAG_imported_declaration:
case DW_TAG_imported_module:
break;
case DW_TAG_variable:
// This means 'die' is a C++ static data member.
// We don't want to create decls for such members
// here.
if (auto parent = die.GetParent();
parent.IsValid() && TagIsRecordType(parent.Tag()))
return nullptr;
break;
default:
return nullptr;
}
DIEToDeclMap::iterator cache_pos = m_die_to_decl.find(die.GetDIE());
if (cache_pos != m_die_to_decl.end())
return cache_pos->second;
if (DWARFDIE spec_die = die.GetReferencedDIE(DW_AT_specification)) {
clang::Decl *decl = GetClangDeclForDIE(spec_die);
m_die_to_decl[die.GetDIE()] = decl;
return decl;
}
if (DWARFDIE abstract_origin_die =
die.GetReferencedDIE(DW_AT_abstract_origin)) {
clang::Decl *decl = GetClangDeclForDIE(abstract_origin_die);
m_die_to_decl[die.GetDIE()] = decl;
return decl;
}
clang::Decl *decl = nullptr;
switch (die.Tag()) {
case DW_TAG_variable:
case DW_TAG_constant:
case DW_TAG_formal_parameter: {
SymbolFileDWARF *dwarf = die.GetDWARF();
Type *type = GetTypeForDIE(die);
if (dwarf && type) {
const char *name = die.GetName();
clang::DeclContext *decl_context =
TypeSystemClang::DeclContextGetAsDeclContext(
dwarf->GetDeclContextContainingUID(die.GetID()));
decl = m_ast.CreateVariableDeclaration(
decl_context, GetOwningClangModule(die), name,
ClangUtil::GetQualType(type->GetForwardCompilerType()));
}
break;
}
case DW_TAG_imported_declaration: {
SymbolFileDWARF *dwarf = die.GetDWARF();
DWARFDIE imported_uid = die.GetAttributeValueAsReferenceDIE(DW_AT_import);
if (imported_uid) {
CompilerDecl imported_decl = SymbolFileDWARF::GetDecl(imported_uid);
if (imported_decl) {
clang::DeclContext *decl_context =
TypeSystemClang::DeclContextGetAsDeclContext(
dwarf->GetDeclContextContainingUID(die.GetID()));
if (clang::NamedDecl *clang_imported_decl =
llvm::dyn_cast<clang::NamedDecl>(
(clang::Decl *)imported_decl.GetOpaqueDecl()))
decl = m_ast.CreateUsingDeclaration(
decl_context, OptionalClangModuleID(), clang_imported_decl);
}
}
break;
}
case DW_TAG_imported_module: {
SymbolFileDWARF *dwarf = die.GetDWARF();
DWARFDIE imported_uid = die.GetAttributeValueAsReferenceDIE(DW_AT_import);
if (imported_uid) {
CompilerDeclContext imported_decl_ctx =
SymbolFileDWARF::GetDeclContext(imported_uid);
if (imported_decl_ctx) {
clang::DeclContext *decl_context =
TypeSystemClang::DeclContextGetAsDeclContext(
dwarf->GetDeclContextContainingUID(die.GetID()));
if (clang::NamespaceDecl *ns_decl =
TypeSystemClang::DeclContextGetAsNamespaceDecl(
imported_decl_ctx))
decl = m_ast.CreateUsingDirectiveDeclaration(
decl_context, OptionalClangModuleID(), ns_decl);
}
}
break;
}
default:
break;
}
m_die_to_decl[die.GetDIE()] = decl;
return decl;
}
clang::DeclContext *
DWARFASTParserClang::GetClangDeclContextForDIE(const DWARFDIE &die) {
if (die) {
clang::DeclContext *decl_ctx = GetCachedClangDeclContextForDIE(die);
if (decl_ctx)
return decl_ctx;
bool try_parsing_type = true;
switch (die.Tag()) {
case DW_TAG_compile_unit:
case DW_TAG_partial_unit:
decl_ctx = m_ast.GetTranslationUnitDecl();
try_parsing_type = false;
break;
case DW_TAG_namespace:
decl_ctx = ResolveNamespaceDIE(die);
try_parsing_type = false;
break;
case DW_TAG_imported_declaration:
decl_ctx = ResolveImportedDeclarationDIE(die);
try_parsing_type = false;
break;
case DW_TAG_lexical_block:
decl_ctx = GetDeclContextForBlock(die);
try_parsing_type = false;
break;
default:
break;
}
if (decl_ctx == nullptr && try_parsing_type) {
Type *type = die.GetDWARF()->ResolveType(die);
if (type)
decl_ctx = GetCachedClangDeclContextForDIE(die);
}
if (decl_ctx) {
LinkDeclContextToDIE(decl_ctx, die);
return decl_ctx;
}
}
return nullptr;
}
OptionalClangModuleID
DWARFASTParserClang::GetOwningClangModule(const DWARFDIE &die) {
if (!die.IsValid())
return {};
for (DWARFDIE parent = die.GetParent(); parent.IsValid();
parent = parent.GetParent()) {
const dw_tag_t tag = parent.Tag();
if (tag == DW_TAG_module) {
DWARFDIE module_die = parent;
auto it = m_die_to_module.find(module_die.GetDIE());
if (it != m_die_to_module.end())
return it->second;
const char *name =
module_die.GetAttributeValueAsString(DW_AT_name, nullptr);
if (!name)
return {};
OptionalClangModuleID id =
m_ast.GetOrCreateClangModule(name, GetOwningClangModule(module_die));
m_die_to_module.insert({module_die.GetDIE(), id});
return id;
}
}
return {};
}
static bool IsSubroutine(const DWARFDIE &die) {
switch (die.Tag()) {
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
return true;
default:
return false;
}
}
static DWARFDIE GetContainingFunctionWithAbstractOrigin(const DWARFDIE &die) {
for (DWARFDIE candidate = die; candidate; candidate = candidate.GetParent()) {
if (IsSubroutine(candidate)) {
if (candidate.GetReferencedDIE(DW_AT_abstract_origin)) {
return candidate;
} else {
return DWARFDIE();
}
}
}
assert(0 && "Shouldn't call GetContainingFunctionWithAbstractOrigin on "
"something not in a function");
return DWARFDIE();
}
static DWARFDIE FindAnyChildWithAbstractOrigin(const DWARFDIE &context) {
for (DWARFDIE candidate : context.children()) {
if (candidate.GetReferencedDIE(DW_AT_abstract_origin)) {
return candidate;
}
}
return DWARFDIE();
}
static DWARFDIE FindFirstChildWithAbstractOrigin(const DWARFDIE &block,
const DWARFDIE &function) {
assert(IsSubroutine(function));
for (DWARFDIE context = block; context != function.GetParent();
context = context.GetParent()) {
assert(!IsSubroutine(context) || context == function);
if (DWARFDIE child = FindAnyChildWithAbstractOrigin(context)) {
return child;
}
}
return DWARFDIE();
}
clang::DeclContext *
DWARFASTParserClang::GetDeclContextForBlock(const DWARFDIE &die) {
assert(die.Tag() == DW_TAG_lexical_block);
DWARFDIE containing_function_with_abstract_origin =
GetContainingFunctionWithAbstractOrigin(die);
if (!containing_function_with_abstract_origin) {
return (clang::DeclContext *)ResolveBlockDIE(die);
}
DWARFDIE child = FindFirstChildWithAbstractOrigin(
die, containing_function_with_abstract_origin);
CompilerDeclContext decl_context =
GetDeclContextContainingUIDFromDWARF(child);
return (clang::DeclContext *)decl_context.GetOpaqueDeclContext();
}
clang::BlockDecl *DWARFASTParserClang::ResolveBlockDIE(const DWARFDIE &die) {
if (die && die.Tag() == DW_TAG_lexical_block) {
clang::BlockDecl *decl =
llvm::cast_or_null<clang::BlockDecl>(m_die_to_decl_ctx[die.GetDIE()]);
if (!decl) {
DWARFDIE decl_context_die;
clang::DeclContext *decl_context =
GetClangDeclContextContainingDIE(die, &decl_context_die);
decl =
m_ast.CreateBlockDeclaration(decl_context, GetOwningClangModule(die));
if (decl)
LinkDeclContextToDIE((clang::DeclContext *)decl, die);
}
return decl;
}
return nullptr;
}
clang::NamespaceDecl *
DWARFASTParserClang::ResolveNamespaceDIE(const DWARFDIE &die) {
if (die && die.Tag() == DW_TAG_namespace) {
// See if we already parsed this namespace DIE and associated it with a
// uniqued namespace declaration
clang::NamespaceDecl *namespace_decl =
static_cast<clang::NamespaceDecl *>(m_die_to_decl_ctx[die.GetDIE()]);
if (namespace_decl)
return namespace_decl;
else {
const char *namespace_name = die.GetName();
clang::DeclContext *containing_decl_ctx =
GetClangDeclContextContainingDIE(die, nullptr);
bool is_inline =
die.GetAttributeValueAsUnsigned(DW_AT_export_symbols, 0) != 0;
namespace_decl = m_ast.GetUniqueNamespaceDeclaration(
namespace_name, containing_decl_ctx, GetOwningClangModule(die),
is_inline);
if (namespace_decl)
LinkDeclContextToDIE((clang::DeclContext *)namespace_decl, die);
return namespace_decl;
}
}
return nullptr;
}
clang::NamespaceDecl *
DWARFASTParserClang::ResolveImportedDeclarationDIE(const DWARFDIE &die) {
assert(die && die.Tag() == DW_TAG_imported_declaration);
// See if we cached a NamespaceDecl for this imported declaration
// already
auto it = m_die_to_decl_ctx.find(die.GetDIE());
if (it != m_die_to_decl_ctx.end())
return static_cast<clang::NamespaceDecl *>(it->getSecond());
clang::NamespaceDecl *namespace_decl = nullptr;
const DWARFDIE imported_uid =
die.GetAttributeValueAsReferenceDIE(DW_AT_import);
if (!imported_uid)
return nullptr;
switch (imported_uid.Tag()) {
case DW_TAG_imported_declaration:
namespace_decl = ResolveImportedDeclarationDIE(imported_uid);
break;
case DW_TAG_namespace:
namespace_decl = ResolveNamespaceDIE(imported_uid);
break;
default:
return nullptr;
}
if (!namespace_decl)
return nullptr;
LinkDeclContextToDIE(namespace_decl, die);
return namespace_decl;
}
clang::DeclContext *DWARFASTParserClang::GetClangDeclContextContainingDIE(
const DWARFDIE &die, DWARFDIE *decl_ctx_die_copy) {
SymbolFileDWARF *dwarf = die.GetDWARF();
DWARFDIE decl_ctx_die = dwarf->GetDeclContextDIEContainingDIE(die);
if (decl_ctx_die_copy)
*decl_ctx_die_copy = decl_ctx_die;
if (decl_ctx_die) {
clang::DeclContext *clang_decl_ctx =
GetClangDeclContextForDIE(decl_ctx_die);
if (clang_decl_ctx)
return clang_decl_ctx;
}
return m_ast.GetTranslationUnitDecl();
}
clang::DeclContext *
DWARFASTParserClang::GetCachedClangDeclContextForDIE(const DWARFDIE &die) {
if (die) {
DIEToDeclContextMap::iterator pos = m_die_to_decl_ctx.find(die.GetDIE());
if (pos != m_die_to_decl_ctx.end())
return pos->second;
}
return nullptr;
}
void DWARFASTParserClang::LinkDeclContextToDIE(clang::DeclContext *decl_ctx,
const DWARFDIE &die) {
m_die_to_decl_ctx[die.GetDIE()] = decl_ctx;
// There can be many DIEs for a single decl context
// m_decl_ctx_to_die[decl_ctx].insert(die.GetDIE());
m_decl_ctx_to_die.insert(std::make_pair(decl_ctx, die));
}
bool DWARFASTParserClang::CopyUniqueClassMethodTypes(
const DWARFDIE &src_class_die, const DWARFDIE &dst_class_die,
lldb_private::Type *class_type, std::vector<DWARFDIE> &failures) {
if (!class_type || !src_class_die || !dst_class_die)
return false;
if (src_class_die.Tag() != dst_class_die.Tag())
return false;
// We need to complete the class type so we can get all of the method types
// parsed so we can then unique those types to their equivalent counterparts
// in "dst_cu" and "dst_class_die"
class_type->GetFullCompilerType();
auto gather = [](DWARFDIE die, UniqueCStringMap<DWARFDIE> &map,
UniqueCStringMap<DWARFDIE> &map_artificial) {
if (die.Tag() != DW_TAG_subprogram)
return;
// Make sure this is a declaration and not a concrete instance by looking
// for DW_AT_declaration set to 1. Sometimes concrete function instances are
// placed inside the class definitions and shouldn't be included in the list
// of things that are tracking here.
if (die.GetAttributeValueAsUnsigned(DW_AT_declaration, 0) != 1)
return;
if (const char *name = die.GetMangledName()) {
ConstString const_name(name);
if (die.GetAttributeValueAsUnsigned(DW_AT_artificial, 0))
map_artificial.Append(const_name, die);
else
map.Append(const_name, die);
}
};
UniqueCStringMap<DWARFDIE> src_name_to_die;
UniqueCStringMap<DWARFDIE> dst_name_to_die;
UniqueCStringMap<DWARFDIE> src_name_to_die_artificial;
UniqueCStringMap<DWARFDIE> dst_name_to_die_artificial;
for (DWARFDIE src_die = src_class_die.GetFirstChild(); src_die.IsValid();
src_die = src_die.GetSibling()) {
gather(src_die, src_name_to_die, src_name_to_die_artificial);
}
for (DWARFDIE dst_die = dst_class_die.GetFirstChild(); dst_die.IsValid();
dst_die = dst_die.GetSibling()) {
gather(dst_die, dst_name_to_die, dst_name_to_die_artificial);
}
const uint32_t src_size = src_name_to_die.GetSize();
const uint32_t dst_size = dst_name_to_die.GetSize();
// Is everything kosher so we can go through the members at top speed?
bool fast_path = true;
if (src_size != dst_size)
fast_path = false;
uint32_t idx;
if (fast_path) {
for (idx = 0; idx < src_size; ++idx) {
DWARFDIE src_die = src_name_to_die.GetValueAtIndexUnchecked(idx);
DWARFDIE dst_die = dst_name_to_die.GetValueAtIndexUnchecked(idx);
if (src_die.Tag() != dst_die.Tag())
fast_path = false;
const char *src_name = src_die.GetMangledName();
const char *dst_name = dst_die.GetMangledName();
// Make sure the names match
if (src_name == dst_name || (strcmp(src_name, dst_name) == 0))
continue;
fast_path = false;
}
}
DWARFASTParserClang *src_dwarf_ast_parser =
static_cast<DWARFASTParserClang *>(
SymbolFileDWARF::GetDWARFParser(*src_class_die.GetCU()));
DWARFASTParserClang *dst_dwarf_ast_parser =
static_cast<DWARFASTParserClang *>(
SymbolFileDWARF::GetDWARFParser(*dst_class_die.GetCU()));
auto link = [&](DWARFDIE src, DWARFDIE dst) {
SymbolFileDWARF::DIEToTypePtr &die_to_type =
dst_class_die.GetDWARF()->GetDIEToType();
clang::DeclContext *dst_decl_ctx =
dst_dwarf_ast_parser->m_die_to_decl_ctx[dst.GetDIE()];
if (dst_decl_ctx)
src_dwarf_ast_parser->LinkDeclContextToDIE(dst_decl_ctx, src);
if (Type *src_child_type = die_to_type[src.GetDIE()])
die_to_type[dst.GetDIE()] = src_child_type;
};
// Now do the work of linking the DeclContexts and Types.
if (fast_path) {
// We can do this quickly. Just run across the tables index-for-index
// since we know each node has matching names and tags.
for (idx = 0; idx < src_size; ++idx) {
link(src_name_to_die.GetValueAtIndexUnchecked(idx),
dst_name_to_die.GetValueAtIndexUnchecked(idx));
}
} else {
// We must do this slowly. For each member of the destination, look up a
// member in the source with the same name, check its tag, and unique them
// if everything matches up. Report failures.
if (!src_name_to_die.IsEmpty() && !dst_name_to_die.IsEmpty()) {
src_name_to_die.Sort();
for (idx = 0; idx < dst_size; ++idx) {
ConstString dst_name = dst_name_to_die.GetCStringAtIndex(idx);
DWARFDIE dst_die = dst_name_to_die.GetValueAtIndexUnchecked(idx);
DWARFDIE src_die = src_name_to_die.Find(dst_name, DWARFDIE());
if (src_die && (src_die.Tag() == dst_die.Tag()))
link(src_die, dst_die);
else
failures.push_back(dst_die);
}
}
}
const uint32_t src_size_artificial = src_name_to_die_artificial.GetSize();
const uint32_t dst_size_artificial = dst_name_to_die_artificial.GetSize();
if (src_size_artificial && dst_size_artificial) {
dst_name_to_die_artificial.Sort();
for (idx = 0; idx < src_size_artificial; ++idx) {
ConstString src_name_artificial =
src_name_to_die_artificial.GetCStringAtIndex(idx);
DWARFDIE src_die =
src_name_to_die_artificial.GetValueAtIndexUnchecked(idx);
DWARFDIE dst_die =
dst_name_to_die_artificial.Find(src_name_artificial, DWARFDIE());
// Both classes have the artificial types, link them
if (dst_die)
link(src_die, dst_die);
}
}
if (dst_size_artificial) {
for (idx = 0; idx < dst_size_artificial; ++idx) {
failures.push_back(
dst_name_to_die_artificial.GetValueAtIndexUnchecked(idx));
}
}
return !failures.empty();
}
bool DWARFASTParserClang::ShouldCreateUnnamedBitfield(
FieldInfo const &last_field_info, uint64_t last_field_end,
FieldInfo const &this_field_info,
lldb_private::ClangASTImporter::LayoutInfo const &layout_info) const {
// If we have a gap between the last_field_end and the current
// field we have an unnamed bit-field.
if (this_field_info.bit_offset <= last_field_end)
return false;
// If we have a base class, we assume there is no unnamed
// bit-field if either of the following is true:
// (a) this is the first field since the gap can be
// attributed to the members from the base class.
// FIXME: This assumption is not correct if the first field of
// the derived class is indeed an unnamed bit-field. We currently
// do not have the machinary to track the offset of the last field
// of classes we have seen before, so we are not handling this case.
// (b) Or, the first member of the derived class was a vtable pointer.
// In this case we don't want to create an unnamed bitfield either
// since those will be inserted by clang later.
const bool have_base = layout_info.base_offsets.size() != 0;
const bool this_is_first_field =
last_field_info.bit_offset == 0 && last_field_info.bit_size == 0;
const bool first_field_is_vptr =
last_field_info.bit_offset == 0 && last_field_info.IsArtificial();
if (have_base && (this_is_first_field || first_field_is_vptr))
return false;
return true;
}
void DWARFASTParserClang::ParseRustVariantPart(
DWARFDIE &die, const DWARFDIE &parent_die, CompilerType &class_clang_type,
const lldb::AccessType default_accesibility,
ClangASTImporter::LayoutInfo &layout_info) {
assert(die.Tag() == llvm::dwarf::DW_TAG_variant_part);
assert(SymbolFileDWARF::GetLanguage(*die.GetCU()) ==
LanguageType::eLanguageTypeRust);
ModuleSP module_sp = parent_die.GetDWARF()->GetObjectFile()->GetModule();
VariantPart variants(die, parent_die, module_sp);
auto discriminant_type =
die.ResolveTypeUID(variants.discriminant().type_ref.Reference());
auto decl_context = m_ast.GetDeclContextForType(class_clang_type);
auto inner_holder = m_ast.CreateRecordType(
decl_context, OptionalClangModuleID(), lldb::eAccessPublic,
std::string(
llvm::formatv("{0}$Inner", class_clang_type.GetTypeName(false))),
llvm::to_underlying(clang::TagTypeKind::Union), lldb::eLanguageTypeRust);
m_ast.StartTagDeclarationDefinition(inner_holder);
m_ast.SetIsPacked(inner_holder);
for (auto member : variants.members()) {
auto has_discriminant = !member.IsDefault();
auto member_type = die.ResolveTypeUID(member.type_ref.Reference());
auto field_type = m_ast.CreateRecordType(
m_ast.GetDeclContextForType(inner_holder), OptionalClangModuleID(),
lldb::eAccessPublic,
std::string(llvm::formatv("{0}$Variant", member.GetName())),
llvm::to_underlying(clang::TagTypeKind::Struct),
lldb::eLanguageTypeRust);
m_ast.StartTagDeclarationDefinition(field_type);
auto offset = member.byte_offset;
if (has_discriminant) {
m_ast.AddFieldToRecordType(
field_type, "$discr$", discriminant_type->GetFullCompilerType(),
lldb::eAccessPublic, variants.discriminant().byte_offset);
offset += discriminant_type->GetByteSize(nullptr).value_or(0);
}
m_ast.AddFieldToRecordType(field_type, "value",
member_type->GetFullCompilerType(),
lldb::eAccessPublic, offset * 8);
m_ast.CompleteTagDeclarationDefinition(field_type);
auto name = has_discriminant
? llvm::formatv("$variant${0}", member.discr_value.value())
: std::string("$variant$");
auto variant_decl =
m_ast.AddFieldToRecordType(inner_holder, llvm::StringRef(name),
field_type, default_accesibility, 0);
layout_info.field_offsets.insert({variant_decl, 0});
}
auto inner_field = m_ast.AddFieldToRecordType(class_clang_type,
llvm::StringRef("$variants$"),
inner_holder, eAccessPublic, 0);
m_ast.CompleteTagDeclarationDefinition(inner_holder);
layout_info.field_offsets.insert({inner_field, 0});
}