blob: db33525978a16aa7ac852eac1451fb70842219d6 [file] [log] [blame]
//===-- Process.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <atomic>
#include <memory>
#include <mutex>
#include <optional>
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/Threading.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Progress.h"
#include "lldb/Expression/DiagnosticManager.h"
#include "lldb/Expression/DynamicCheckerFunctions.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Expression/UtilityFunction.h"
#include "lldb/Host/ConnectionFileDescriptor.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Host/OptionParser.h"
#include "lldb/Host/Pipe.h"
#include "lldb/Host/Terminal.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/OptionArgParser.h"
#include "lldb/Interpreter/OptionValueProperties.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/AssertFrameRecognizer.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/InstrumentationRuntime.h"
#include "lldb/Target/JITLoader.h"
#include "lldb/Target/JITLoaderList.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/MemoryHistory.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/OperatingSystem.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/StructuredDataPlugin.h"
#include "lldb/Target/SystemRuntime.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/TargetList.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanBase.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Target/ThreadPlanStack.h"
#include "lldb/Target/UnixSignals.h"
#include "lldb/Target/VerboseTrapFrameRecognizer.h"
#include "lldb/Utility/AddressableBits.h"
#include "lldb/Utility/Event.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/NameMatches.h"
#include "lldb/Utility/ProcessInfo.h"
#include "lldb/Utility/SelectHelper.h"
#include "lldb/Utility/State.h"
#include "lldb/Utility/Timer.h"
using namespace lldb;
using namespace lldb_private;
using namespace std::chrono;
// Comment out line below to disable memory caching, overriding the process
// setting target.process.disable-memory-cache
#define ENABLE_MEMORY_CACHING
#ifdef ENABLE_MEMORY_CACHING
#define DISABLE_MEM_CACHE_DEFAULT false
#else
#define DISABLE_MEM_CACHE_DEFAULT true
#endif
class ProcessOptionValueProperties
: public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
public:
ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
const Property *
GetPropertyAtIndex(size_t idx,
const ExecutionContext *exe_ctx) const override {
// When getting the value for a key from the process options, we will
// always try and grab the setting from the current process if there is
// one. Else we just use the one from this instance.
if (exe_ctx) {
Process *process = exe_ctx->GetProcessPtr();
if (process) {
ProcessOptionValueProperties *instance_properties =
static_cast<ProcessOptionValueProperties *>(
process->GetValueProperties().get());
if (this != instance_properties)
return instance_properties->ProtectedGetPropertyAtIndex(idx);
}
}
return ProtectedGetPropertyAtIndex(idx);
}
};
static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
{
eFollowParent,
"parent",
"Continue tracing the parent process and detach the child.",
},
{
eFollowChild,
"child",
"Trace the child process and detach the parent.",
},
};
#define LLDB_PROPERTIES_process
#include "TargetProperties.inc"
enum {
#define LLDB_PROPERTIES_process
#include "TargetPropertiesEnum.inc"
ePropertyExperimental,
};
#define LLDB_PROPERTIES_process_experimental
#include "TargetProperties.inc"
enum {
#define LLDB_PROPERTIES_process_experimental
#include "TargetPropertiesEnum.inc"
};
class ProcessExperimentalOptionValueProperties
: public Cloneable<ProcessExperimentalOptionValueProperties,
OptionValueProperties> {
public:
ProcessExperimentalOptionValueProperties()
: Cloneable(Properties::GetExperimentalSettingsName()) {}
};
ProcessExperimentalProperties::ProcessExperimentalProperties()
: Properties(OptionValuePropertiesSP(
new ProcessExperimentalOptionValueProperties())) {
m_collection_sp->Initialize(g_process_experimental_properties);
}
ProcessProperties::ProcessProperties(lldb_private::Process *process)
: Properties(),
m_process(process) // Can be nullptr for global ProcessProperties
{
if (process == nullptr) {
// Global process properties, set them up one time
m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
m_collection_sp->Initialize(g_process_properties);
m_collection_sp->AppendProperty(
"thread", "Settings specific to threads.", true,
Thread::GetGlobalProperties().GetValueProperties());
} else {
m_collection_sp =
OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
m_collection_sp->SetValueChangedCallback(
ePropertyPythonOSPluginPath,
[this] { m_process->LoadOperatingSystemPlugin(true); });
}
m_experimental_properties_up =
std::make_unique<ProcessExperimentalProperties>();
m_collection_sp->AppendProperty(
Properties::GetExperimentalSettingsName(),
"Experimental settings - setting these won't produce "
"errors if the setting is not present.",
true, m_experimental_properties_up->GetValueProperties());
}
ProcessProperties::~ProcessProperties() = default;
bool ProcessProperties::GetDisableMemoryCache() const {
const uint32_t idx = ePropertyDisableMemCache;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
const uint32_t idx = ePropertyMemCacheLineSize;
return GetPropertyAtIndexAs<uint64_t>(
idx, g_process_properties[idx].default_uint_value);
}
Args ProcessProperties::GetExtraStartupCommands() const {
Args args;
const uint32_t idx = ePropertyExtraStartCommand;
m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
return args;
}
void ProcessProperties::SetExtraStartupCommands(const Args &args) {
const uint32_t idx = ePropertyExtraStartCommand;
m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
}
FileSpec ProcessProperties::GetPythonOSPluginPath() const {
const uint32_t idx = ePropertyPythonOSPluginPath;
return GetPropertyAtIndexAs<FileSpec>(idx, {});
}
uint32_t ProcessProperties::GetVirtualAddressableBits() const {
const uint32_t idx = ePropertyVirtualAddressableBits;
return GetPropertyAtIndexAs<uint64_t>(
idx, g_process_properties[idx].default_uint_value);
}
void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
const uint32_t idx = ePropertyVirtualAddressableBits;
SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
}
uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
return GetPropertyAtIndexAs<uint64_t>(
idx, g_process_properties[idx].default_uint_value);
}
void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) {
const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
}
void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
const uint32_t idx = ePropertyPythonOSPluginPath;
SetPropertyAtIndex(idx, file);
}
bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
SetPropertyAtIndex(idx, ignore);
}
bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
SetPropertyAtIndex(idx, ignore);
}
bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
SetPropertyAtIndex(idx, stop);
}
bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
SetPropertyAtIndex(idx, disable);
m_process->Flush();
}
bool ProcessProperties::GetDetachKeepsStopped() const {
const uint32_t idx = ePropertyDetachKeepsStopped;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetDetachKeepsStopped(bool stop) {
const uint32_t idx = ePropertyDetachKeepsStopped;
SetPropertyAtIndex(idx, stop);
}
bool ProcessProperties::GetWarningsOptimization() const {
const uint32_t idx = ePropertyWarningOptimization;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
const uint32_t idx = ePropertyWarningUnsupportedLanguage;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
bool ProcessProperties::GetStopOnExec() const {
const uint32_t idx = ePropertyStopOnExec;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
const uint32_t idx = ePropertyUtilityExpressionTimeout;
uint64_t value = GetPropertyAtIndexAs<uint64_t>(
idx, g_process_properties[idx].default_uint_value);
return std::chrono::seconds(value);
}
std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
const uint32_t idx = ePropertyInterruptTimeout;
uint64_t value = GetPropertyAtIndexAs<uint64_t>(
idx, g_process_properties[idx].default_uint_value);
return std::chrono::seconds(value);
}
bool ProcessProperties::GetSteppingRunsAllThreads() const {
const uint32_t idx = ePropertySteppingRunsAllThreads;
return GetPropertyAtIndexAs<bool>(
idx, g_process_properties[idx].default_uint_value != 0);
}
bool ProcessProperties::GetOSPluginReportsAllThreads() const {
const bool fail_value = true;
const Property *exp_property =
m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
OptionValueProperties *exp_values =
exp_property->GetValue()->GetAsProperties();
if (!exp_values)
return fail_value;
return exp_values
->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
.value_or(fail_value);
}
void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
const Property *exp_property =
m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
OptionValueProperties *exp_values =
exp_property->GetValue()->GetAsProperties();
if (exp_values)
exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
does_report);
}
FollowForkMode ProcessProperties::GetFollowForkMode() const {
const uint32_t idx = ePropertyFollowForkMode;
return GetPropertyAtIndexAs<FollowForkMode>(
idx, static_cast<FollowForkMode>(
g_process_properties[idx].default_uint_value));
}
ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
llvm::StringRef plugin_name,
ListenerSP listener_sp,
const FileSpec *crash_file_path,
bool can_connect) {
static uint32_t g_process_unique_id = 0;
ProcessSP process_sp;
ProcessCreateInstance create_callback = nullptr;
if (!plugin_name.empty()) {
create_callback =
PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
if (create_callback) {
process_sp = create_callback(target_sp, listener_sp, crash_file_path,
can_connect);
if (process_sp) {
if (process_sp->CanDebug(target_sp, true)) {
process_sp->m_process_unique_id = ++g_process_unique_id;
} else
process_sp.reset();
}
}
} else {
for (uint32_t idx = 0;
(create_callback =
PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
++idx) {
process_sp = create_callback(target_sp, listener_sp, crash_file_path,
can_connect);
if (process_sp) {
if (process_sp->CanDebug(target_sp, false)) {
process_sp->m_process_unique_id = ++g_process_unique_id;
break;
} else
process_sp.reset();
}
}
}
return process_sp;
}
llvm::StringRef Process::GetStaticBroadcasterClass() {
static constexpr llvm::StringLiteral class_name("lldb.process");
return class_name;
}
Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
: Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
// This constructor just delegates to the full Process constructor,
// defaulting to using the Host's UnixSignals.
}
Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
const UnixSignalsSP &unix_signals_sp)
: ProcessProperties(this),
Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
Process::GetStaticBroadcasterClass().str()),
m_target_wp(target_sp), m_public_state(eStateUnloaded),
m_private_state(eStateUnloaded),
m_private_state_broadcaster(nullptr,
"lldb.process.internal_state_broadcaster"),
m_private_state_control_broadcaster(
nullptr, "lldb.process.internal_state_control_broadcaster"),
m_private_state_listener_sp(
Listener::MakeListener("lldb.process.internal_state_listener")),
m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
m_thread_id_to_index_id_map(), m_exit_status(-1),
m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
m_extended_thread_list(*this), m_extended_thread_stop_id(0),
m_queue_list(this), m_queue_list_stop_id(0),
m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
m_memory_cache(*this), m_allocated_memory_cache(*this),
m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
m_private_run_lock(), m_currently_handling_do_on_removals(false),
m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID),
m_finalizing(false), m_destructing(false),
m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
m_can_jit(eCanJITDontKnow),
m_crash_info_dict_sp(new StructuredData::Dictionary()) {
CheckInWithManager();
Log *log = GetLog(LLDBLog::Object);
LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
if (!m_unix_signals_sp)
m_unix_signals_sp = std::make_shared<UnixSignals>();
SetEventName(eBroadcastBitStateChanged, "state-changed");
SetEventName(eBroadcastBitInterrupt, "interrupt");
SetEventName(eBroadcastBitSTDOUT, "stdout-available");
SetEventName(eBroadcastBitSTDERR, "stderr-available");
SetEventName(eBroadcastBitProfileData, "profile-data-available");
SetEventName(eBroadcastBitStructuredData, "structured-data-available");
m_private_state_control_broadcaster.SetEventName(
eBroadcastInternalStateControlStop, "control-stop");
m_private_state_control_broadcaster.SetEventName(
eBroadcastInternalStateControlPause, "control-pause");
m_private_state_control_broadcaster.SetEventName(
eBroadcastInternalStateControlResume, "control-resume");
// The listener passed into process creation is the primary listener:
// It always listens for all the event bits for Process:
SetPrimaryListener(listener_sp);
m_private_state_listener_sp->StartListeningForEvents(
&m_private_state_broadcaster,
eBroadcastBitStateChanged | eBroadcastBitInterrupt);
m_private_state_listener_sp->StartListeningForEvents(
&m_private_state_control_broadcaster,
eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
eBroadcastInternalStateControlResume);
// We need something valid here, even if just the default UnixSignalsSP.
assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
// Allow the platform to override the default cache line size
OptionValueSP value_sp =
m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
->GetValue();
uint64_t platform_cache_line_size =
target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
value_sp->SetValueAs(platform_cache_line_size);
// FIXME: Frame recognizer registration should not be done in Target.
// We should have a plugin do the registration instead, for example, a
// common C LanguageRuntime plugin.
RegisterAssertFrameRecognizer(this);
RegisterVerboseTrapFrameRecognizer(*this);
}
Process::~Process() {
Log *log = GetLog(LLDBLog::Object);
LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
StopPrivateStateThread();
// ThreadList::Clear() will try to acquire this process's mutex, so
// explicitly clear the thread list here to ensure that the mutex is not
// destroyed before the thread list.
m_thread_list.Clear();
}
ProcessProperties &Process::GetGlobalProperties() {
// NOTE: intentional leak so we don't crash if global destructor chain gets
// called as other threads still use the result of this function
static ProcessProperties *g_settings_ptr =
new ProcessProperties(nullptr);
return *g_settings_ptr;
}
void Process::Finalize(bool destructing) {
if (m_finalizing.exchange(true))
return;
if (destructing)
m_destructing.exchange(true);
// Destroy the process. This will call the virtual function DoDestroy under
// the hood, giving our derived class a chance to do the ncessary tear down.
DestroyImpl(false);
// Clear our broadcaster before we proceed with destroying
Broadcaster::Clear();
// Do any cleanup needed prior to being destructed... Subclasses that
// override this method should call this superclass method as well.
// We need to destroy the loader before the derived Process class gets
// destroyed since it is very likely that undoing the loader will require
// access to the real process.
m_dynamic_checkers_up.reset();
m_abi_sp.reset();
m_os_up.reset();
m_system_runtime_up.reset();
m_dyld_up.reset();
m_jit_loaders_up.reset();
m_thread_plans.Clear();
m_thread_list_real.Destroy();
m_thread_list.Destroy();
m_extended_thread_list.Destroy();
m_queue_list.Clear();
m_queue_list_stop_id = 0;
m_watchpoint_resource_list.Clear();
std::vector<Notifications> empty_notifications;
m_notifications.swap(empty_notifications);
m_image_tokens.clear();
m_memory_cache.Clear();
m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
{
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
m_language_runtimes.clear();
}
m_instrumentation_runtimes.clear();
m_next_event_action_up.reset();
// Clear the last natural stop ID since it has a strong reference to this
// process
m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
// We have to be very careful here as the m_private_state_listener might
// contain events that have ProcessSP values in them which can keep this
// process around forever. These events need to be cleared out.
m_private_state_listener_sp->Clear();
m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
m_public_run_lock.SetStopped();
m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
m_private_run_lock.SetStopped();
m_structured_data_plugin_map.clear();
}
void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
m_notifications.push_back(callbacks);
if (callbacks.initialize != nullptr)
callbacks.initialize(callbacks.baton, this);
}
bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
std::vector<Notifications>::iterator pos, end = m_notifications.end();
for (pos = m_notifications.begin(); pos != end; ++pos) {
if (pos->baton == callbacks.baton &&
pos->initialize == callbacks.initialize &&
pos->process_state_changed == callbacks.process_state_changed) {
m_notifications.erase(pos);
return true;
}
}
return false;
}
void Process::SynchronouslyNotifyStateChanged(StateType state) {
std::vector<Notifications>::iterator notification_pos,
notification_end = m_notifications.end();
for (notification_pos = m_notifications.begin();
notification_pos != notification_end; ++notification_pos) {
if (notification_pos->process_state_changed)
notification_pos->process_state_changed(notification_pos->baton, this,
state);
}
}
// FIXME: We need to do some work on events before the general Listener sees
// them.
// For instance if we are continuing from a breakpoint, we need to ensure that
// we do the little "insert real insn, step & stop" trick. But we can't do
// that when the event is delivered by the broadcaster - since that is done on
// the thread that is waiting for new events, so if we needed more than one
// event for our handling, we would stall. So instead we do it when we fetch
// the event off of the queue.
//
StateType Process::GetNextEvent(EventSP &event_sp) {
StateType state = eStateInvalid;
if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
std::chrono::seconds(0)) &&
event_sp)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
return state;
}
void Process::SyncIOHandler(uint32_t iohandler_id,
const Timeout<std::micro> &timeout) {
// don't sync (potentially context switch) in case where there is no process
// IO
if (!ProcessIOHandlerExists())
return;
auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
Log *log = GetLog(LLDBLog::Process);
if (Result) {
LLDB_LOG(
log,
"waited from m_iohandler_sync to change from {0}. New value is {1}.",
iohandler_id, *Result);
} else {
LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
iohandler_id);
}
}
StateType Process::WaitForProcessToStop(
const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
SelectMostRelevant select_most_relevant) {
// We can't just wait for a "stopped" event, because the stopped event may
// have restarted the target. We have to actually check each event, and in
// the case of a stopped event check the restarted flag on the event.
if (event_sp_ptr)
event_sp_ptr->reset();
StateType state = GetState();
// If we are exited or detached, we won't ever get back to any other valid
// state...
if (state == eStateDetached || state == eStateExited)
return state;
Log *log = GetLog(LLDBLog::Process);
LLDB_LOG(log, "timeout = {0}", timeout);
if (!wait_always && StateIsStoppedState(state, true) &&
StateIsStoppedState(GetPrivateState(), true)) {
LLDB_LOGF(log,
"Process::%s returning without waiting for events; process "
"private and public states are already 'stopped'.",
__FUNCTION__);
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener_sp && use_run_lock)
m_public_run_lock.SetStopped();
return state;
}
while (state != eStateInvalid) {
EventSP event_sp;
state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
if (event_sp_ptr && event_sp)
*event_sp_ptr = event_sp;
bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
Process::HandleProcessStateChangedEvent(
event_sp, stream, select_most_relevant, pop_process_io_handler);
switch (state) {
case eStateCrashed:
case eStateDetached:
case eStateExited:
case eStateUnloaded:
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener_sp && use_run_lock)
m_public_run_lock.SetStopped();
return state;
case eStateStopped:
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
continue;
else {
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener_sp && use_run_lock)
m_public_run_lock.SetStopped();
return state;
}
default:
continue;
}
}
return state;
}
bool Process::HandleProcessStateChangedEvent(
const EventSP &event_sp, Stream *stream,
SelectMostRelevant select_most_relevant,
bool &pop_process_io_handler) {
const bool handle_pop = pop_process_io_handler;
pop_process_io_handler = false;
ProcessSP process_sp =
Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
if (!process_sp)
return false;
StateType event_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (event_state == eStateInvalid)
return false;
switch (event_state) {
case eStateInvalid:
case eStateUnloaded:
case eStateAttaching:
case eStateLaunching:
case eStateStepping:
case eStateDetached:
if (stream)
stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
StateAsCString(event_state));
if (event_state == eStateDetached)
pop_process_io_handler = true;
break;
case eStateConnected:
case eStateRunning:
// Don't be chatty when we run...
break;
case eStateExited:
if (stream)
process_sp->GetStatus(*stream);
pop_process_io_handler = true;
break;
case eStateStopped:
case eStateCrashed:
case eStateSuspended:
// Make sure the program hasn't been auto-restarted:
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
if (stream) {
size_t num_reasons =
Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
if (num_reasons > 0) {
// FIXME: Do we want to report this, or would that just be annoyingly
// chatty?
if (num_reasons == 1) {
const char *reason =
Process::ProcessEventData::GetRestartedReasonAtIndex(
event_sp.get(), 0);
stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
process_sp->GetID(),
reason ? reason : "<UNKNOWN REASON>");
} else {
stream->Printf("Process %" PRIu64
" stopped and restarted, reasons:\n",
process_sp->GetID());
for (size_t i = 0; i < num_reasons; i++) {
const char *reason =
Process::ProcessEventData::GetRestartedReasonAtIndex(
event_sp.get(), i);
stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
}
}
}
}
} else {
StopInfoSP curr_thread_stop_info_sp;
// Lock the thread list so it doesn't change on us, this is the scope for
// the locker:
{
ThreadList &thread_list = process_sp->GetThreadList();
std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
ThreadSP curr_thread(thread_list.GetSelectedThread());
ThreadSP thread;
StopReason curr_thread_stop_reason = eStopReasonInvalid;
bool prefer_curr_thread = false;
if (curr_thread && curr_thread->IsValid()) {
curr_thread_stop_reason = curr_thread->GetStopReason();
switch (curr_thread_stop_reason) {
case eStopReasonNone:
case eStopReasonInvalid:
// Don't prefer the current thread if it didn't stop for a reason.
break;
case eStopReasonSignal: {
// We need to do the same computation we do for other threads
// below in case the current thread happens to be the one that
// stopped for the no-stop signal.
uint64_t signo = curr_thread->GetStopInfo()->GetValue();
if (process_sp->GetUnixSignals()->GetShouldStop(signo))
prefer_curr_thread = true;
} break;
default:
prefer_curr_thread = true;
break;
}
curr_thread_stop_info_sp = curr_thread->GetStopInfo();
}
if (!prefer_curr_thread) {
// Prefer a thread that has just completed its plan over another
// thread as current thread.
ThreadSP plan_thread;
ThreadSP other_thread;
const size_t num_threads = thread_list.GetSize();
size_t i;
for (i = 0; i < num_threads; ++i) {
thread = thread_list.GetThreadAtIndex(i);
StopReason thread_stop_reason = thread->GetStopReason();
switch (thread_stop_reason) {
case eStopReasonInvalid:
case eStopReasonNone:
break;
case eStopReasonSignal: {
// Don't select a signal thread if we weren't going to stop at
// that signal. We have to have had another reason for stopping
// here, and the user doesn't want to see this thread.
uint64_t signo = thread->GetStopInfo()->GetValue();
if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
if (!other_thread)
other_thread = thread;
}
break;
}
case eStopReasonTrace:
case eStopReasonBreakpoint:
case eStopReasonWatchpoint:
case eStopReasonException:
case eStopReasonExec:
case eStopReasonFork:
case eStopReasonVFork:
case eStopReasonVForkDone:
case eStopReasonThreadExiting:
case eStopReasonInstrumentation:
case eStopReasonProcessorTrace:
case eStopReasonInterrupt:
if (!other_thread)
other_thread = thread;
break;
case eStopReasonPlanComplete:
if (!plan_thread)
plan_thread = thread;
break;
}
}
if (plan_thread)
thread_list.SetSelectedThreadByID(plan_thread->GetID());
else if (other_thread)
thread_list.SetSelectedThreadByID(other_thread->GetID());
else {
if (curr_thread && curr_thread->IsValid())
thread = curr_thread;
else
thread = thread_list.GetThreadAtIndex(0);
if (thread)
thread_list.SetSelectedThreadByID(thread->GetID());
}
}
}
// Drop the ThreadList mutex by here, since GetThreadStatus below might
// have to run code, e.g. for Data formatters, and if we hold the
// ThreadList mutex, then the process is going to have a hard time
// restarting the process.
if (stream) {
Debugger &debugger = process_sp->GetTarget().GetDebugger();
if (debugger.GetTargetList().GetSelectedTarget().get() ==
&process_sp->GetTarget()) {
ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
if (!thread_sp || !thread_sp->IsValid())
return false;
const bool only_threads_with_stop_reason = true;
const uint32_t start_frame =
thread_sp->GetSelectedFrameIndex(select_most_relevant);
const uint32_t num_frames = 1;
const uint32_t num_frames_with_source = 1;
const bool stop_format = true;
process_sp->GetStatus(*stream);
process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
start_frame, num_frames,
num_frames_with_source,
stop_format);
if (curr_thread_stop_info_sp) {
lldb::addr_t crashing_address;
ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
curr_thread_stop_info_sp, &crashing_address);
if (valobj_sp) {
const ValueObject::GetExpressionPathFormat format =
ValueObject::GetExpressionPathFormat::
eGetExpressionPathFormatHonorPointers;
stream->PutCString("Likely cause: ");
valobj_sp->GetExpressionPath(*stream, format);
stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
}
}
} else {
uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
process_sp->GetTarget().shared_from_this());
if (target_idx != UINT32_MAX)
stream->Printf("Target %d: (", target_idx);
else
stream->Printf("Target <unknown index>: (");
process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
stream->Printf(") stopped.\n");
}
}
// Pop the process IO handler
pop_process_io_handler = true;
}
break;
}
if (handle_pop && pop_process_io_handler)
process_sp->PopProcessIOHandler();
return true;
}
bool Process::HijackProcessEvents(ListenerSP listener_sp) {
if (listener_sp) {
return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
eBroadcastBitInterrupt);
} else
return false;
}
void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
StateType Process::GetStateChangedEvents(EventSP &event_sp,
const Timeout<std::micro> &timeout,
ListenerSP hijack_listener_sp) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
ListenerSP listener_sp = hijack_listener_sp;
if (!listener_sp)
listener_sp = GetPrimaryListener();
StateType state = eStateInvalid;
if (listener_sp->GetEventForBroadcasterWithType(
this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
timeout)) {
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
else
LLDB_LOG(log, "got no event or was interrupted.");
}
LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
return state;
}
Event *Process::PeekAtStateChangedEvents() {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
Event *event_ptr;
event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
this, eBroadcastBitStateChanged);
if (log) {
if (event_ptr) {
LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
} else {
LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
}
}
return event_ptr;
}
StateType
Process::GetStateChangedEventsPrivate(EventSP &event_sp,
const Timeout<std::micro> &timeout) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
StateType state = eStateInvalid;
if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
&m_private_state_broadcaster,
eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
timeout))
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
return state;
}
bool Process::GetEventsPrivate(EventSP &event_sp,
const Timeout<std::micro> &timeout,
bool control_only) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
if (control_only)
return m_private_state_listener_sp->GetEventForBroadcaster(
&m_private_state_control_broadcaster, event_sp, timeout);
else
return m_private_state_listener_sp->GetEvent(event_sp, timeout);
}
bool Process::IsRunning() const {
return StateIsRunningState(m_public_state.GetValue());
}
int Process::GetExitStatus() {
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
if (m_public_state.GetValue() == eStateExited)
return m_exit_status;
return -1;
}
const char *Process::GetExitDescription() {
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
return m_exit_string.c_str();
return nullptr;
}
bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
// Use a mutex to protect setting the exit status.
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
GetPluginName(), status, exit_string);
// We were already in the exited state
if (m_private_state.GetValue() == eStateExited) {
LLDB_LOG(
log,
"(plugin = {0}) ignoring exit status because state was already set "
"to eStateExited",
GetPluginName());
return false;
}
m_exit_status = status;
if (!exit_string.empty())
m_exit_string = exit_string.str();
else
m_exit_string.clear();
// Clear the last natural stop ID since it has a strong reference to this
// process
m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
SetPrivateState(eStateExited);
// Allow subclasses to do some cleanup
DidExit();
return true;
}
bool Process::IsAlive() {
switch (m_private_state.GetValue()) {
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
return true;
default:
return false;
}
}
// This static callback can be used to watch for local child processes on the
// current host. The child process exits, the process will be found in the
// global target list (we want to be completely sure that the
// lldb_private::Process doesn't go away before we can deliver the signal.
bool Process::SetProcessExitStatus(
lldb::pid_t pid, bool exited,
int signo, // Zero for no signal
int exit_status // Exit value of process if signal is zero
) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log,
"Process::SetProcessExitStatus (pid=%" PRIu64
", exited=%i, signal=%i, exit_status=%i)\n",
pid, exited, signo, exit_status);
if (exited) {
TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
if (target_sp) {
ProcessSP process_sp(target_sp->GetProcessSP());
if (process_sp) {
llvm::StringRef signal_str =
process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
process_sp->SetExitStatus(exit_status, signal_str);
}
}
return true;
}
return false;
}
bool Process::UpdateThreadList(ThreadList &old_thread_list,
ThreadList &new_thread_list) {
m_thread_plans.ClearThreadCache();
return DoUpdateThreadList(old_thread_list, new_thread_list);
}
void Process::UpdateThreadListIfNeeded() {
const uint32_t stop_id = GetStopID();
if (m_thread_list.GetSize(false) == 0 ||
stop_id != m_thread_list.GetStopID()) {
bool clear_unused_threads = true;
const StateType state = GetPrivateState();
if (StateIsStoppedState(state, true)) {
std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
m_thread_list.SetStopID(stop_id);
// m_thread_list does have its own mutex, but we need to hold onto the
// mutex between the call to UpdateThreadList(...) and the
// os->UpdateThreadList(...) so it doesn't change on us
ThreadList &old_thread_list = m_thread_list;
ThreadList real_thread_list(*this);
ThreadList new_thread_list(*this);
// Always update the thread list with the protocol specific thread list,
// but only update if "true" is returned
if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
// Don't call into the OperatingSystem to update the thread list if we
// are shutting down, since that may call back into the SBAPI's,
// requiring the API lock which is already held by whoever is shutting
// us down, causing a deadlock.
OperatingSystem *os = GetOperatingSystem();
if (os && !m_destroy_in_process) {
// Clear any old backing threads where memory threads might have been
// backed by actual threads from the lldb_private::Process subclass
size_t num_old_threads = old_thread_list.GetSize(false);
for (size_t i = 0; i < num_old_threads; ++i)
old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
// See if the OS plugin reports all threads. If it does, then
// it is safe to clear unseen thread's plans here. Otherwise we
// should preserve them in case they show up again:
clear_unused_threads = GetOSPluginReportsAllThreads();
// Turn off dynamic types to ensure we don't run any expressions.
// Objective-C can run an expression to determine if a SBValue is a
// dynamic type or not and we need to avoid this. OperatingSystem
// plug-ins can't run expressions that require running code...
Target &target = GetTarget();
const lldb::DynamicValueType saved_prefer_dynamic =
target.GetPreferDynamicValue();
if (saved_prefer_dynamic != lldb::eNoDynamicValues)
target.SetPreferDynamicValue(lldb::eNoDynamicValues);
// Now let the OperatingSystem plug-in update the thread list
os->UpdateThreadList(
old_thread_list, // Old list full of threads created by OS plug-in
real_thread_list, // The actual thread list full of threads
// created by each lldb_private::Process
// subclass
new_thread_list); // The new thread list that we will show to the
// user that gets filled in
if (saved_prefer_dynamic != lldb::eNoDynamicValues)
target.SetPreferDynamicValue(saved_prefer_dynamic);
} else {
// No OS plug-in, the new thread list is the same as the real thread
// list.
new_thread_list = real_thread_list;
}
m_thread_list_real.Update(real_thread_list);
m_thread_list.Update(new_thread_list);
m_thread_list.SetStopID(stop_id);
if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
// Clear any extended threads that we may have accumulated previously
m_extended_thread_list.Clear();
m_extended_thread_stop_id = GetLastNaturalStopID();
m_queue_list.Clear();
m_queue_list_stop_id = GetLastNaturalStopID();
}
}
// Now update the plan stack map.
// If we do have an OS plugin, any absent real threads in the
// m_thread_list have already been removed from the ThreadPlanStackMap.
// So any remaining threads are OS Plugin threads, and those we want to
// preserve in case they show up again.
m_thread_plans.Update(m_thread_list, clear_unused_threads);
}
}
}
ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
return m_thread_plans.Find(tid);
}
bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
return m_thread_plans.PrunePlansForTID(tid);
}
void Process::PruneThreadPlans() {
m_thread_plans.Update(GetThreadList(), true, false);
}
bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
lldb::DescriptionLevel desc_level,
bool internal, bool condense_trivial,
bool skip_unreported_plans) {
return m_thread_plans.DumpPlansForTID(
strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
}
void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
bool internal, bool condense_trivial,
bool skip_unreported_plans) {
m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
skip_unreported_plans);
}
void Process::UpdateQueueListIfNeeded() {
if (m_system_runtime_up) {
if (m_queue_list.GetSize() == 0 ||
m_queue_list_stop_id != GetLastNaturalStopID()) {
const StateType state = GetPrivateState();
if (StateIsStoppedState(state, true)) {
m_system_runtime_up->PopulateQueueList(m_queue_list);
m_queue_list_stop_id = GetLastNaturalStopID();
}
}
}
}
ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
OperatingSystem *os = GetOperatingSystem();
if (os)
return os->CreateThread(tid, context);
return ThreadSP();
}
uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
return AssignIndexIDToThread(thread_id);
}
bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
return (m_thread_id_to_index_id_map.find(thread_id) !=
m_thread_id_to_index_id_map.end());
}
uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
uint32_t result = 0;
std::map<uint64_t, uint32_t>::iterator iterator =
m_thread_id_to_index_id_map.find(thread_id);
if (iterator == m_thread_id_to_index_id_map.end()) {
result = ++m_thread_index_id;
m_thread_id_to_index_id_map[thread_id] = result;
} else {
result = iterator->second;
}
return result;
}
StateType Process::GetState() {
if (CurrentThreadIsPrivateStateThread())
return m_private_state.GetValue();
else
return m_public_state.GetValue();
}
void Process::SetPublicState(StateType new_state, bool restarted) {
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
if (new_state_is_stopped) {
// This will only set the time if the public stop time has no value, so
// it is ok to call this multiple times. With a public stop we can't look
// at the stop ID because many private stops might have happened, so we
// can't check for a stop ID of zero. This allows the "statistics" command
// to dump the time it takes to reach somewhere in your code, like a
// breakpoint you set.
GetTarget().GetStatistics().SetFirstPublicStopTime();
}
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
GetPluginName().data(), StateAsCString(new_state), restarted);
const StateType old_state = m_public_state.GetValue();
m_public_state.SetValue(new_state);
// On the transition from Run to Stopped, we unlock the writer end of the run
// lock. The lock gets locked in Resume, which is the public API to tell the
// program to run.
if (!StateChangedIsExternallyHijacked()) {
if (new_state == eStateDetached) {
LLDB_LOGF(log,
"(plugin = %s, state = %s) -- unlocking run lock for detach",
GetPluginName().data(), StateAsCString(new_state));
m_public_run_lock.SetStopped();
} else {
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
if ((old_state_is_stopped != new_state_is_stopped)) {
if (new_state_is_stopped && !restarted) {
LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
GetPluginName().data(), StateAsCString(new_state));
m_public_run_lock.SetStopped();
}
}
}
}
}
Status Process::Resume() {
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
if (!m_public_run_lock.TrySetRunning()) {
LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
GetPluginName().data());
return Status::FromErrorString(
"Resume request failed - process still running.");
}
Status error = PrivateResume();
if (!error.Success()) {
// Undo running state change
m_public_run_lock.SetStopped();
}
return error;
}
Status Process::ResumeSynchronous(Stream *stream) {
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
if (!m_public_run_lock.TrySetRunning()) {
LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
return Status::FromErrorString(
"Resume request failed - process still running.");
}
ListenerSP listener_sp(
Listener::MakeListener(ResumeSynchronousHijackListenerName.data()));
HijackProcessEvents(listener_sp);
Status error = PrivateResume();
if (error.Success()) {
StateType state =
WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
true /* use_run_lock */, SelectMostRelevantFrame);
const bool must_be_alive =
false; // eStateExited is ok, so this must be false
if (!StateIsStoppedState(state, must_be_alive))
error = Status::FromErrorStringWithFormat(
"process not in stopped state after synchronous resume: %s",
StateAsCString(state));
} else {
// Undo running state change
m_public_run_lock.SetStopped();
}
// Undo the hijacking of process events...
RestoreProcessEvents();
return error;
}
bool Process::StateChangedIsExternallyHijacked() {
if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
llvm::StringRef hijacking_name = GetHijackingListenerName();
if (!hijacking_name.starts_with("lldb.internal"))
return true;
}
return false;
}
bool Process::StateChangedIsHijackedForSynchronousResume() {
if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
llvm::StringRef hijacking_name = GetHijackingListenerName();
if (hijacking_name == ResumeSynchronousHijackListenerName)
return true;
}
return false;
}
StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
void Process::SetPrivateState(StateType new_state) {
// Use m_destructing not m_finalizing here. If we are finalizing a process
// that we haven't started tearing down, we'd like to be able to nicely
// detach if asked, but that requires the event system be live. That will
// not be true for an in-the-middle-of-being-destructed Process, since the
// event system relies on Process::shared_from_this, which may have already
// been destroyed.
if (m_destructing)
return;
Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
bool state_changed = false;
LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
StateAsCString(new_state));
std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
const StateType old_state = m_private_state.GetValueNoLock();
state_changed = old_state != new_state;
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
if (old_state_is_stopped != new_state_is_stopped) {
if (new_state_is_stopped)
m_private_run_lock.SetStopped();
else
m_private_run_lock.SetRunning();
}
if (state_changed) {
m_private_state.SetValueNoLock(new_state);
EventSP event_sp(
new Event(eBroadcastBitStateChanged,
new ProcessEventData(shared_from_this(), new_state)));
if (StateIsStoppedState(new_state, false)) {
// Note, this currently assumes that all threads in the list stop when
// the process stops. In the future we will want to support a debugging
// model where some threads continue to run while others are stopped.
// When that happens we will either need a way for the thread list to
// identify which threads are stopping or create a special thread list
// containing only threads which actually stopped.
//
// The process plugin is responsible for managing the actual behavior of
// the threads and should have stopped any threads that are going to stop
// before we get here.
m_thread_list.DidStop();
if (m_mod_id.BumpStopID() == 0)
GetTarget().GetStatistics().SetFirstPrivateStopTime();
if (!m_mod_id.IsLastResumeForUserExpression())
m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
m_memory_cache.Clear();
LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
GetPluginName().data(), StateAsCString(new_state),
m_mod_id.GetStopID());
}
m_private_state_broadcaster.BroadcastEvent(event_sp);
} else {
LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
GetPluginName().data(), StateAsCString(new_state));
}
}
void Process::SetRunningUserExpression(bool on) {
m_mod_id.SetRunningUserExpression(on);
}
void Process::SetRunningUtilityFunction(bool on) {
m_mod_id.SetRunningUtilityFunction(on);
}
addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
const lldb::ABISP &Process::GetABI() {
if (!m_abi_sp)
m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
return m_abi_sp;
}
std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
std::vector<LanguageRuntime *> language_runtimes;
if (m_finalizing)
return language_runtimes;
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
// Before we pass off a copy of the language runtimes, we must make sure that
// our collection is properly populated. It's possible that some of the
// language runtimes were not loaded yet, either because nobody requested it
// yet or the proper condition for loading wasn't yet met (e.g. libc++.so
// hadn't been loaded).
for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
language_runtimes.emplace_back(runtime);
}
return language_runtimes;
}
LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
if (m_finalizing)
return nullptr;
LanguageRuntime *runtime = nullptr;
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
LanguageRuntimeCollection::iterator pos;
pos = m_language_runtimes.find(language);
if (pos == m_language_runtimes.end() || !pos->second) {
lldb::LanguageRuntimeSP runtime_sp(
LanguageRuntime::FindPlugin(this, language));
m_language_runtimes[language] = runtime_sp;
runtime = runtime_sp.get();
} else
runtime = pos->second.get();
if (runtime)
// It's possible that a language runtime can support multiple LanguageTypes,
// for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
// eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
// primary language type and make sure that our runtime supports it.
assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
return runtime;
}
bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
if (m_finalizing)
return false;
if (in_value.IsDynamic())
return false;
LanguageType known_type = in_value.GetObjectRuntimeLanguage();
if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
LanguageRuntime *runtime = GetLanguageRuntime(known_type);
return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
}
for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
if (runtime->CouldHaveDynamicValue(in_value))
return true;
}
return false;
}
void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
m_dynamic_checkers_up.reset(dynamic_checkers);
}
StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() {
return m_breakpoint_site_list;
}
const StopPointSiteList<BreakpointSite> &
Process::GetBreakpointSiteList() const {
return m_breakpoint_site_list;
}
void Process::DisableAllBreakpointSites() {
m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
// bp_site->SetEnabled(true);
DisableBreakpointSite(bp_site);
});
}
Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
Status error(DisableBreakpointSiteByID(break_id));
if (error.Success())
m_breakpoint_site_list.Remove(break_id);
return error;
}
Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
Status error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
if (bp_site_sp) {
if (bp_site_sp->IsEnabled())
error = DisableBreakpointSite(bp_site_sp.get());
} else {
error = Status::FromErrorStringWithFormat(
"invalid breakpoint site ID: %" PRIu64, break_id);
}
return error;
}
Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
Status error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
if (bp_site_sp) {
if (!bp_site_sp->IsEnabled())
error = EnableBreakpointSite(bp_site_sp.get());
} else {
error = Status::FromErrorStringWithFormat(
"invalid breakpoint site ID: %" PRIu64, break_id);
}
return error;
}
lldb::break_id_t
Process::CreateBreakpointSite(const BreakpointLocationSP &constituent,
bool use_hardware) {
addr_t load_addr = LLDB_INVALID_ADDRESS;
bool show_error = true;
switch (GetState()) {
case eStateInvalid:
case eStateUnloaded:
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateDetached:
case eStateExited:
show_error = false;
break;
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
show_error = IsAlive();
break;
}
// Reset the IsIndirect flag here, in case the location changes from pointing
// to a indirect symbol to a regular symbol.
constituent->SetIsIndirect(false);
if (constituent->ShouldResolveIndirectFunctions()) {
Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
if (symbol && symbol->IsIndirect()) {
Status error;
Address symbol_address = symbol->GetAddress();
load_addr = ResolveIndirectFunction(&symbol_address, error);
if (!error.Success() && show_error) {
GetTarget().GetDebugger().GetErrorStream().Printf(
"warning: failed to resolve indirect function at 0x%" PRIx64
" for breakpoint %i.%i: %s\n",
symbol->GetLoadAddress(&GetTarget()),
constituent->GetBreakpoint().GetID(), constituent->GetID(),
error.AsCString() ? error.AsCString() : "unknown error");
return LLDB_INVALID_BREAK_ID;
}
Address resolved_address(load_addr);
load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
constituent->SetIsIndirect(true);
} else
load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
} else
load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
if (load_addr != LLDB_INVALID_ADDRESS) {
BreakpointSiteSP bp_site_sp;
// Look up this breakpoint site. If it exists, then add this new
// constituent, otherwise create a new breakpoint site and add it.
bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
if (bp_site_sp) {
bp_site_sp->AddConstituent(constituent);
constituent->SetBreakpointSite(bp_site_sp);
return bp_site_sp->GetID();
} else {
bp_site_sp.reset(
new BreakpointSite(constituent, load_addr, use_hardware));
if (bp_site_sp) {
Status error = EnableBreakpointSite(bp_site_sp.get());
if (error.Success()) {
constituent->SetBreakpointSite(bp_site_sp);
return m_breakpoint_site_list.Add(bp_site_sp);
} else {
if (show_error || use_hardware) {
// Report error for setting breakpoint...
GetTarget().GetDebugger().GetErrorStream().Printf(
"warning: failed to set breakpoint site at 0x%" PRIx64
" for breakpoint %i.%i: %s\n",
load_addr, constituent->GetBreakpoint().GetID(),
constituent->GetID(),
error.AsCString() ? error.AsCString() : "unknown error");
}
}
}
}
}
// We failed to enable the breakpoint
return LLDB_INVALID_BREAK_ID;
}
void Process::RemoveConstituentFromBreakpointSite(
lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
BreakpointSiteSP &bp_site_sp) {
uint32_t num_constituents =
bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
if (num_constituents == 0) {
// Don't try to disable the site if we don't have a live process anymore.
if (IsAlive())
DisableBreakpointSite(bp_site_sp.get());
m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
}
}
size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
uint8_t *buf) const {
size_t bytes_removed = 0;
StopPointSiteList<BreakpointSite> bp_sites_in_range;
if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
bp_sites_in_range)) {
bp_sites_in_range.ForEach([bp_addr, size,
buf](BreakpointSite *bp_site) -> void {
if (bp_site->GetType() == BreakpointSite::eSoftware) {
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
&intersect_size, &opcode_offset)) {
assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
assert(bp_addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= bp_addr + size);
assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
size_t buf_offset = intersect_addr - bp_addr;
::memcpy(buf + buf_offset,
bp_site->GetSavedOpcodeBytes() + opcode_offset,
intersect_size);
}
}
});
}
return bytes_removed;
}
size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
PlatformSP platform_sp(GetTarget().GetPlatform());
if (platform_sp)
return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
return 0;
}
Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
Status error;
assert(bp_site != nullptr);
Log *log = GetLog(LLDBLog::Breakpoints);
const addr_t bp_addr = bp_site->GetLoadAddress();
LLDB_LOGF(
log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
bp_site->GetID(), (uint64_t)bp_addr);
if (bp_site->IsEnabled()) {
LLDB_LOGF(
log,
"Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- already enabled",
bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
if (bp_addr == LLDB_INVALID_ADDRESS) {
error = Status::FromErrorString(
"BreakpointSite contains an invalid load address.");
return error;
}
// Ask the lldb::Process subclass to fill in the correct software breakpoint
// trap for the breakpoint site
const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
if (bp_opcode_size == 0) {
error = Status::FromErrorStringWithFormat(
"Process::GetSoftwareBreakpointTrapOpcode() "
"returned zero, unable to get breakpoint "
"trap for address 0x%" PRIx64,
bp_addr);
} else {
const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
if (bp_opcode_bytes == nullptr) {
error = Status::FromErrorString(
"BreakpointSite doesn't contain a valid breakpoint trap opcode.");
return error;
}
// Save the original opcode by reading it
if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
error) == bp_opcode_size) {
// Write a software breakpoint in place of the original opcode
if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
bp_opcode_size) {
uint8_t verify_bp_opcode_bytes[64];
if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
error) == bp_opcode_size) {
if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
bp_opcode_size) == 0) {
bp_site->SetEnabled(true);
bp_site->SetType(BreakpointSite::eSoftware);
LLDB_LOGF(log,
"Process::EnableSoftwareBreakpoint (site_id = %d) "
"addr = 0x%" PRIx64 " -- SUCCESS",
bp_site->GetID(), (uint64_t)bp_addr);
} else
error = Status::FromErrorString(
"failed to verify the breakpoint trap in memory.");
} else
error = Status::FromErrorString(
"Unable to read memory to verify breakpoint trap.");
} else
error = Status::FromErrorString(
"Unable to write breakpoint trap to memory.");
} else
error = Status::FromErrorString(
"Unable to read memory at breakpoint address.");
}
if (log && error.Fail())
LLDB_LOGF(
log,
"Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- FAILED: %s",
bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
return error;
}
Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
Status error;
assert(bp_site != nullptr);
Log *log = GetLog(LLDBLog::Breakpoints);
addr_t bp_addr = bp_site->GetLoadAddress();
lldb::user_id_t breakID = bp_site->GetID();
LLDB_LOGF(log,
"Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
") addr = 0x%" PRIx64,
breakID, (uint64_t)bp_addr);
if (bp_site->IsHardware()) {
error =
Status::FromErrorString("Breakpoint site is a hardware breakpoint.");
} else if (bp_site->IsEnabled()) {
const size_t break_op_size = bp_site->GetByteSize();
const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
if (break_op_size > 0) {
// Clear a software breakpoint instruction
uint8_t curr_break_op[8];
assert(break_op_size <= sizeof(curr_break_op));
bool break_op_found = false;
// Read the breakpoint opcode
if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
break_op_size) {
bool verify = false;
// Make sure the breakpoint opcode exists at this address
if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
break_op_found = true;
// We found a valid breakpoint opcode at this address, now restore
// the saved opcode.
if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
break_op_size, error) == break_op_size) {
verify = true;
} else
error = Status::FromErrorString(
"Memory write failed when restoring original opcode.");
} else {
error = Status::FromErrorString(
"Original breakpoint trap is no longer in memory.");
// Set verify to true and so we can check if the original opcode has
// already been restored
verify = true;
}
if (verify) {
uint8_t verify_opcode[8];
assert(break_op_size < sizeof(verify_opcode));
// Verify that our original opcode made it back to the inferior
if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
break_op_size) {
// compare the memory we just read with the original opcode
if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
break_op_size) == 0) {
// SUCCESS
bp_site->SetEnabled(false);
LLDB_LOGF(log,
"Process::DisableSoftwareBreakpoint (site_id = %d) "
"addr = 0x%" PRIx64 " -- SUCCESS",
bp_site->GetID(), (uint64_t)bp_addr);
return error;
} else {
if (break_op_found)
error = Status::FromErrorString(
"Failed to restore original opcode.");
}
} else
error =
Status::FromErrorString("Failed to read memory to verify that "
"breakpoint trap was restored.");
}
} else
error = Status::FromErrorString(
"Unable to read memory that should contain the breakpoint trap.");
}
} else {
LLDB_LOGF(
log,
"Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- already disabled",
bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
LLDB_LOGF(
log,
"Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- FAILED: %s",
bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
return error;
}
// Uncomment to verify memory caching works after making changes to caching
// code
//#define VERIFY_MEMORY_READS
size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
if (ABISP abi_sp = GetABI())
addr = abi_sp->FixAnyAddress(addr);
error.Clear();
if (!GetDisableMemoryCache()) {
#if defined(VERIFY_MEMORY_READS)
// Memory caching is enabled, with debug verification
if (buf && size) {
// Uncomment the line below to make sure memory caching is working.
// I ran this through the test suite and got no assertions, so I am
// pretty confident this is working well. If any changes are made to
// memory caching, uncomment the line below and test your changes!
// Verify all memory reads by using the cache first, then redundantly
// reading the same memory from the inferior and comparing to make sure
// everything is exactly the same.
std::string verify_buf(size, '\0');
assert(verify_buf.size() == size);
const size_t cache_bytes_read =
m_memory_cache.Read(this, addr, buf, size, error);
Status verify_error;
const size_t verify_bytes_read =
ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
verify_buf.size(), verify_error);
assert(cache_bytes_read == verify_bytes_read);
assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
assert(verify_error.Success() == error.Success());
return cache_bytes_read;
}
return 0;
#else // !defined(VERIFY_MEMORY_READS)
// Memory caching is enabled, without debug verification
return m_memory_cache.Read(addr, buf, size, error);
#endif // defined (VERIFY_MEMORY_READS)
} else {
// Memory caching is disabled
return ReadMemoryFromInferior(addr, buf, size, error);
}
}
void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr,
const uint8_t *buf, size_t size,
AddressRanges &matches, size_t alignment,
size_t max_matches) {
// Inputs are already validated in FindInMemory() functions.
assert(buf != nullptr);
assert(size > 0);
assert(alignment > 0);
assert(max_matches > 0);
assert(start_addr != LLDB_INVALID_ADDRESS);
assert(end_addr != LLDB_INVALID_ADDRESS);
assert(start_addr < end_addr);
lldb::addr_t start = llvm::alignTo(start_addr, alignment);
while (matches.size() < max_matches && (start + size) < end_addr) {
const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size);
if (found_addr == LLDB_INVALID_ADDRESS)
break;
if (found_addr % alignment) {
// We need to check the alignment because the FindInMemory uses a special
// algorithm to efficiently search mememory but doesn't support alignment.
start = llvm::alignTo(start + 1, alignment);
continue;
}
matches.emplace_back(found_addr, size);
start = found_addr + alignment;
}
}
AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size,
const AddressRanges &ranges,
size_t alignment, size_t max_matches,
Status &error) {
AddressRanges matches;
if (buf == nullptr) {
error = Status::FromErrorString("buffer is null");
return matches;
}
if (size == 0) {
error = Status::FromErrorString("buffer size is zero");
return matches;
}
if (ranges.empty()) {
error = Status::FromErrorString("empty ranges");
return matches;
}
if (alignment == 0) {
error = Status::FromErrorString("alignment must be greater than zero");
return matches;
}
if (max_matches == 0) {
error = Status::FromErrorString("max_matches must be greater than zero");
return matches;
}
int resolved_ranges = 0;
Target &target = GetTarget();
for (size_t i = 0; i < ranges.size(); ++i) {
if (matches.size() >= max_matches)
break;
const AddressRange &range = ranges[i];
if (range.IsValid() == false)
continue;
const lldb::addr_t start_addr =
range.GetBaseAddress().GetLoadAddress(&target);
if (start_addr == LLDB_INVALID_ADDRESS)
continue;
++resolved_ranges;
const lldb::addr_t end_addr = start_addr + range.GetByteSize();
DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment,
max_matches);
}
if (resolved_ranges > 0)
error.Clear();
else
error = Status::FromErrorString("unable to resolve any ranges");
return matches;
}
lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size,
const AddressRange &range, size_t alignment,
Status &error) {
if (buf == nullptr) {
error = Status::FromErrorString("buffer is null");
return LLDB_INVALID_ADDRESS;
}
if (size == 0) {
error = Status::FromErrorString("buffer size is zero");
return LLDB_INVALID_ADDRESS;
}
if (!range.IsValid()) {
error = Status::FromErrorString("range is invalid");
return LLDB_INVALID_ADDRESS;
}
if (alignment == 0) {
error = Status::FromErrorString("alignment must be greater than zero");
return LLDB_INVALID_ADDRESS;
}
Target &target = GetTarget();
const lldb::addr_t start_addr =
range.GetBaseAddress().GetLoadAddress(&target);
if (start_addr == LLDB_INVALID_ADDRESS) {
error = Status::FromErrorString("range load address is invalid");
return LLDB_INVALID_ADDRESS;
}
const lldb::addr_t end_addr = start_addr + range.GetByteSize();
AddressRanges matches;
DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1);
if (matches.empty())
return LLDB_INVALID_ADDRESS;
error.Clear();
return matches[0].GetBaseAddress().GetLoadAddress(&target);
}
size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
Status &error) {
char buf[256];
out_str.clear();
addr_t curr_addr = addr;
while (true) {
size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
if (length == 0)
break;
out_str.append(buf, length);
// If we got "length - 1" bytes, we didn't get the whole C string, we need
// to read some more characters
if (length == sizeof(buf) - 1)
curr_addr += length;
else
break;
}
return out_str.size();
}
// Deprecated in favor of ReadStringFromMemory which has wchar support and
// correct code to find null terminators.
size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
size_t dst_max_len,
Status &result_error) {
size_t total_cstr_len = 0;
if (dst && dst_max_len) {
result_error.Clear();
// NULL out everything just to be safe
memset(dst, 0, dst_max_len);
addr_t curr_addr = addr;
const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
size_t bytes_left = dst_max_len - 1;
char *curr_dst = dst;
while (bytes_left > 0) {
addr_t cache_line_bytes_left =
cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read =
std::min<addr_t>(bytes_left, cache_line_bytes_left);
Status error;
size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
if (bytes_read == 0) {
result_error = std::move(error);
dst[total_cstr_len] = '\0';
break;
}
const size_t len = strlen(curr_dst);
total_cstr_len += len;
if (len < bytes_to_read)
break;
curr_dst += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
}
} else {
if (dst == nullptr)
result_error = Status::FromErrorString("invalid arguments");
else
result_error.Clear();
}
return total_cstr_len;
}
size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
Status &error) {
LLDB_SCOPED_TIMER();
if (ABISP abi_sp = GetABI())
addr = abi_sp->FixAnyAddress(addr);
if (buf == nullptr || size == 0)
return 0;
size_t bytes_read = 0;
uint8_t *bytes = (uint8_t *)buf;
while (bytes_read < size) {
const size_t curr_size = size - bytes_read;
const size_t curr_bytes_read =
DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
bytes_read += curr_bytes_read;
if (curr_bytes_read == curr_size || curr_bytes_read == 0)
break;
}
// Replace any software breakpoint opcodes that fall into this range back
// into "buf" before we return
if (bytes_read > 0)
RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
return bytes_read;
}
uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
size_t integer_byte_size,
uint64_t fail_value,
Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
error))
return scalar.ULongLong(fail_value);
return fail_value;
}
int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
size_t integer_byte_size,
int64_t fail_value,
Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
error))
return scalar.SLongLong(fail_value);
return fail_value;
}
addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
error))
return scalar.ULongLong(LLDB_INVALID_ADDRESS);
return LLDB_INVALID_ADDRESS;
}
bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
Status &error) {
Scalar scalar;
const uint32_t addr_byte_size = GetAddressByteSize();
if (addr_byte_size <= 4)
scalar = (uint32_t)ptr_value;
else
scalar = ptr_value;
return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
addr_byte_size;
}
size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
Status &error) {
size_t bytes_written = 0;
const uint8_t *bytes = (const uint8_t *)buf;
while (bytes_written < size) {
const size_t curr_size = size - bytes_written;
const size_t curr_bytes_written = DoWriteMemory(
addr + bytes_written, bytes + bytes_written, curr_size, error);
bytes_written += curr_bytes_written;
if (curr_bytes_written == curr_size || curr_bytes_written == 0)
break;
}
return bytes_written;
}
size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
Status &error) {
if (ABISP abi_sp = GetABI())
addr = abi_sp->FixAnyAddress(addr);
#if defined(ENABLE_MEMORY_CACHING)
m_memory_cache.Flush(addr, size);
#endif
if (buf == nullptr || size == 0)
return 0;
m_mod_id.BumpMemoryID();
// We need to write any data that would go where any current software traps
// (enabled software breakpoints) any software traps (breakpoints) that we
// may have placed in our tasks memory.
StopPointSiteList<BreakpointSite> bp_sites_in_range;
if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
return WriteMemoryPrivate(addr, buf, size, error);
// No breakpoint sites overlap
if (bp_sites_in_range.IsEmpty())
return WriteMemoryPrivate(addr, buf, size, error);
const uint8_t *ubuf = (const uint8_t *)buf;
uint64_t bytes_written = 0;
bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
&error](BreakpointSite *bp) -> void {
if (error.Fail())
return;
if (bp->GetType() != BreakpointSite::eSoftware)
return;
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
const bool intersects = bp->IntersectsRange(
addr, size, &intersect_addr, &intersect_size, &opcode_offset);
UNUSED_IF_ASSERT_DISABLED(intersects);
assert(intersects);
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp->GetByteSize());
// Check for bytes before this breakpoint
const addr_t curr_addr = addr + bytes_written;
if (intersect_addr > curr_addr) {
// There are some bytes before this breakpoint that we need to just
// write to memory
size_t curr_size = intersect_addr - curr_addr;
size_t curr_bytes_written =
WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
bytes_written += curr_bytes_written;
if (curr_bytes_written != curr_size) {
// We weren't able to write all of the requested bytes, we are
// done looping and will return the number of bytes that we have
// written so far.
if (error.Success())
error = Status::FromErrorString("could not write all bytes");
}
}
// Now write any bytes that would cover up any software breakpoints
// directly into the breakpoint opcode buffer
::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
intersect_size);
bytes_written += intersect_size;
});
// Write any remaining bytes after the last breakpoint if we have any left
if (bytes_written < size)
bytes_written +=
WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
size - bytes_written, error);
return bytes_written;
}
size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
size_t byte_size, Status &error) {
if (byte_size == UINT32_MAX)
byte_size = scalar.GetByteSize();
if (byte_size > 0) {
uint8_t buf[32];
const size_t mem_size =
scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
if (mem_size > 0)
return WriteMemory(addr, buf, mem_size, error);
else
error = Status::FromErrorString("failed to get scalar as memory data");
} else {
error = Status::FromErrorString("invalid scalar value");
}
return 0;
}
size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
bool is_signed, Scalar &scalar,
Status &error) {
uint64_t uval = 0;
if (byte_size == 0) {
error = Status::FromErrorString("byte size is zero");
} else if (byte_size & (byte_size - 1)) {
error = Status::FromErrorStringWithFormat(
"byte size %u is not a power of 2", byte_size);
} else if (byte_size <= sizeof(uval)) {
const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
if (bytes_read == byte_size) {
DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
GetAddressByteSize());
lldb::offset_t offset = 0;
if (byte_size <= 4)
scalar = data.GetMaxU32(&offset, byte_size);
else
scalar = data.GetMaxU64(&offset, byte_size);
if (is_signed)
scalar.SignExtend(byte_size * 8);
return bytes_read;
}
} else {
error = Status::FromErrorStringWithFormat(
"byte size of %u is too large for integer scalar type", byte_size);
}
return 0;
}
Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
Status error;
for (const auto &Entry : entries) {
WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
error);
if (!error.Success())
break;
}
return error;
}
#define USE_ALLOCATE_MEMORY_CACHE 1
addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
Status &error) {
if (GetPrivateState() != eStateStopped) {
error = Status::FromErrorString(
"cannot allocate memory while process is running");
return LLDB_INVALID_ADDRESS;
}
#if defined(USE_ALLOCATE_MEMORY_CACHE)
return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
#else
addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log,
"Process::AllocateMemory(size=%" PRIu64
", permissions=%s) => 0x%16.16" PRIx64
" (m_stop_id = %u m_memory_id = %u)",
(uint64_t)size, GetPermissionsAsCString(permissions),
(uint64_t)allocated_addr, m_mod_id.GetStopID(),
m_mod_id.GetMemoryID());
return allocated_addr;
#endif
}
addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
Status &error) {
addr_t return_addr = AllocateMemory(size, permissions, error);
if (error.Success()) {
std::string buffer(size, 0);
WriteMemory(return_addr, buffer.c_str(), size, error);
}
return return_addr;
}
bool Process::CanJIT() {
if (m_can_jit == eCanJITDontKnow) {
Log *log = GetLog(LLDBLog::Process);
Status err;
uint64_t allocated_memory = AllocateMemory(
8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
err);
if (err.Success()) {
m_can_jit = eCanJITYes;
LLDB_LOGF(log,
"Process::%s pid %" PRIu64
" allocation test passed, CanJIT () is true",
__FUNCTION__, GetID());
} else {
m_can_jit = eCanJITNo;
LLDB_LOGF(log,
"Process::%s pid %" PRIu64
" allocation test failed, CanJIT () is false: %s",
__FUNCTION__, GetID(), err.AsCString());
}
DeallocateMemory(allocated_memory);
}
return m_can_jit == eCanJITYes;
}
void Process::SetCanJIT(bool can_jit) {
m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
}
void Process::SetCanRunCode(bool can_run_code) {
SetCanJIT(can_run_code);
m_can_interpret_function_calls = can_run_code;
}
Status Process::DeallocateMemory(addr_t ptr) {
Status error;
#if defined(USE_ALLOCATE_MEMORY_CACHE)
if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
error = Status::FromErrorStringWithFormat(
"deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
}
#else
error = DoDeallocateMemory(ptr);
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log,
"Process::DeallocateMemory(addr=0x%16.16" PRIx64
") => err = %s (m_stop_id = %u, m_memory_id = %u)",
ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
m_mod_id.GetMemoryID());
#endif
return error;
}
bool Process::GetWatchpointReportedAfter() {
if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
return *subclass_override;
bool reported_after = true;
const ArchSpec &arch = GetTarget().GetArchitecture();
if (!arch.IsValid())
return reported_after;
llvm::Triple triple = arch.GetTriple();
if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
triple.isAArch64() || triple.isArmMClass() || triple.isARM())
reported_after = false;
return reported_after;
}
ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
lldb::addr_t header_addr,
size_t size_to_read) {
Log *log = GetLog(LLDBLog::Host);
if (log) {
LLDB_LOGF(log,
"Process::ReadModuleFromMemory reading %s binary from memory",
file_spec.GetPath().c_str());
}
ModuleSP module_sp(new Module(file_spec, ArchSpec()));
if (module_sp) {
Status error;
std::unique_ptr<Progress> progress_up;
// Reading an ObjectFile from a local corefile is very fast,
// only print a progress update if we're reading from a
// live session which might go over gdb remote serial protocol.
if (IsLiveDebugSession())
progress_up = std::make_unique<Progress>(
"Reading binary from memory", file_spec.GetFilename().GetString());
ObjectFile *objfile = module_sp->GetMemoryObjectFile(
shared_from_this(), header_addr, error, size_to_read);
if (objfile)
return module_sp;
}
return ModuleSP();
}
bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
uint32_t &permissions) {
MemoryRegionInfo range_info;
permissions = 0;
Status error(GetMemoryRegionInfo(load_addr, range_info));
if (!error.Success())
return false;
if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
return false;
}
permissions = range_info.GetLLDBPermissions();
return true;
}
Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
Status error;
error = Status::FromErrorString("watchpoints are not supported");
return error;
}
Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
Status error;
error = Status::FromErrorString("watchpoints are not supported");
return error;
}
StateType
Process::WaitForProcessStopPrivate(EventSP &event_sp,
const Timeout<std::micro> &timeout) {
StateType state;
while (true) {
event_sp.reset();
state = GetStateChangedEventsPrivate(event_sp, timeout);
if (StateIsStoppedState(state, false))
break;
// If state is invalid, then we timed out
if (state == eStateInvalid)
break;
if (event_sp)
HandlePrivateEvent(event_sp);
}
return state;
}
void Process::LoadOperatingSystemPlugin(bool flush) {
std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
if (flush)
m_thread_list.Clear();
m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
if (flush)
Flush();
}
Status Process::Launch(ProcessLaunchInfo &launch_info) {
StateType state_after_launch = eStateInvalid;
EventSP first_stop_event_sp;
Status status =
LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
if (status.Fail())
return status;
if (state_after_launch != eStateStopped &&
state_after_launch != eStateCrashed)
return Status();
// Note, the stop event was consumed above, but not handled. This
// was done to give DidLaunch a chance to run. The target is either
// stopped or crashed. Directly set the state. This is done to
// prevent a stop message with a bunch of spurious output on thread
// status, as well as not pop a ProcessIOHandler.
SetPublicState(state_after_launch, false);
if (PrivateStateThreadIsValid())
ResumePrivateStateThread();
else
StartPrivateStateThread();
// Target was stopped at entry as was intended. Need to notify the
// listeners about it.
if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
HandlePrivateEvent(first_stop_event_sp);
return Status();
}
Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
EventSP &event_sp) {
Status error;
m_abi_sp.reset();
m_dyld_up.reset();
m_jit_loaders_up.reset();
m_system_runtime_up.reset();
m_os_up.reset();
{
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
m_process_input_reader.reset();
}
Module *exe_module = GetTarget().GetExecutableModulePointer();
// The "remote executable path" is hooked up to the local Executable
// module. But we should be able to debug a remote process even if the
// executable module only exists on the remote. However, there needs to
// be a way to express this path, without actually having a module.
// The way to do that is to set the ExecutableFile in the LaunchInfo.
// Figure that out here:
FileSpec exe_spec_to_use;
if (!exe_module) {
if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
error = Status::FromErrorString("executable module does not exist");
return error;
}
exe_spec_to_use = launch_info.GetExecutableFile();
} else
exe_spec_to_use = exe_module->GetFileSpec();
if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
// Install anything that might need to be installed prior to launching.
// For host systems, this will do nothing, but if we are connected to a
// remote platform it will install any needed binaries
error = GetTarget().Install(&launch_info);
if (error.Fail())
return error;
}
// Listen and queue events that are broadcasted during the process launch.
ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
HijackProcessEvents(listener_sp);
auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
if (PrivateStateThreadIsValid())
PausePrivateStateThread();
error = WillLaunch(exe_module);
if (error.Fail()) {
std::string local_exec_file_path = exe_spec_to_use.GetPath();
return Status::FromErrorStringWithFormat("file doesn't exist: '%s'",
local_exec_file_path.c_str());
}
const bool restarted = false;
SetPublicState(eStateLaunching, restarted);
m_should_detach = false;
if (m_public_run_lock.TrySetRunning()) {
// Now launch using these arguments.
error = DoLaunch(exe_module, launch_info);
} else {
// This shouldn't happen
error = Status::FromErrorString("failed to acquire process run lock");
}
if (error.Fail()) {
if (GetID() != LLDB_INVALID_PROCESS_ID) {
SetID(LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == nullptr)
error_string = "launch failed";
SetExitStatus(-1, error_string);
}
return error;
}
// Now wait for the process to launch and return control to us, and then
// call DidLaunch:
state = WaitForProcessStopPrivate(event_sp, seconds(10));
if (state == eStateInvalid || !event_sp) {
// We were able to launch the process, but we failed to catch the
// initial stop.
error = Status::FromErrorString("failed to catch stop after launch");
SetExitStatus(0, error.AsCString());
Destroy(false);
return error;
}
if (state == eStateExited) {
// We exited while trying to launch somehow. Don't call DidLaunch
// as that's not likely to work, and return an invalid pid.
HandlePrivateEvent(event_sp);
return Status();
}
if (state == eStateStopped || state == eStateCrashed) {
DidLaunch();
// Now that we know the process type, update its signal responses from the
// ones stored in the Target:
if (m_unix_signals_sp) {
StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
}
DynamicLoader *dyld = GetDynamicLoader();
if (dyld)
dyld->DidLaunch();
GetJITLoaders().DidLaunch();
SystemRuntime *system_runtime = GetSystemRuntime();
if (system_runtime)
system_runtime->DidLaunch();
if (!m_os_up)
LoadOperatingSystemPlugin(false);
// We successfully launched the process and stopped, now it the
// right time to set up signal filters before resuming.
UpdateAutomaticSignalFiltering();
return Status();
}
return Status::FromErrorStringWithFormat(
"Unexpected process state after the launch: %s, expected %s, "
"%s, %s or %s",
StateAsCString(state), StateAsCString(eStateInvalid),
StateAsCString(eStateExited), StateAsCString(eStateStopped),
StateAsCString(eStateCrashed));
}
Status Process::LoadCore() {
Status error = DoLoadCore();
if (error.Success()) {
ListenerSP listener_sp(
Listener::MakeListener("lldb.process.load_core_listener"));
HijackProcessEvents(listener_sp);
if (PrivateStateThreadIsValid())
ResumePrivateStateThread();
else
StartPrivateStateThread();
DynamicLoader *dyld = GetDynamicLoader();
if (dyld)
dyld->DidAttach();
GetJITLoaders().DidAttach();
SystemRuntime *system_runtime = GetSystemRuntime();
if (system_runtime)
system_runtime->DidAttach();
if (!m_os_up)
LoadOperatingSystemPlugin(false);
// We successfully loaded a core file, now pretend we stopped so we can
// show all of the threads in the core file and explore the crashed state.
SetPrivateState(eStateStopped);
// Wait for a stopped event since we just posted one above...
lldb::EventSP event_sp;
StateType state =
WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
nullptr, true, SelectMostRelevantFrame);
if (!StateIsStoppedState(state, false)) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
StateAsCString(state));
error = Status::FromErrorString(
"Did not get stopped event after loading the core file.");
}
RestoreProcessEvents();
}
return error;
}
DynamicLoader *Process::GetDynamicLoader() {
if (!m_dyld_up)
m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
return m_dyld_up.get();
}
void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) {
m_dyld_up = std::move(dyld_up);
}
DataExtractor Process::GetAuxvData() { return DataExtractor(); }
llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
return false;
}
JITLoaderList &Process::GetJITLoaders() {
if (!m_jit_loaders_up) {
m_jit_loaders_up = std::make_unique<JITLoaderList>();
JITLoader::LoadPlugins(this, *m_jit_loaders_up);
}
return *m_jit_loaders_up;
}
SystemRuntime *Process::GetSystemRuntime() {
if (!m_system_runtime_up)
m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
return m_system_runtime_up.get();
}
Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
uint32_t exec_count)
: NextEventAction(process), m_exec_count(exec_count) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(
log,
"Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
__FUNCTION__, static_cast<void *>(process), exec_count);
}
Process::NextEventAction::EventActionResult
Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
Log *log = GetLog(LLDBLog::Process);
StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
LLDB_LOGF(log,
"Process::AttachCompletionHandler::%s called with state %s (%d)",
__FUNCTION__, StateAsCString(state), static_cast<int>(state));
switch (state) {
case eStateAttaching:
return eEventActionSuccess;
case eStateRunning:
case eStateConnected:
return eEventActionRetry;
case eStateStopped:
case eStateCrashed:
// During attach, prior to sending the eStateStopped event,
// lldb_private::Process subclasses must set the new process ID.
assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
// We don't want these events to be reported, so go set the
// ShouldReportStop here:
m_process->GetThreadList().SetShouldReportStop(eVoteNo);
if (m_exec_count > 0) {
--m_exec_count;
LLDB_LOGF(log,
"Process::AttachCompletionHandler::%s state %s: reduced "
"remaining exec count to %" PRIu32 ", requesting resume",
__FUNCTION__, StateAsCString(state), m_exec_count);
RequestResume();
return eEventActionRetry;
} else {
LLDB_LOGF(log,
"Process::AttachCompletionHandler::%s state %s: no more "
"execs expected to start, continuing with attach",
__FUNCTION__, StateAsCString(state));
m_process->CompleteAttach();
return eEventActionSuccess;
}
break;
default:
case eStateExited:
case eStateInvalid:
break;
}
m_exit_string.assign("No valid Process");
return eEventActionExit;
}
Process::NextEventAction::EventActionResult
Process::AttachCompletionHandler::HandleBeingInterrupted() {
return eEventActionSuccess;
}
const char *Process::AttachCompletionHandler::GetExitString() {
return m_exit_string.c_str();
}
ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
if (m_listener_sp)
return m_listener_sp;
else
return debugger.GetListener();
}
Status Process::WillLaunch(Module *module) {
return DoWillLaunch(module);
}
Status Process::WillAttachToProcessWithID(lldb::pid_t pid) {
return DoWillAttachToProcessWithID(pid);
}
Status Process::WillAttachToProcessWithName(const char *process_name,
bool wait_for_launch) {
return DoWillAttachToProcessWithName(process_name, wait_for_launch);
}
Status Process::Attach(ProcessAttachInfo &attach_info) {
m_abi_sp.reset();
{
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
m_process_input_reader.reset();
}
m_dyld_up.reset();
m_jit_loaders_up.reset();
m_system_runtime_up.reset();
m_os_up.reset();
lldb::pid_t attach_pid = attach_info.GetProcessID();
Status error;
if (attach_pid == LLDB_INVALID_PROCESS_ID) {
char process_name[PATH_MAX];
if (attach_info.GetExecutableFile().GetPath(process_name,
sizeof(process_name))) {
const bool wait_for_launch = attach_info.GetWaitForLaunch();
if (wait_for_launch) {
error = WillAttachToProcessWithName(process_name, wait_for_launch);
if (error.Success()) {
if (m_public_run_lock.TrySetRunning()) {
m_should_detach = true;
const bool restarted = false;
SetPublicState(eStateAttaching, restarted);
// Now attach using these arguments.
error = DoAttachToProcessWithName(process_name, attach_info);
} else {
// This shouldn't happen
error =
Status::FromErrorString("failed to acquire process run lock");
}
if (error.Fail()) {
if (GetID() != LLDB_INVALID_PROCESS_ID) {
SetID(LLDB_INVALID_PROCESS_ID);
if (error.AsCString() == nullptr)
error = Status::FromErrorString("attach failed");
SetExitStatus(-1, error.AsCString());
}
} else {
SetNextEventAction(new Process::AttachCompletionHandler(
this, attach_info.GetResumeCount()));
StartPrivateStateThread();
}
return error;
}
} else {
ProcessInstanceInfoList process_infos;
PlatformSP platform_sp(GetTarget().GetPlatform());
if (platform_sp) {
ProcessInstanceInfoMatch match_info;
match_info.GetProcessInfo() = attach_info;
match_info.SetNameMatchType(NameMatch::Equals);
platform_sp->FindProcesses(match_info, process_infos);
const uint32_t num_matches = process_infos.size();
if (num_matches == 1) {
attach_pid = process_infos[0].GetProcessID();
// Fall through and attach using the above process ID
} else {
match_info.GetProcessInfo().GetExecutableFile().GetPath(
process_name, sizeof(process_name));
if (num_matches > 1) {
StreamString s;
ProcessInstanceInfo::DumpTableHeader(s, true, false);
for (size_t i = 0; i < num_matches; i++) {
process_infos[i].DumpAsTableRow(
s, platform_sp->GetUserIDResolver(), true, false);
}
error = Status::FromErrorStringWithFormat(
"more than one process named %s:\n%s", process_name,
s.GetData());
} else
error = Status::FromErrorStringWithFormat(
"could not find a process named %s", process_name);
}
} else {
error = Status::FromErrorString(
"invalid platform, can't find processes by name");
return error;
}
}
} else {
error = Status::FromErrorString("invalid process name");
}
}
if (attach_pid != LLDB_INVALID_PROCESS_ID) {
error = WillAttachToProcessWithID(attach_pid);
if (error.Success()) {
if (m_public_run_lock.TrySetRunning()) {
// Now attach using these arguments.
m_should_detach = true;
const bool restarted = false;
SetPublicState(eStateAttaching, restarted);
error = DoAttachToProcessWithID(attach_pid, attach_info);
} else {
// This shouldn't happen
error = Status::FromErrorString("failed to acquire process run lock");
}
if (error.Success()) {
SetNextEventAction(new Process::AttachCompletionHandler(
this, attach_info.GetResumeCount()));
StartPrivateStateThread();
} else {
if (GetID() != LLDB_INVALID_PROCESS_ID)
SetID(LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == nullptr)
error_string = "attach failed";
SetExitStatus(-1, error_string);
}
}
}
return error;
}
void Process::CompleteAttach() {
Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
// Let the process subclass figure out at much as it can about the process
// before we go looking for a dynamic loader plug-in.
ArchSpec process_arch;
DidAttach(process_arch);
if (process_arch.IsValid()) {
LLDB_LOG(log,
"Process::{0} replacing process architecture with DidAttach() "
"architecture: \"{1}\"",
__FUNCTION__, process_arch.GetTriple().getTriple());
GetTarget().SetArchitecture(process_arch);
}
// We just attached. If we have a platform, ask it for the process
// architecture, and if it isn't the same as the one we've already set,
// switch architectures.
PlatformSP platform_sp(GetTarget().GetPlatform());
assert(platform_sp);
ArchSpec process_host_arch = GetSystemArchitecture();
if (platform_sp) {
const ArchSpec &target_arch = GetTarget().GetArchitecture();
if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
target_arch, process_host_arch,
ArchSpec::CompatibleMatch, nullptr)) {
ArchSpec platform_arch;
platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
target_arch, process_host_arch, &platform_arch);
if (platform_sp) {
GetTarget().SetPlatform(platform_sp);
GetTarget().SetArchitecture(platform_arch);
LLDB_LOG(log,
"switching platform to {0} and architecture to {1} based on "
"info from attach",
platform_sp->GetName(), platform_arch.GetTriple().getTriple());
}
} else if (!process_arch.IsValid()) {
ProcessInstanceInfo process_info;
GetProcessInfo(process_info);
const ArchSpec &process_arch = process_info.GetArchitecture();
const ArchSpec &target_arch = GetTarget().GetArchitecture();
if (process_arch.IsValid() &&
target_arch.IsCompatibleMatch(process_arch) &&
!target_arch.IsExactMatch(process_arch)) {
GetTarget().SetArchitecture(process_arch);
LLDB_LOGF(log,
"Process::%s switching architecture to %s based on info "
"the platform retrieved for pid %" PRIu64,
__FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
GetID());
}
}
}
// Now that we know the process type, update its signal responses from the
// ones stored in the Target:
if (m_unix_signals_sp) {
StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
}
// We have completed the attach, now it is time to find the dynamic loader
// plug-in
DynamicLoader *dyld = GetDynamicLoader();
if (dyld) {
dyld->DidAttach();
if (log) {
ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
LLDB_LOG(log,
"after DynamicLoader::DidAttach(), target "
"executable is {0} (using {1} plugin)",
exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
dyld->GetPluginName());
}
}
GetJITLoaders().DidAttach();
SystemRuntime *system_runtime = GetSystemRuntime();
if (system_runtime) {
system_runtime->DidAttach();
if (log) {
ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
LLDB_LOG(log,
"after SystemRuntime::DidAttach(), target "
"executable is {0} (using {1} plugin)",
exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
system_runtime->GetPluginName());
}
}
if (!m_os_up) {
LoadOperatingSystemPlugin(false);
if (m_os_up) {
// Somebody might have gotten threads before now, but we need to force the
// update after we've loaded the OperatingSystem plugin or it won't get a
// chance to process the threads.
m_thread_list.Clear();
UpdateThreadListIfNeeded();
}
}
// Figure out which one is the executable, and set that in our target:
ModuleSP new_executable_module_sp;
for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
if (module_sp && module_sp->IsExecutable()) {
if (GetTarget().GetExecutableModulePointer() != module_sp.get())
new_executable_module_sp = module_sp;
break;
}
}
if (new_executable_module_sp) {
GetTarget().SetExecutableModule(new_executable_module_sp,
eLoadDependentsNo);
if (log) {
ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
LLDB_LOGF(
log,
"Process::%s after looping through modules, target executable is %s",
__FUNCTION__,
exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
: "<none>");
}
}
}
Status Process::ConnectRemote(llvm::StringRef remote_url) {
m_abi_sp.reset();
{
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
m_process_input_reader.reset();
}
// Find the process and its architecture. Make sure it matches the
// architecture of the current Target, and if not adjust it.
Status error(DoConnectRemote(remote_url));
if (error.Success()) {
if (GetID() != LLDB_INVALID_PROCESS_ID) {
EventSP event_sp;
StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
if (state == eStateStopped || state == eStateCrashed) {
// If we attached and actually have a process on the other end, then
// this ended up being the equivalent of an attach.
CompleteAttach();
// This delays passing the stopped event to listeners till
// CompleteAttach gets a chance to complete...
HandlePrivateEvent(event_sp);
}
}
if (PrivateStateThreadIsValid())
ResumePrivateStateThread();
else
StartPrivateStateThread();
}
return error;
}
Status Process::PrivateResume() {
Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
LLDB_LOGF(log,
"Process::PrivateResume() m_stop_id = %u, public state: %s "
"private state: %s",
m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
StateAsCString(m_private_state.GetValue()));
// If signals handing status changed we might want to update our signal
// filters before resuming.
UpdateAutomaticSignalFiltering();
// Clear any crash info we accumulated for this stop, but don't do so if we
// are running functions; we don't want to wipe out the real stop's info.
if (!GetModID().IsLastResumeForUserExpression())
ResetExtendedCrashInfoDict();
Status error(WillResume());
// Tell the process it is about to resume before the thread list
if (error.Success()) {
// Now let the thread list know we are about to resume so it can let all of
// our threads know that they are about to be resumed. Threads will each be
// called with Thread::WillResume(StateType) where StateType contains the
// state that they are supposed to have when the process is resumed
// (suspended/running/stepping). Threads should also check their resume
// signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
// start back up with a signal.
if (m_thread_list.WillResume()) {
// Last thing, do the PreResumeActions.
if (!RunPreResumeActions()) {
error = Status::FromErrorString(
"Process::PrivateResume PreResumeActions failed, not resuming.");
} else {
m_mod_id.BumpResumeID();
error = DoResume();
if (error.Success()) {
DidResume();
m_thread_list.DidResume();
LLDB_LOGF(log, "Process thinks the process has resumed.");
} else {
LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
return error;
}
}
} else {
// Somebody wanted to run without running (e.g. we were faking a step
// from one frame of a set of inlined frames that share the same PC to
// another.) So generate a continue & a stopped event, and let the world
// handle them.
LLDB_LOGF(log,
"Process::PrivateResume() asked to simulate a start & stop.");
SetPrivateState(eStateRunning);
SetPrivateState(eStateStopped);
}
} else
LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
error.AsCString("<unknown error>"));
return error;
}
Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
if (!StateIsRunningState(m_public_state.GetValue()))
return Status::FromErrorString("Process is not running.");
// Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
// case it was already set and some thread plan logic calls halt on its own.
m_clear_thread_plans_on_stop |= clear_thread_plans;
ListenerSP halt_listener_sp(
Listener::MakeListener("lldb.process.halt_listener"));
HijackProcessEvents(halt_listener_sp);
EventSP event_sp;
SendAsyncInterrupt();
if (m_public_state.GetValue() == eStateAttaching) {
// Don't hijack and eat the eStateExited as the code that was doing the
// attach will be waiting for this event...
RestoreProcessEvents();
Destroy(false);
SetExitStatus(SIGKILL, "Cancelled async attach.");
return Status();
}
// Wait for the process halt timeout seconds for the process to stop.
// If we are going to use the run lock, that means we're stopping out to the
// user, so we should also select the most relevant frame.
SelectMostRelevant select_most_relevant =
use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame;
StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
halt_listener_sp, nullptr,
use_run_lock, select_most_relevant);
RestoreProcessEvents();
if (state == eStateInvalid || !event_sp) {
// We timed out and didn't get a stop event...
return Status::FromErrorStringWithFormat("Halt timed out. State = %s",
StateAsCString(GetState()));
}
BroadcastEvent(event_sp);
return Status();
}
lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high,
const uint8_t *buf, size_t size) {
const size_t region_size = high - low;
if (region_size < size)
return LLDB_INVALID_ADDRESS;
// See "Boyer-Moore string search algorithm".
std::vector<size_t> bad_char_heuristic(256, size);
for (size_t idx = 0; idx < size - 1; idx++) {
decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx];
bad_char_heuristic[bcu_idx] = size - idx - 1;
}
// Memory we're currently searching through.
llvm::SmallVector<uint8_t, 0> mem;
// Position of the memory buffer.
addr_t mem_pos = low;
// Maximum number of bytes read (and buffered). We need to read at least
// `size` bytes for a successful match.
const size_t max_read_size = std::max<size_t>(size, 0x10000);
for (addr_t cur_addr = low; cur_addr <= (high - size);) {
if (cur_addr + size > mem_pos + mem.size()) {
// We need to read more data. We don't attempt to reuse the data we've
// already read (up to `size-1` bytes from `cur_addr` to
// `mem_pos+mem.size()`). This is fine for patterns much smaller than
// max_read_size. For very
// long patterns we may need to do something more elaborate.
mem.resize_for_overwrite(max_read_size);
Status error;
mem.resize(ReadMemory(cur_addr, mem.data(),
std::min<addr_t>(mem.size(), high - cur_addr),
error));
mem_pos = cur_addr;
if (size > mem.size()) {
// We didn't read enough data. Skip to the next memory region.
MemoryRegionInfo info;
error = GetMemoryRegionInfo(mem_pos + mem.size(), info);
if (error.Fail())
break;
cur_addr = info.GetRange().GetRangeEnd();
continue;
}
}
int64_t j = size - 1;
while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos])
j--;
if (j < 0)
return cur_addr; // We have a match.
cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]];
}
return LLDB_INVALID_ADDRESS;
}
Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
Status error;
// Check both the public & private states here. If we're hung evaluating an
// expression, for instance, then the public state will be stopped, but we
// still need to interrupt.
if (m_public_state.GetValue() == eStateRunning ||
m_private_state.GetValue() == eStateRunning) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
ListenerSP listener_sp(
Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
HijackProcessEvents(listener_sp);
SendAsyncInterrupt();
// Consume the interrupt event.
StateType state = WaitForProcessToStop(GetInterruptTimeout(),
&exit_event_sp, true, listener_sp);
RestoreProcessEvents();
// If the process exited while we were waiting for it to stop, put the
// exited event into the shared pointer passed in and return. Our caller
// doesn't need to do anything else, since they don't have a process
// anymore...
if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
__FUNCTION__);
return error;
} else
exit_event_sp.reset(); // It is ok to consume any non-exit stop events
if (state != eStateStopped) {
LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
StateAsCString(state));
// If we really couldn't stop the process then we should just error out
// here, but if the lower levels just bobbled sending the event and we
// really are stopped, then continue on.
StateType private_state = m_private_state.GetValue();
if (private_state != eStateStopped) {
return Status::FromErrorStringWithFormat(
"Attempt to stop the target in order to detach timed out. "
"State = %s",
StateAsCString(GetState()));
}
}
}
return error;
}
Status Process::Detach(bool keep_stopped) {
EventSP exit_event_sp;
Status error;
m_destroy_in_process = true;
error = WillDetach();
if (error.Success()) {
if (DetachRequiresHalt()) {
error = StopForDestroyOrDetach(exit_event_sp);
if (!error.Success()) {
m_destroy_in_process = false;
return error;
} else if (exit_event_sp) {
// We shouldn't need to do anything else here. There's no process left
// to detach from...
StopPrivateStateThread();
m_destroy_in_process = false;
return error;
}
}
m_thread_list.DiscardThreadPlans();
DisableAllBreakpointSites();
error = DoDetach(keep_stopped);
if (error.Success()) {
DidDetach();
StopPrivateStateThread();
} else {
return error;
}
}
m_destroy_in_process = false;
// If we exited when we were waiting for a process to stop, then forward the
// event here so we don't lose the event
if (exit_event_sp) {
// Directly broadcast our exited event because we shut down our private
// state thread above
BroadcastEvent(exit_event_sp);
}
// If we have been interrupted (to kill us) in the middle of running, we may
// not end up propagating the last events through the event system, in which
// case we might strand the write lock. Unlock it here so when we do to tear
// down the process we don't get an error destroying the lock.
m_public_run_lock.SetStopped();
return error;
}
Status Process::Destroy(bool force_kill) {
// If we've already called Process::Finalize then there's nothing useful to
// be done here. Finalize has actually called Destroy already.
if (m_finalizing)
return {};
return DestroyImpl(force_kill);
}
Status Process::DestroyImpl(bool force_kill) {
// Tell ourselves we are in the process of destroying the process, so that we
// don't do any unnecessary work that might hinder the destruction. Remember
// to set this back to false when we are done. That way if the attempt
// failed and the process stays around for some reason it won't be in a
// confused state.
if (force_kill)
m_should_detach = false;
if (GetShouldDetach()) {
// FIXME: This will have to be a process setting:
bool keep_stopped = false;
Detach(keep_stopped);
}
m_destroy_in_process = true;
Status error(WillDestroy());
if (error.Success()) {
EventSP exit_event_sp;
if (DestroyRequiresHalt()) {
error = StopForDestroyOrDetach(exit_event_sp);
}
if (m_public_state.GetValue() == eStateStopped) {
// Ditch all thread plans, and remove all our breakpoints: in case we
// have to restart the target to kill it, we don't want it hitting a
// breakpoint... Only do this if we've stopped, however, since if we
// didn't manage to halt it above, then we're not going to have much luck
// doing this now.
m_thread_list.DiscardThreadPlans();
DisableAllBreakpointSites();
}
error = DoDestroy();
if (error.Success()) {
DidDestroy();
StopPrivateStateThread();
}
m_stdio_communication.StopReadThread();
m_stdio_communication.Disconnect();
m_stdin_forward = false;
{
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
if (m_process_input_reader) {
m_process_input_reader->SetIsDone(true);
m_process_input_reader->Cancel();
m_process_input_reader.reset();
}
}
// If we exited when we were waiting for a process to stop, then forward
// the event here so we don't lose the event
if (exit_event_sp) {
// Directly broadcast our exited event because we shut down our private
// state thread above
BroadcastEvent(exit_event_sp);
}
// If we have been interrupted (to kill us) in the middle of running, we
// may not end up propagating the last events through the event system, in
// which case we might strand the write lock. Unlock it here so when we do
// to tear down the process we don't get an error destroying the lock.
m_public_run_lock.SetStopped();
}
m_destroy_in_process = false;
return error;
}
Status Process::Signal(int signal) {
Status error(WillSignal());
if (error.Success()) {
error = DoSignal(signal);
if (error.Success())
DidSignal();
}
return error;
}
void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
assert(signals_sp && "null signals_sp");
m_unix_signals_sp = std::move(signals_sp);
}
const lldb::UnixSignalsSP &Process::GetUnixSignals() {
assert(m_unix_signals_sp && "null m_unix_signals_sp");
return m_unix_signals_sp;
}
lldb::ByteOrder Process::GetByteOrder() const {
return GetTarget().GetArchitecture().GetByteOrder();
}
uint32_t Process::GetAddressByteSize() const {
return GetTarget().GetArchitecture().GetAddressByteSize();
}
bool Process::ShouldBroadcastEvent(Event *event_ptr) {
const StateType state =
Process::ProcessEventData::GetStateFromEvent(event_ptr);
bool return_value = true;
Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
switch (state) {
case eStateDetached:
case eStateExited:
case eStateUnloaded:
m_stdio_communication.SynchronizeWithReadThread();
m_stdio_communication.StopReadThread();
m_stdio_communication.Disconnect();
m_stdin_forward = false;
[[fallthrough]];
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
// These events indicate changes in the state of the debugging session,
// always report them.
return_value = true;
break;
case eStateInvalid:
// We stopped for no apparent reason, don't report it.
return_value = false;
break;
case eStateRunning:
case eStateStepping:
// If we've started the target running, we handle the cases where we are
// already running and where there is a transition from stopped to running
// differently. running -> running: Automatically suppress extra running
// events stopped -> running: Report except when there is one or more no
// votes
// and no yes votes.
SynchronouslyNotifyStateChanged(state);
if (m_force_next_event_delivery)
return_value = true;
else {
switch (m_last_broadcast_state) {
case eStateRunning:
case eStateStepping:
// We always suppress multiple runnings with no PUBLIC stop in between.
return_value = false;
break;
default:
// TODO: make this work correctly. For now always report
// run if we aren't running so we don't miss any running events. If I
// run the lldb/test/thread/a.out file and break at main.cpp:58, run
// and hit the breakpoints on multiple threads, then somehow during the
// stepping over of all breakpoints no run gets reported.
// This is a transition from stop to run.
switch (m_thread_list.ShouldReportRun(event_ptr)) {
case eVoteYes:
case eVoteNoOpinion:
return_value = true;
break;
case eVoteNo:
return_value = false;
break;
}
break;
}
}
break;
case eStateStopped:
case eStateCrashed:
case eStateSuspended:
// We've stopped. First see if we're going to restart the target. If we
// are going to stop, then we always broadcast the event. If we aren't
// going to stop, let the thread plans decide if we're going to report this
// event. If no thread has an opinion, we don't report it.
m_stdio_communication.SynchronizeWithReadThread();
RefreshStateAfterStop();
if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
LLDB_LOGF(log,
"Process::ShouldBroadcastEvent (%p) stopped due to an "
"interrupt, state: %s",
static_cast<void *>(event_ptr), StateAsCString(state));
// Even though we know we are going to stop, we should let the threads
// have a look at the stop, so they can properly set their state.
m_thread_list.ShouldStop(event_ptr);
return_value = true;
} else {
bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
bool should_resume = false;
// It makes no sense to ask "ShouldStop" if we've already been
// restarted... Asking the thread list is also not likely to go well,
// since we are running again. So in that case just report the event.
if (!was_restarted)
should_resume = !m_thread_list.ShouldStop(event_ptr);
if (was_restarted || should_resume || m_resume_requested) {
Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
LLDB_LOGF(log,
"Process::ShouldBroadcastEvent: should_resume: %i state: "
"%s was_restarted: %i report_stop_vote: %d.",
should_resume, StateAsCString(state), was_restarted,
report_stop_vote);
switch (report_stop_vote) {
case eVoteYes:
return_value = true;
break;
case eVoteNoOpinion:
case eVoteNo:
return_value = false;
break;
}
if (!was_restarted) {
LLDB_LOGF(log,
"Process::ShouldBroadcastEvent (%p) Restarting process "
"from state: %s",
static_cast<void *>(event_ptr), StateAsCString(state));
ProcessEventData::SetRestartedInEvent(event_ptr, true);
PrivateResume();
}
} else {
return_value = true;
SynchronouslyNotifyStateChanged(state);
}
}
break;
}
// Forcing the next event delivery is a one shot deal. So reset it here.
m_force_next_event_delivery = false;
// We do some coalescing of events (for instance two consecutive running
// events get coalesced.) But we only coalesce against events we actually
// broadcast. So we use m_last_broadcast_state to track that. NB - you
// can't use "m_public_state.GetValue()" for that purpose, as was originally
// done, because the PublicState reflects the last event pulled off the
// queue, and there may be several events stacked up on the queue unserviced.
// So the PublicState may not reflect the last broadcasted event yet.
// m_last_broadcast_state gets updated here.
if (return_value)
m_last_broadcast_state = state;
LLDB_LOGF(log,
"Process::ShouldBroadcastEvent (%p) => new state: %s, last "
"broadcast state: %s - %s",
static_cast<void *>(event_ptr), StateAsCString(state),
StateAsCString(m_last_broadcast_state),
return_value ? "YES" : "NO");
return return_value;
}
bool Process::StartPrivateStateThread(bool is_secondary_thread) {
Log *log = GetLog(LLDBLog::Events);
bool already_running = PrivateStateThreadIsValid();
LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
already_running ? " already running"
: " starting private state thread");
if (!is_secondary_thread && already_running)
return true;
// Create a thread that watches our internal state and controls which events
// make it to clients (into the DCProcess event queue).
char thread_name[1024];
uint32_t max_len = llvm::get_max_thread_name_length();
if (max_len > 0 && max_len <= 30) {
// On platforms with abbreviated thread name lengths, choose thread names
// that fit within the limit.
if (already_running)
snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
else
snprintf(thread_name, sizeof(thread_name), "intern-state");
} else {
if (already_running)
snprintf(thread_name, sizeof(thread_name),
"<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
GetID());
else
snprintf(thread_name, sizeof(thread_name),
"<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
}
llvm::Expected<HostThread> private_state_thread =
ThreadLauncher::LaunchThread(
thread_name,
[this, is_secondary_thread] {
return RunPrivateStateThread(is_secondary_thread);
},
8 * 1024 * 1024);
if (!private_state_thread) {
LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
"failed to launch host thread: {0}");
return false;
}
assert(private_state_thread->IsJoinable());
m_private_state_thread = *private_state_thread;
ResumePrivateStateThread();
return true;
}
void Process::PausePrivateStateThread() {
ControlPrivateStateThread(eBroadcastInternalStateControlPause);
}
void Process::ResumePrivateStateThread() {
ControlPrivateStateThread(eBroadcastInternalStateControlResume);
}
void Process::StopPrivateStateThread() {
if (m_private_state_thread.IsJoinable())
ControlPrivateStateThread(eBroadcastInternalStateControlStop);
else {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(
log,
"Went to stop the private state thread, but it was already invalid.");
}
}
void Process::ControlPrivateStateThread(uint32_t signal) {
Log *log = GetLog(LLDBLog::Process);
assert(signal == eBroadcastInternalStateControlStop ||
signal == eBroadcastInternalStateControlPause ||
signal == eBroadcastInternalStateControlResume);
LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
// Signal the private state thread
if (m_private_state_thread.IsJoinable()) {
// Broadcast the event.
// It is important to do this outside of the if below, because it's
// possible that the thread state is invalid but that the thread is waiting
// on a control event instead of simply being on its way out (this should
// not happen, but it apparently can).
LLDB_LOGF(log, "Sending control event of type: %d.", signal);
std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
m_private_state_control_broadcaster.BroadcastEvent(signal,
event_receipt_sp);
// Wait for the event receipt or for the private state thread to exit
bool receipt_received = false;
if (PrivateStateThreadIsValid()) {
while (!receipt_received) {
// Check for a receipt for n seconds and then check if the private
// state thread is still around.
receipt_received =
event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
if (!receipt_received) {
// Check if the private state thread is still around. If it isn't
// then we are done waiting
if (!PrivateStateThreadIsValid())
break; // Private state thread exited or is exiting, we are done
}
}
}
if (signal == eBroadcastInternalStateControlStop) {
thread_result_t result = {};
m_private_state_thread.Join(&result);
m_private_state_thread.Reset();
}
} else {
LLDB_LOGF(
log,
"Private state thread already dead, no need to signal it to stop.");
}
}
void Process::SendAsyncInterrupt(Thread *thread) {
if (thread != nullptr)
m_interrupt_tid = thread->GetProtocolID();
else
m_interrupt_tid = LLDB_INVALID_THREAD_ID;
if (PrivateStateThreadIsValid())
m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
nullptr);
else
BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
}
void Process::HandlePrivateEvent(EventSP &event_sp) {
Log *log = GetLog(LLDBLog::Process);
m_resume_requested = false;
const StateType new_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
// First check to see if anybody wants a shot at this event:
if (m_next_event_action_up) {
NextEventAction::EventActionResult action_result =
m_next_event_action_up->PerformAction(event_sp);
LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
switch (action_result) {
case NextEventAction::eEventActionSuccess:
SetNextEventAction(nullptr);
break;
case NextEventAction::eEventActionRetry:
break;
case NextEventAction::eEventActionExit:
// Handle Exiting Here. If we already got an exited event, we should
// just propagate it. Otherwise, swallow this event, and set our state
// to exit so the next event will kill us.
if (new_state != eStateExited) {
// FIXME: should cons up an exited event, and discard this one.
SetExitStatus(0, m_next_event_action_up->GetExitString());
SetNextEventAction(nullptr);
return;
}
SetNextEventAction(nullptr);
break;
}
}
// See if we should broadcast this state to external clients?
const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
if (should_broadcast) {
const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
if (log) {
LLDB_LOGF(log,
"Process::%s (pid = %" PRIu64
") broadcasting new state %s (old state %s) to %s",
__FUNCTION__, GetID(), StateAsCString(new_state),
StateAsCString(GetState()),
is_hijacked ? "hijacked" : "public");
}
Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
if (StateIsRunningState(new_state)) {
// Only push the input handler if we aren't fowarding events, as this
// means the curses GUI is in use... Or don't push it if we are launching
// since it will come up stopped.
if (!GetTarget().GetDebugger().IsForwardingEvents() &&
new_state != eStateLaunching && new_state != eStateAttaching) {
PushProcessIOHandler();
m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
eBroadcastAlways);
LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
__FUNCTION__, m_iohandler_sync.GetValue());
}
} else if (StateIsStoppedState(new_state, false)) {
if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
// If the lldb_private::Debugger is handling the events, we don't want
// to pop the process IOHandler here, we want to do it when we receive
// the stopped event so we can carefully control when the process
// IOHandler is popped because when we stop we want to display some
// text stating how and why we stopped, then maybe some
// process/thread/frame info, and then we want the "(lldb) " prompt to
// show up. If we pop the process IOHandler here, then we will cause
// the command interpreter to become the top IOHandler after the
// process pops off and it will update its prompt right away... See the
// Debugger.cpp file where it calls the function as
// "process_sp->PopProcessIOHandler()" to see where I am talking about.
// Otherwise we end up getting overlapping "(lldb) " prompts and
// garbled output.
//
// If we aren't handling the events in the debugger (which is indicated
// by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
// we are hijacked, then we always pop the process IO handler manually.
// Hijacking happens when the internal process state thread is running
// thread plans, or when commands want to run in synchronous mode and
// they call "process->WaitForProcessToStop()". An example of something
// that will hijack the events is a simple expression:
//
// (lldb) expr (int)puts("hello")
//
// This will cause the internal process state thread to resume and halt
// the process (and _it_ will hijack the eBroadcastBitStateChanged
// events) and we do need the IO handler to be pushed and popped
// correctly.
if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
PopProcessIOHandler();
}
}
BroadcastEvent(event_sp);
} else {
if (log) {
LLDB_LOGF(
log,
"Process::%s (pid = %" PRIu64
") suppressing state %s (old state %s): should_broadcast == false",
__FUNCTION__, GetID(), StateAsCString(new_state),
StateAsCString(GetState()));
}
}
}
Status Process::HaltPrivate() {
EventSP event_sp;
Status error(WillHalt());
if (error.Fail())
return error;
// Ask the process subclass to actually halt our process
bool caused_stop;
error = DoHalt(caused_stop);
DidHalt();
return error;
}
thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
bool control_only = true;
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
__FUNCTION__, static_cast<void *>(this), GetID());
bool exit_now = false;
bool interrupt_requested = false;
while (!exit_now) {
EventSP event_sp;
GetEventsPrivate(event_sp, std::nullopt, control_only);
if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
LLDB_LOGF(log,
"Process::%s (arg = %p, pid = %" PRIu64
") got a control event: %d",
__FUNCTION__, static_cast<void *>(this), GetID(),
event_sp->GetType());
switch (event_sp->GetType()) {
case eBroadcastInternalStateControlStop:
exit_now = true;
break; // doing any internal state management below
case eBroadcastInternalStateControlPause:
control_only = true;
break;
case eBroadcastInternalStateControlResume:
control_only = false;
break;
}
continue;
} else if (event_sp->GetType() == eBroadcastBitInterrupt) {
if (m_public_state.GetValue() == eStateAttaching) {
LLDB_LOGF(log,
"Process::%s (arg = %p, pid = %" PRIu64
") woke up with an interrupt while attaching - "
"forwarding interrupt.",
__FUNCTION__, static_cast<void *>(this), GetID());
// The server may be spinning waiting for a process to appear, in which
// case we should tell it to stop doing that. Normally, we don't NEED
// to do that because we will next close the communication to the stub
// and that will get it to shut down. But there are remote debugging
// cases where relying on that side-effect causes the shutdown to be
// flakey, so we should send a positive signal to interrupt the wait.
Status error = HaltPrivate();
BroadcastEvent(eBroadcastBitInterrupt, nullptr);
} else if (StateIsRunningState(m_last_broadcast_state)) {
LLDB_LOGF(log,
"Process::%s (arg = %p, pid = %" PRIu64
") woke up with an interrupt - Halting.",
__FUNCTION__, static_cast<void *>(this), GetID());
Status error = HaltPrivate();
if (error.Fail() && log)
LLDB_LOGF(log,
"Process::%s (arg = %p, pid = %" PRIu64
") failed to halt the process: %s",
__FUNCTION__, static_cast<void *>(this), GetID(),
error.AsCString());
// Halt should generate a stopped event. Make a note of the fact that
// we were doing the interrupt, so we can set the interrupted flag
// after we receive the event. We deliberately set this to true even if
// HaltPrivate failed, so that we can interrupt on the next natural
// stop.
interrupt_requested = true;
} else {
// This can happen when someone (e.g. Process::Halt) sees that we are
// running and sends an interrupt request, but the process actually
// stops before we receive it. In that case, we can just ignore the
// request. We use m_last_broadcast_state, because the Stopped event
// may not have been popped of the event queue yet, which is when the
// public state gets updated.
LLDB_LOGF(log,
"Process::%s ignoring interrupt as we have already stopped.",
__FUNCTION__);
}
continue;
}
const StateType internal_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (internal_state != eStateInvalid) {
if (m_clear_thread_plans_on_stop &&
StateIsStoppedState(internal_state, true)) {
m_clear_thread_plans_on_stop = false;
m_thread_list.DiscardThreadPlans();
}
if (interrupt_requested) {
if (StateIsStoppedState(internal_state, true)) {
// Only mark interrupt event if it is not thread specific async
// interrupt.
if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) {
// We requested the interrupt, so mark this as such in the stop
// event so clients can tell an interrupted process from a natural
// stop
ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
}
interrupt_requested = false;
} else if (log) {
LLDB_LOGF(log,
"Process::%s interrupt_requested, but a non-stopped "
"state '%s' received.",
__FUNCTION__, StateAsCString(internal_state));
}
}
HandlePrivateEvent(event_sp);
}
if (internal_state == eStateInvalid || internal_state == eStateExited ||
internal_state == eStateDetached) {
LLDB_LOGF(log,
"Process::%s (arg = %p, pid = %" PRIu64
") about to exit with internal state %s...",
__FUNCTION__, static_cast<void *>(this), GetID(),
StateAsCString(internal_state));
break;
}
}
// Verify log is still enabled before attempting to write to it...
LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
__FUNCTION__, static_cast<void *>(this), GetID());
// If we are a secondary thread, then the primary thread we are working for
// will have already acquired the public_run_lock, and isn't done with what
// it was doing yet, so don't try to change it on the way out.
if (!is_secondary_thread)
m_public_run_lock.SetStopped();
return {};
}
// Process Event Data
Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
StateType state)
: EventData(), m_process_wp(), m_state(state) {
if (process_sp)
m_process_wp = process_sp;
}
Process::ProcessEventData::~ProcessEventData() = default;
llvm::StringRef Process::ProcessEventData::GetFlavorString() {
return "Process::ProcessEventData";
}
llvm::StringRef Process::ProcessEventData::GetFlavor() const {
return ProcessEventData::GetFlavorString();
}
bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
bool &found_valid_stopinfo) {
found_valid_stopinfo = false;
ProcessSP process_sp(m_process_wp.lock());
if (!process_sp)
return false;
ThreadList &curr_thread_list = process_sp->GetThreadList();
uint32_t num_threads = curr_thread_list.GetSize();
// The actions might change one of the thread's stop_info's opinions about
// whether we should stop the process, so we need to query that as we go.
// One other complication here, is that we try to catch any case where the
// target has run (except for expressions) and immediately exit, but if we
// get that wrong (which is possible) then the thread list might have
// changed, and that would cause our iteration here to crash. We could
// make a copy of the thread list, but we'd really like to also know if it
// has changed at all, so we store the original thread ID's of all threads and
// check what we get back against this list & bag out if anything differs.
std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads;
for (uint32_t idx = 0; idx < num_threads; ++idx) {
lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
/*
Filter out all suspended threads, they could not be the reason
of stop and no need to perform any actions on them.
*/
if (thread_sp->GetResumeState() != eStateSuspended)
not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID());
}
// Use this to track whether we should continue from here. We will only
// continue the target running if no thread says we should stop. Of course
// if some thread's PerformAction actually sets the target running, then it
// doesn't matter what the other threads say...
bool still_should_stop = false;
// Sometimes - for instance if we have a bug in the stub we are talking to,
// we stop but no thread has a valid stop reason. In that case we should
// just stop, because we have no way of telling what the right thing to do
// is, and it's better to let the user decide than continue behind their
// backs.
for (auto [thread_sp, thread_index] : not_suspended_threads) {
if (curr_thread_list.GetSize() != num_threads) {
Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
LLDB_LOGF(
log,
"Number of threads changed from %u to %u while processing event.",
num_threads, curr_thread_list.GetSize());
break;
}
if (thread_sp->GetIndexID() != thread_index) {
Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
LLDB_LOG(log,
"The thread {0} changed from {1} to {2} while processing event.",
thread_sp.get(), thread_index, thread_sp->GetIndexID());
break;
}
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
if (stop_info_sp && stop_info_sp->IsValid()) {
found_valid_stopinfo = true;
bool this_thread_wants_to_stop;
if (stop_info_sp->GetOverrideShouldStop()) {
this_thread_wants_to_stop =
stop_info_sp->GetOverriddenShouldStopValue();
} else {
stop_info_sp->PerformAction(event_ptr);
// The stop action might restart the target. If it does, then we
// want to mark that in the event so that whoever is receiving it
// will know to wait for the running event and reflect that state
// appropriately. We also need to stop processing actions, since they
// aren't expecting the target to be running.
// FIXME: we might have run.
if (stop_info_sp->HasTargetRunSinceMe()) {
SetRestarted(true);
break;
}
this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
}
if (!still_should_stop)
still_should_stop = this_thread_wants_to_stop;
}
}
return still_should_stop;
}
bool Process::ProcessEventData::ForwardEventToPendingListeners(
Event *event_ptr) {
// STDIO and the other async event notifications should always be forwarded.
if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
return true;
// For state changed events, if the update state is zero, we are handling
// this on the private state thread. We should wait for the public event.
return m_update_state == 1;
}
void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
// We only have work to do for state changed events:
if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
return;
ProcessSP process_sp(m_process_wp.lock());
if (!process_sp)
return;
// This function gets called twice for each event, once when the event gets
// pulled off of the private process event queue, and then any number of
// times, first when it gets pulled off of the public event queue, then other
// times when we're pretending that this is where we stopped at the end of
// expression evaluation. m_update_state is used to distinguish these three
// cases; it is 0 when we're just pulling it off for private handling, and >
// 1 for expression evaluation, and we don't want to do the breakpoint
// command handling then.
if (m_update_state != 1)
return;
process_sp->SetPublicState(
m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
if (m_state == eStateStopped && !m_restarted) {
// Let process subclasses know we are about to do a public stop and do
// anything they might need to in order to speed up register and memory
// accesses.
process_sp->WillPublicStop();
}
// If this is a halt event, even if the halt stopped with some reason other
// than a plain interrupt (e.g. we had already stopped for a breakpoint when
// the halt request came through) don't do the StopInfo actions, as they may
// end up restarting the process.
if (m_interrupted)
return;
// If we're not stopped or have restarted, then skip the StopInfo actions:
if (m_state != eStateStopped || m_restarted) {
return;
}
bool does_anybody_have_an_opinion = false;
bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
if (GetRestarted()) {
return;
}
if (!still_should_stop && does_anybody_have_an_opinion) {
// We've been asked to continue, so do that here.
SetRestarted(true);
// Use the private resume method here, since we aren't changing the run
// lock state.
process_sp->PrivateResume();
} else {
bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
!process_sp->StateChangedIsHijackedForSynchronousResume();
if (!hijacked) {
// If we didn't restart, run the Stop Hooks here.
// Don't do that if state changed events aren't hooked up to the
// public (or SyncResume) broadcasters. StopHooks are just for
// real public stops. They might also restart the target,
// so watch for that.
if (process_sp->GetTarget().RunStopHooks())
SetRestarted(true);
}
}
}
void Process::ProcessEventData::Dump(Stream *s) const {
ProcessSP process_sp(m_process_wp.lock());
if (process_sp)
s->Printf(" process = %p (pid = %" PRIu64 "), ",
static_cast<void *>(process_sp.get()), process_sp->GetID());
else
s->PutCString(" process = NULL, ");
s->Printf("state = %s", StateAsCString(GetState()));
}
const Process::ProcessEventData *
Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
if (event_ptr) {
const EventData *event_data = event_ptr->GetData();
if (event_data &&
event_data->GetFlavor() == ProcessEventData::GetFlavorString())
return static_cast<const ProcessEventData *>(event_ptr->GetData());
}
return nullptr;
}
ProcessSP
Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
ProcessSP process_sp;
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
if (data)
process_sp = data->GetProcessSP();
return process_sp;
}
StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
if (data == nullptr)
return eStateInvalid;
else
return data->GetState();
}
bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
if (data == nullptr)
return false;
else
return data->GetRestarted();
}
void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
bool new_value) {
ProcessEventData *data =
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
if (data != nullptr)
data->SetRestarted(new_value);
}
size_t
Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
ProcessEventData *data =
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
if (data != nullptr)
return data->GetNumRestartedReasons();
else
return 0;
}
const char *
Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
size_t idx) {
ProcessEventData *data =
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
if (data != nullptr)
return data->GetRestartedReasonAtIndex(idx);
else
return nullptr;
}
void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
const char *reason) {
ProcessEventData *data =
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
if (data != nullptr)
data->AddRestartedReason(reason);
}
bool Process::ProcessEventData::GetInterruptedFromEvent(
const Event *event_ptr) {
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
if (data == nullptr)
return false;
else
return data->GetInterrupted();
}
void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
bool new_value) {
ProcessEventData *data =
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
if (data != nullptr)
data->SetInterrupted(new_value);
}
bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
ProcessEventData *data =
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
if (data) {
data->SetUpdateStateOnRemoval();
return true;
}
return false;
}
lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
exe_ctx.SetTargetPtr(&GetTarget());
exe_ctx.SetProcessPtr(this);
exe_ctx.SetThreadPtr(nullptr);
exe_ctx.SetFramePtr(nullptr);
}
// uint32_t
// Process::ListProcessesMatchingName (const char *name, StringList &matches,
// std::vector<lldb::pid_t> &pids)
//{
// return 0;
//}
//
// ArchSpec
// Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
//{
// return Host::GetArchSpecForExistingProcess (pid);
//}
//
// ArchSpec
// Process::GetArchSpecForExistingProcess (const char *process_name)
//{
// return Host::GetArchSpecForExistingProcess (process_name);
//}
EventSP Process::CreateEventFromProcessState(uint32_t event_type) {
auto event_data_sp =
std::make_shared<ProcessEventData>(shared_from_this(), GetState());
return std::make_shared<Event>(event_type, event_data_sp);
}
void Process::AppendSTDOUT(const char *s, size_t len) {
std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
m_stdout_data.append(s, len);
auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT);
BroadcastEventIfUnique(event_sp);
}
void Process::AppendSTDERR(const char *s, size_t len) {
std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
m_stderr_data.append(s, len);
auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR);
BroadcastEventIfUnique(event_sp);
}
void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
m_profile_data.push_back(one_profile_data);
auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData);
BroadcastEventIfUnique(event_sp);
}
void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
const StructuredDataPluginSP &plugin_sp) {
auto data_sp = std::make_shared<EventDataStructuredData>(
shared_from_this(), object_sp, plugin_sp);
BroadcastEvent(eBroadcastBitStructuredData, data_sp);
}
StructuredDataPluginSP
Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
auto find_it = m_structured_data_plugin_map.find(type_name);
if (find_it != m_structured_data_plugin_map.end())
return find_it->second;
else
return StructuredDataPluginSP();
}
size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
if (m_profile_data.empty())
return 0;
std::string &one_profile_data = m_profile_data.front();
size_t bytes_available = one_profile_data.size();
if (bytes_available > 0) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
if (bytes_available > buf_size) {
memcpy(buf, one_profile_data.c_str(), buf_size);
one_profile_data.erase(0, buf_size);
bytes_available = buf_size;
} else {
memcpy(buf, one_profile_data.c_str(), bytes_available);
m_profile_data.erase(m_profile_data.begin());
}
}
return bytes_available;
}
// Process STDIO
size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
size_t bytes_available = m_stdout_data.size();
if (bytes_available > 0) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
if (bytes_available > buf_size) {
memcpy(buf, m_stdout_data.c_str(), buf_size);
m_stdout_data.erase(0, buf_size);
bytes_available = buf_size;
} else {
memcpy(buf, m_stdout_data.c_str(), bytes_available);
m_stdout_data.clear();
}
}
return bytes_available;
}
size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
size_t bytes_available = m_stderr_data.size();
if (bytes_available > 0) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
if (bytes_available > buf_size) {
memcpy(buf, m_stderr_data.c_str(), buf_size);
m_stderr_data.erase(0, buf_size);
bytes_available = buf_size;
} else {
memcpy(buf, m_stderr_data.c_str(), bytes_available);
m_stderr_data.clear();
}
}
return bytes_available;
}
void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
size_t src_len) {
Process *process = (Process *)baton;
process->AppendSTDOUT(static_cast<const char *>(src), src_len);
}
class IOHandlerProcessSTDIO : public IOHandler {
public:
IOHandlerProcessSTDIO(Process *process, int write_fd)
: IOHandler(process->GetTarget().GetDebugger(),
IOHandler::Type::ProcessIO),
m_process(process),
m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
m_pipe.CreateNew(false);
}
~IOHandlerProcessSTDIO() override = default;
void SetIsRunning(bool running) {
std::lock_guard<std::mutex> guard(m_mutex);
SetIsDone(!running);
m_is_running = running;
}
// Each IOHandler gets to run until it is done. It should read data from the
// "in" and place output into "out" and "err and return when done.
void Run() override {
if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
!m_pipe.CanRead() || !m_pipe.CanWrite()) {
SetIsDone(true);
return;
}
SetIsDone(false);
const int read_fd = m_read_file.GetDescriptor();
Terminal terminal(read_fd);
TerminalState terminal_state(terminal, false);
// FIXME: error handling?
llvm::consumeError(terminal.SetCanonical(false));
llvm::consumeError(terminal.SetEcho(false));
// FD_ZERO, FD_SET are not supported on windows
#ifndef _WIN32
const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
SetIsRunning(true);
while (true) {
{
std::lock_guard<std::mutex> guard(m_mutex);
if (GetIsDone())
break;
}
SelectHelper select_helper;
select_helper.FDSetRead(read_fd);
select_helper.FDSetRead(pipe_read_fd);
Status error = select_helper.Select();
if (error.Fail())
break;
char ch = 0;
size_t n;
if (select_helper.FDIsSetRead(read_fd)) {
n = 1;
if (m_read_file.Read(&ch, n).Success() && n == 1) {
if (m_write_file.Write(&ch, n).Fail() || n != 1)
break;
} else
break;
}
if (select_helper.FDIsSetRead(pipe_read_fd)) {
size_t bytes_read;
// Consume the interrupt byte
Status error = m_pipe.Read(&ch, 1, bytes_read);
if (error.Success()) {
if (ch == 'q')
break;
if (ch == 'i')
if (StateIsRunningState(m_process->GetState()))
m_process->SendAsyncInterrupt();
}
}
}
SetIsRunning(false);
#endif
}
void Cancel() override {
std::lock_guard<std::mutex> guard(m_mutex);
SetIsDone(true);
// Only write to our pipe to cancel if we are in
// IOHandlerProcessSTDIO::Run(). We can end up with a python command that
// is being run from the command interpreter:
//
// (lldb) step_process_thousands_of_times
//
// In this case the command interpreter will be in the middle of handling
// the command and if the process pushes and pops the IOHandler thousands
// of times, we can end up writing to m_pipe without ever consuming the
// bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
// deadlocking when the pipe gets fed up and blocks until data is consumed.
if (m_is_running) {
char ch = 'q'; // Send 'q' for quit
size_t bytes_written = 0;
m_pipe.Write(&ch, 1, bytes_written);
}
}
bool Interrupt() override {
// Do only things that are safe to do in an interrupt context (like in a
// SIGINT handler), like write 1 byte to a file descriptor. This will
// interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
// that was written to the pipe and then call
// m_process->SendAsyncInterrupt() from a much safer location in code.
if (m_active) {
char ch = 'i'; // Send 'i' for interrupt
size_t bytes_written = 0;
Status result = m_pipe.Write(&ch, 1, bytes_written);
return result.Success();
} else {
// This IOHandler might be pushed on the stack, but not being run
// currently so do the right thing if we aren't actively watching for
// STDIN by sending the interrupt to the process. Otherwise the write to
// the pipe above would do nothing. This can happen when the command
// interpreter is running and gets a "expression ...". It will be on the
// IOHandler thread and sending the input is complete to the delegate
// which will cause the expression to run, which will push the process IO
// handler, but not run it.
if (StateIsRunningState(m_process->GetState())) {
m_process->SendAsyncInterrupt();
return true;
}
}
return false;
}
void GotEOF() override {}
protected:
Process *m_process;
NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB
NativeFile m_write_file; // Write to this file (usually the primary pty for
// getting io to debuggee)
Pipe m_pipe;
std::mutex m_mutex;
bool m_is_running = false;
};
void Process::SetSTDIOFileDescriptor(int fd) {
// First set up the Read Thread for reading/handling process I/O
m_stdio_communication.SetConnection(
std::make_unique<ConnectionFileDescriptor>(fd, true));
if (m_stdio_communication.IsConnected()) {
m_stdio_communication.SetReadThreadBytesReceivedCallback(
STDIOReadThreadBytesReceived, this);
m_stdio_communication.StartReadThread();
// Now read thread is set up, set up input reader.
{
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
if (!m_process_input_reader)
m_process_input_reader =
std::make_shared<IOHandlerProcessSTDIO>(this, fd);
}
}
}
bool Process::ProcessIOHandlerIsActive() {
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
IOHandlerSP io_handler_sp(m_process_input_reader);
if (io_handler_sp)
return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
return false;
}
bool Process::PushProcessIOHandler() {
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
IOHandlerSP io_handler_sp(m_process_input_reader);
if (io_handler_sp) {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
io_handler_sp->SetIsDone(false);
// If we evaluate an utility function, then we don't cancel the current
// IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
// existing IOHandler that potentially provides the user interface (e.g.
// the IOHandler for Editline).
bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
cancel_top_handler);
return true;
}
return false;
}
bool Process::PopProcessIOHandler() {
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
IOHandlerSP io_handler_sp(m_process_input_reader);
if (io_handler_sp)
return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
return false;
}
// The process needs to know about installed plug-ins
void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
namespace {
// RestorePlanState is used to record the "is private", "is controlling" and
// "okay
// to discard" fields of the plan we are running, and reset it on Clean or on
// destruction. It will only reset the state once, so you can call Clean and
// then monkey with the state and it won't get reset on you again.
class RestorePlanState {
public:
RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
: m_thread_plan_sp(thread_plan_sp) {
if (m_thread_plan_sp) {
m_private = m_thread_plan_sp->GetPrivate();
m_is_controlling = m_thread_plan_sp->IsControllingPlan();
m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
}
}
~RestorePlanState() { Clean(); }
void Clean() {
if (!m_already_reset && m_thread_plan_sp) {
m_already_reset = true;
m_thread_plan_sp->SetPrivate(m_private);
m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
}
}
private:
lldb::ThreadPlanSP m_thread_plan_sp;
bool m_already_reset = false;
bool m_private = false;
bool m_is_controlling = false;
bool m_okay_to_discard = false;
};
} // anonymous namespace
static microseconds
GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
const milliseconds default_one_thread_timeout(250);
// If the overall wait is forever, then we don't need to worry about it.
if (!options.GetTimeout()) {
return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
: default_one_thread_timeout;
}
// If the one thread timeout is set, use it.
if (options.GetOneThreadTimeout())
return *options.GetOneThreadTimeout();
// Otherwise use half the total timeout, bounded by the
// default_one_thread_timeout.
return std::min<microseconds>(default_one_thread_timeout,
*options.GetTimeout() / 2);
}
static Timeout<std::micro>
GetExpressionTimeout(const EvaluateExpressionOptions &options,
bool before_first_timeout) {
// If we are going to run all threads the whole time, or if we are only going
// to run one thread, we can just return the overall timeout.
if (!options.GetStopOthers() || !options.GetTryAllThreads())
return options.GetTimeout();
if (before_first_timeout)
return GetOneThreadExpressionTimeout(options);
if (!options.GetTimeout())
return std::nullopt;
else
return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
}
static std::optional<ExpressionResults>
HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
RestorePlanState &restorer, const EventSP &event_sp,
EventSP &event_to_broadcast_sp,
const EvaluateExpressionOptions &options,
bool handle_interrupts) {
Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
ThreadSP thread_sp = thread_plan_sp->GetTarget()
.GetProcessSP()
->GetThreadList()
.FindThreadByID(thread_id);
if (!thread_sp) {
LLDB_LOG(log,
"The thread on which we were running the "
"expression: tid = {0}, exited while "
"the expression was running.",
thread_id);
return eExpressionThreadVanished;
}
ThreadPlanSP plan = thread_sp->GetCompletedPlan();
if (plan == thread_plan_sp && plan->PlanSucceeded()) {
LLDB_LOG(log, "execution completed successfully");
// Restore the plan state so it will get reported as intended when we are
// done.
restorer.Clean();
return eExpressionCompleted;
}
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
stop_info_sp->ShouldNotify(event_sp.get())) {
LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
if (!options.DoesIgnoreBreakpoints()) {
// Restore the plan state and then force Private to false. We are going
// to stop because of this plan so we need it to become a public plan or
// it won't report correctly when we continue to its termination later
// on.
restorer.Clean();
thread_plan_sp->SetPrivate(false);
event_to_broadcast_sp = event_sp;
}
return eExpressionHitBreakpoint;
}
if (!handle_interrupts &&
Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
return std::nullopt;
LLDB_LOG(log, "thread plan did not successfully complete");
if (!options.DoesUnwindOnError())
event_to_broadcast_sp = event_sp;
return eExpressionInterrupted;
}
ExpressionResults
Process::RunThreadPlan(ExecutionContext &exe_ctx,
lldb::ThreadPlanSP &thread_plan_sp,
const EvaluateExpressionOptions &options,
DiagnosticManager &diagnostic_manager) {
ExpressionResults return_value = eExpressionSetupError;
std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
if (!thread_plan_sp) {
diagnostic_manager.PutString(
lldb::eSeverityError, "RunThreadPlan called with empty thread plan.");
return eExpressionSetupError;
}
if (!thread_plan_sp->ValidatePlan(nullptr)) {
diagnostic_manager.PutString(
lldb::eSeverityError,
"RunThreadPlan called with an invalid thread plan.");
return eExpressionSetupError;
}
if (exe_ctx.GetProcessPtr() != this) {
diagnostic_manager.PutString(lldb::eSeverityError,
"RunThreadPlan called on wrong process.");
return eExpressionSetupError;
}
Thread *thread = exe_ctx.GetThreadPtr();
if (thread == nullptr) {
diagnostic_manager.PutString(lldb::eSeverityError,
"RunThreadPlan called with invalid thread.");
return eExpressionSetupError;
}
// Record the thread's id so we can tell when a thread we were using
// to run the expression exits during the expression evaluation.
lldb::tid_t expr_thread_id = thread->GetID();
// We need to change some of the thread plan attributes for the thread plan
// runner. This will restore them when we are done:
RestorePlanState thread_plan_restorer(thread_plan_sp);
// We rely on the thread plan we are running returning "PlanCompleted" if
// when it successfully completes. For that to be true the plan can't be
// private - since private plans suppress themselves in the GetCompletedPlan
// call.
thread_plan_sp->SetPrivate(false);
// The plans run with RunThreadPlan also need to be terminal controlling plans
// or when they are done we will end up asking the plan above us whether we
// should stop, which may give the wrong answer.
thread_plan_sp->SetIsControllingPlan(true);
thread_plan_sp->SetOkayToDiscard(false);
// If we are running some utility expression for LLDB, we now have to mark
// this in the ProcesModID of this process. This RAII takes care of marking
// and reverting the mark it once we are done running the expression.
UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
if (m_private_state.GetValue() != eStateStopped) {
diagnostic_manager.PutString(
lldb::eSeverityError,
"RunThreadPlan called while the private state was not stopped.");
return eExpressionSetupError;
}
// Save the thread & frame from the exe_ctx for restoration after we run
const uint32_t thread_idx_id = thread->GetIndexID();
StackFrameSP selected_frame_sp =
thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
if (!selected_frame_sp) {
thread->SetSelectedFrame(nullptr);
selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
if (!selected_frame_sp) {
diagnostic_manager.Printf(
lldb::eSeverityError,
"RunThreadPlan called without a selected frame on thread %d",
thread_idx_id);
return eExpressionSetupError;
}
}
// Make sure the timeout values make sense. The one thread timeout needs to
// be smaller than the overall timeout.
if (options.GetOneThreadTimeout() && options.GetTimeout() &&
*options.GetTimeout() < *options.GetOneThreadTimeout()) {
diagnostic_manager.PutString(lldb::eSeverityError,
"RunThreadPlan called with one thread "
"timeout greater than total timeout");
return eExpressionSetupError;
}
StackID ctx_frame_id = selected_frame_sp->GetStackID();
// N.B. Running the target may unset the currently selected thread and frame.
// We don't want to do that either, so we should arrange to reset them as
// well.
lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
uint32_t selected_tid;
StackID selected_stack_id;
if (selected_thread_sp) {
selected_tid = selected_thread_sp->GetIndexID();
selected_stack_id =
selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame)
->GetStackID();
} else {
selected_tid = LLDB_INVALID_THREAD_ID;
}
HostThread backup_private_state_thread;
lldb::StateType old_state = eStateInvalid;
lldb::ThreadPlanSP stopper_base_plan_sp;
Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
// Yikes, we are running on the private state thread! So we can't wait for
// public events on this thread, since we are the thread that is generating
// public events. The simplest thing to do is to spin up a temporary thread
// to handle private state thread events while we are fielding public
// events here.
LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
"another state thread to handle the events.");
backup_private_state_thread = m_private_state_thread;
// One other bit of business: we want to run just this thread plan and
// anything it pushes, and then stop, returning control here. But in the
// normal course of things, the plan above us on the stack would be given a
// shot at the stop event before deciding to stop, and we don't want that.
// So we insert a "stopper" base plan on the stack before the plan we want
// to run. Since base plans always stop and return control to the user,
// that will do just what we want.
stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
thread->QueueThreadPlan(stopper_base_plan_sp, false);
// Have to make sure our public state is stopped, since otherwise the
// reporting logic below doesn't work correctly.
old_state = m_public_state.GetValue();
m_public_state.SetValueNoLock(eStateStopped);
// Now spin up the private state thread:
StartPrivateStateThread(true);
}
thread->QueueThreadPlan(
thread_plan_sp, false); // This used to pass "true" does that make sense?
if (options.GetDebug()) {
// In this case, we aren't actually going to run, we just want to stop
// right away. Flush this thread so we will refetch the stacks and show the
// correct backtrace.
// FIXME: To make this prettier we should invent some stop reason for this,
// but that
// is only cosmetic, and this functionality is only of use to lldb
// developers who can live with not pretty...
thread->Flush();
return eExpressionStoppedForDebug;
}
ListenerSP listener_sp(
Listener::MakeListener("lldb.process.listener.run-thread-plan"));
lldb::EventSP event_to_broadcast_sp;
{
// This process event hijacker Hijacks the Public events and its destructor
// makes sure that the process events get restored on exit to the function.
//
// If the event needs to propagate beyond the hijacker (e.g., the process
// exits during execution), then the event is put into
// event_to_broadcast_sp for rebroadcasting.
ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
if (log) {
StreamString s;
thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
LLDB_LOGF(log,
"Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
" to run thread plan \"%s\".",
thread_idx_id, expr_thread_id, s.GetData());
}
bool got_event;
lldb::EventSP event_sp;
lldb::StateType stop_state = lldb::eStateInvalid;
bool before_first_timeout = true; // This is set to false the first time
// that we have to halt the target.
bool do_resume = true;
bool handle_running_event = true;
// This is just for accounting:
uint32_t num_resumes = 0;
// If we are going to run all threads the whole time, or if we are only
// going to run one thread, then we don't need the first timeout. So we
// pretend we are after the first timeout already.
if (!options.GetStopOthers() || !options.GetTryAllThreads())
before_first_timeout = false;
LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
options.GetStopOthers(), options.GetTryAllThreads(),
before_first_timeout);
// This isn't going to work if there are unfetched events on the queue. Are
// there cases where we might want to run the remaining events here, and
// then try to call the function? That's probably being too tricky for our
// own good.
Event *other_events = listener_sp->PeekAtNextEvent();
if (other_events != nullptr) {
diagnostic_manager.PutString(
lldb::eSeverityError,
"RunThreadPlan called with pending events on the queue.");
return eExpressionSetupError;
}
// We also need to make sure that the next event is delivered. We might be
// calling a function as part of a thread plan, in which case the last
// delivered event could be the running event, and we don't want event
// coalescing to cause us to lose OUR running event...
ForceNextEventDelivery();
// This while loop must exit out the bottom, there's cleanup that we need to do
// when we are done. So don't call return anywhere within it.
#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
// It's pretty much impossible to write test cases for things like: One
// thread timeout expires, I go to halt, but the process already stopped on
// the function call stop breakpoint. Turning on this define will make us
// not fetch the first event till after the halt. So if you run a quick
// function, it will have completed, and the completion event will be
// waiting, when you interrupt for halt. The expression evaluation should
// still succeed.
bool miss_first_event = true;
#endif
while (true) {
// We usually want to resume the process if we get to the top of the
// loop. The only exception is if we get two running events with no
// intervening stop, which can happen, we will just wait for then next
// stop event.
LLDB_LOGF(log,
"Top of while loop: do_resume: %i handle_running_event: %i "
"before_first_timeout: %i.",
do_resume, handle_running_event, before_first_timeout);
if (do_resume || handle_running_event) {
// Do the initial resume and wait for the running event before going
// further.
if (do_resume) {
num_resumes++;
Status resume_error = PrivateResume();
if (!resume_error.Success()) {
diagnostic_manager.Printf(
lldb::eSeverityError,
"couldn't resume inferior the %d time: \"%s\".", num_resumes,
resume_error.AsCString());
return_value = eExpressionSetupError;
break;
}
}
got_event =
listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
if (!got_event) {
LLDB_LOGF(log,
"Process::RunThreadPlan(): didn't get any event after "
"resume %" PRIu32 ", exiting.",
num_resumes);
diagnostic_manager.Printf(lldb::eSeverityError,
"didn't get any event after resume %" PRIu32
", exiting.",
num_resumes);
return_value = eExpressionSetupError;
break;
}
stop_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (stop_state != eStateRunning) {
bool restarted = false;
if (stop_state == eStateStopped) {
restarted = Process::ProcessEventData::GetRestartedFromEvent(
event_sp.get());
LLDB_LOGF(
log,
"Process::RunThreadPlan(): didn't get running event after "
"resume %d, got %s instead (restarted: %i, do_resume: %i, "
"handle_running_event: %i).",
num_resumes, StateAsCString(stop_state), restarted, do_resume,
handle_running_event);
}
if (restarted) {
// This is probably an overabundance of caution, I don't think I
// should ever get a stopped & restarted event here. But if I do,
// the best thing is to Halt and then get out of here.
const bool clear_thread_plans = false;
const bool use_run_lock = false;
Halt(clear_thread_plans, use_run_lock);
}
diagnostic_manager.Printf(
lldb::eSeverityError,
"didn't get running event after initial resume, got %s instead.",
StateAsCString(stop_state));
return_value = eExpressionSetupError;
break;
}
if (log)
log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
// We need to call the function synchronously, so spin waiting for it
// to return. If we get interrupted while executing, we're going to
// lose our context, and won't be able to gather the result at this
// point. We set the timeout AFTER the resume, since the resume takes
// some time and we don't want to charge that to the timeout.
} else {
if (log)
log->PutCString("Process::RunThreadPlan(): waiting for next event.");
}
do_resume = true;
handle_running_event = true;
// Now wait for the process to stop again:
event_sp.reset();
Timeout<std::micro> timeout =
GetExpressionTimeout(options, before_first_timeout);
if (log) {
if (timeout) {
auto now = system_clock::now();
LLDB_LOGF(log,
"Process::RunThreadPlan(): about to wait - now is %s - "
"endpoint is %s",
llvm::to_string(now).c_str(),
llvm::to_string(now + *timeout).c_str());
} else {
LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
}
}
#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
// See comment above...
if (miss_first_event) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
miss_first_event = false;
got_event = false;
} else
#endif
got_event = listener_sp->GetEvent(event_sp, timeout);
if (got_event) {
if (event_sp) {
bool keep_going = false;
if (event_sp->GetType() == eBroadcastBitInterrupt) {
const bool clear_thread_plans = false;
const bool use_run_lock = false;
Halt(clear_thread_plans, use_run_lock);
return_value = eExpressionInterrupted;
diagnostic_manager.PutString(lldb::eSeverityInfo,
"execution halted by user interrupt.");
LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by "
"eBroadcastBitInterrupted, exiting.");
break;
} else {
stop_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
LLDB_LOGF(log,
"Process::RunThreadPlan(): in while loop, got event: %s.",
StateAsCString(stop_state));
switch (stop_state) {
case lldb::eStateStopped: {
if (Process::ProcessEventData::GetRestartedFromEvent(
event_sp.get())) {
// If we were restarted, we just need to go back up to fetch
// another event.
LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
"restart, so we'll continue waiting.");
keep_going = true;
do_resume = false;
handle_running_event = true;
} else {
const bool handle_interrupts = true;
return_value = *HandleStoppedEvent(
expr_thread_id, thread_plan_sp, thread_plan_restorer,
event_sp, event_to_broadcast_sp, options,
handle_interrupts);
if (return_value == eExpressionThreadVanished)
keep_going = false;
}
} break;
case lldb::eStateRunning:
// This shouldn't really happen, but sometimes we do get two
// running events without an intervening stop, and in that case
// we should just go back to waiting for the stop.
do_resume = false;
keep_going = true;
handle_running_event = false;
break;
default:
LLDB_LOGF(log,
"Process::RunThreadPlan(): execution stopped with "
"unexpected state: %s.",
StateAsCString(stop_state));
if (stop_state == eStateExited)
event_to_broadcast_sp = event_sp;
diagnostic_manager.PutString(
lldb::eSeverityError,
"execution stopped with unexpected state.");
return_value = eExpressionInterrupted;
break;
}
}
if (keep_going)
continue;
else
break;
} else {
if (log)
log->PutCString("Process::RunThreadPlan(): got_event was true, but "
"the event pointer was null. How odd...");
return_value = eExpressionInterrupted;
break;
}
} else {
// If we didn't get an event that means we've timed out... We will
// interrupt the process here. Depending on what we were asked to do
// we will either exit, or try with all threads running for the same
// timeout.
if (log) {
if (options.GetTryAllThreads()) {
if (before_first_timeout) {
LLDB_LOG(log,
"Running function with one thread timeout timed out.");
} else
LLDB_LOG(log, "Restarting function with all threads enabled and "
"timeout: {0} timed out, abandoning execution.",
timeout);
} else
LLDB_LOG(log, "Running function with timeout: {0} timed out, "
"abandoning execution.",
timeout);
}
// It is possible that between the time we issued the Halt, and we get
// around to calling Halt the target could have stopped. That's fine,
// Halt will figure that out and send the appropriate Stopped event.
// BUT it is also possible that we stopped & restarted (e.g. hit a
// signal with "stop" set to false.) In
// that case, we'll get the stopped & restarted event, and we should go
// back to waiting for the Halt's stopped event. That's what this
// while loop does.
bool back_to_top = true;
uint32_t try_halt_again = 0;
bool do_halt = true;
const uint32_t num_retries = 5;
while (try_halt_again < num_retries) {
Status halt_error;
if (do_halt) {
LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
const bool clear_thread_plans = false;
const bool use_run_lock = false;
Halt(clear_thread_plans, use_run_lock);
}
if (halt_error.Success()) {
if (log)
log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
got_event =
listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
if (got_event) {
stop_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (log) {
LLDB_LOGF(log,
"Process::RunThreadPlan(): Stopped with event: %s",
StateAsCString(stop_state));
if (stop_state == lldb::eStateStopped &&
Process::ProcessEventData::GetInterruptedFromEvent(
event_sp.get()))
log->PutCString(" Event was the Halt interruption event.");
}
if (stop_state == lldb::eStateStopped) {
if (Process::ProcessEventData::GetRestartedFromEvent(
event_sp.get())) {
if (log)
log->PutCString("Process::RunThreadPlan(): Went to halt "
"but got a restarted event, there must be "
"an un-restarted stopped event so try "
"again... "
"Exiting wait loop.");
try_halt_again++;
do_halt = false;
continue;
}
// Between the time we initiated the Halt and the time we
// delivered it, the process could have already finished its
// job. Check that here:
const bool handle_interrupts = false;
if (auto result = HandleStoppedEvent(
expr_thread_id, thread_plan_sp, thread_plan_restorer,
event_sp, event_to_broadcast_sp, options,
handle_interrupts)) {
return_value = *result;
back_to_top = false;
break;
}
if (!options.GetTryAllThreads()) {
if (log)
log->PutCString("Process::RunThreadPlan(): try_all_threads "
"was false, we stopped so now we're "
"quitting.");
return_value = eExpressionInterrupted;
back_to_top = false;
break;
}
if (before_first_timeout) {
// Set all the other threads to run, and return to the top of
// the loop, which will continue;
before_first_timeout = false;
thread_plan_sp->SetStopOthers(false);
if (log)
log->PutCString(
"Process::RunThreadPlan(): about to resume.");
back_to_top = true;
break;
} else {
// Running all threads failed, so return Interrupted.
if (log)
log->PutCString("Process::RunThreadPlan(): running all "
"threads timed out.");
return_value = eExpressionInterrupted;
back_to_top = false;
break;
}
}
} else {
if (log)
log->PutCString("Process::RunThreadPlan(): halt said it "
"succeeded, but I got no event. "
"I'm getting out of here passing Interrupted.");
return_value = eExpressionInterrupted;
back_to_top = false;
break;
}
} else {
try_halt_again++;
continue;
}
}
if (!back_to_top || try_halt_again > num_retries)
break;
else
continue;
}
} // END WAIT LOOP
// If we had to start up a temporary private state thread to run this
// thread plan, shut it down now.
if (backup_private_state_thread.IsJoinable()) {
StopPrivateStateThread();
Status error;
m_private_state_thread = backup_private_state_thread;
if (stopper_base_plan_sp) {
thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
}
if (old_state != eStateInvalid)
m_public_state.SetValueNoLock(old_state);
}
// If our thread went away on us, we need to get out of here without
// doing any more work. We don't have to clean up the thread plan, that
// will have happened when the Thread was destroyed.
if (return_value == eExpressionThreadVanished) {
return return_value;
}
if (return_value != eExpressionCompleted && log) {
// Print a backtrace into the log so we can figure out where we are:
StreamString s;
s.PutCString("Thread state after unsuccessful completion: \n");
thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX,
/*show_hidden*/ true);
log->PutString(s.GetString());
}
// Restore the thread state if we are going to discard the plan execution.
// There are three cases where this could happen: 1) The execution
// successfully completed 2) We hit a breakpoint, and ignore_breakpoints
// was true 3) We got some other error, and discard_on_error was true
bool should_unwind = (return_value == eExpressionInterrupted &&
options.DoesUnwindOnError()) ||
(return_value == eExpressionHitBreakpoint &&
options.DoesIgnoreBreakpoints());
if (return_value == eExpressionCompleted || should_unwind) {
thread_plan_sp->RestoreThreadState();
}
// Now do some processing on the results of the run:
if (return_value == eExpressionInterrupted ||
return_value == eExpressionHitBreakpoint) {
if (log) {
StreamString s;
if (event_sp)
event_sp->Dump(&s);
else {
log->PutCString("Process::RunThreadPlan(): Stop event that "
"interrupted us is NULL.");
}
StreamString ts;
const char *event_explanation = nullptr;
do {
if (!event_sp) {
event_explanation = "<no event>";
break;
} else if (event_sp->GetType() == eBroadcastBitInterrupt) {
event_explanation = "<user interrupt>";
break;
} else {
const Process::ProcessEventData *event_data =
Process::ProcessEventData::GetEventDataFromEvent(
event_sp.get());
if (!event_data) {
event_explanation = "<no event data>";
break;
}
Process *process = event_data->GetProcessSP().get();
if (!process) {
event_explanation = "<no process>";
break;
}
ThreadList &thread_list = process->GetThreadList();
uint32_t num_threads = thread_list.GetSize();
uint32_t thread_index;
ts.Printf("<%u threads> ", num_threads);
for (thread_index = 0; thread_index < num_threads; ++thread_index) {
Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
if (!thread) {
ts.Printf("<?> ");
continue;
}
ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
RegisterContext *register_context =
thread->GetRegisterContext().get();
if (register_context)
ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
else
ts.Printf("[ip unknown] ");
// Show the private stop info here, the public stop info will be
// from the last natural stop.
lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
if (stop_info_sp) {
const char *stop_desc = stop_info_sp->GetDescription();
if (stop_desc)
ts.PutCString(stop_desc);
}
ts.Printf(">");
}
event_explanation = ts.GetData();
}
} while (false);
if (event_explanation)
LLDB_LOGF(log,
"Process::RunThreadPlan(): execution interrupted: %s %s",
s.GetData(), event_explanation);
else
LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
s.GetData());
}
if (should_unwind) {
LLDB_LOGF(log,
"Process::RunThreadPlan: ExecutionInterrupted - "
"discarding thread plans up to %p.",
static_cast<void *>(thread_plan_sp.get()));
thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
} else {
LLDB_LOGF(log,
"Process::RunThreadPlan: ExecutionInterrupted - for "
"plan: %p not discarding.",
static_cast<void *>(thread_plan_sp.get()));
}
} else if (return_value == eExpressionSetupError) {
if (log)
log->PutCString("Process::RunThreadPlan(): execution set up error.");
if (options.DoesUnwindOnError()) {
thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
}
} else {
if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
if (log)
log->PutCString("Process::RunThreadPlan(): thread plan is done");
return_value = eExpressionCompleted;
} else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
if (log)
log->PutCString(
"Process::RunThreadPlan(): thread plan was discarded");
return_value = eExpressionDiscarded;
} else {
if (log)
log->PutCString(
"Process::RunThreadPlan(): thread plan stopped in mid course");
if (options.DoesUnwindOnError() && thread_plan_sp) {
if (log)
log->PutCString("Process::RunThreadPlan(): discarding thread plan "
"'cause unwind_on_error is set.");
thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
}
}
}
// Thread we ran the function in may have gone away because we ran the
// target Check that it's still there, and if it is put it back in the
// context. Also restore the frame in the context if it is still present.
thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
if (thread) {
exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
}
// Also restore the current process'es selected frame & thread, since this
// function calling may be done behind the user's back.
if (selected_tid != LLDB_INVALID_THREAD_ID) {
if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
selected_stack_id.IsValid()) {
// We were able to restore the selected thread, now restore the frame:
std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
StackFrameSP old_frame_sp =
GetThreadList().GetSelectedThread()->GetFrameWithStackID(
selected_stack_id);
if (old_frame_sp)
GetThreadList().GetSelectedThread()->SetSelectedFrame(
old_frame_sp.get());
}
}
}
// If the process exited during the run of the thread plan, notify everyone.
if (event_to_broadcast_sp) {
if (log)
log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
BroadcastEvent(event_to_broadcast_sp);
}
return return_value;
}
void Process::GetStatus(Stream &strm) {
const StateType state = GetState();
if (StateIsStoppedState(state, false)) {
if (state == eStateExited) {
int exit_status = GetExitStatus();
const char *exit_description = GetExitDescription();
strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
GetID(), exit_status, exit_status,
exit_description ? exit_description : "");
} else {
if (state == eStateConnected)
strm.Printf("Connected to remote target.\n");
else
strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
}
} else {
strm.Printf("Process %" PRIu64 " is running.\n", GetID());
}
}
size_t Process::GetThreadStatus(Stream &strm,
bool only_threads_with_stop_reason,
uint32_t start_frame, uint32_t num_frames,
uint32_t num_frames_with_source,
bool stop_format) {
size_t num_thread_infos_dumped = 0;
// You can't hold the thread list lock while calling Thread::GetStatus. That
// very well might run code (e.g. if we need it to get return values or
// arguments.) For that to work the process has to be able to acquire it.
// So instead copy the thread ID's, and look them up one by one:
uint32_t num_threads;
std::vector<lldb::tid_t> thread_id_array;
// Scope for thread list locker;
{
std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
ThreadList &curr_thread_list = GetThreadList();
num_threads = curr_thread_list.GetSize();
uint32_t idx;
thread_id_array.resize(num_threads);
for (idx = 0; idx < num_threads; ++idx)
thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
}
for (uint32_t i = 0; i < num_threads; i++) {
ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
if (thread_sp) {
if (only_threads_with_stop_reason) {
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
if (!stop_info_sp || !stop_info_sp->IsValid())
continue;
}
thread_sp->GetStatus(strm, start_frame, num_frames,
num_frames_with_source, stop_format,
/*show_hidden*/ num_frames <= 1);
++num_thread_infos_dumped;
} else {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
" vanished while running Thread::GetStatus.");
}
}
return num_thread_infos_dumped;
}
void Process::AddInvalidMemoryRegion(const LoadRange &region) {
m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
}
bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
region.GetByteSize());
}
void Process::AddPreResumeAction(PreResumeActionCallback callback,
void *baton) {
m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
}
bool Process::RunPreResumeActions() {
bool result = true;
while (!m_pre_resume_actions.empty()) {
struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
m_pre_resume_actions.pop_back();
bool this_result = action.callback(action.baton);
if (result)
result = this_result;
}
return result;
}
void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
{
PreResumeCallbackAndBaton element(callback, baton);
auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
if (found_iter != m_pre_resume_actions.end())
{
m_pre_resume_actions.erase(found_iter);
}
}
ProcessRunLock &Process::GetRunLock() {
if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
return m_private_run_lock;
else
return m_public_run_lock;
}
bool Process::CurrentThreadIsPrivateStateThread()
{
return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
}
void Process::Flush() {
m_thread_list.Flush();
m_extended_thread_list.Flush();
m_extended_thread_stop_id = 0;
m_queue_list.Clear();
m_queue_list_stop_id = 0;
}
lldb::addr_t Process::GetCodeAddressMask() {
if (uint32_t num_bits_setting = GetVirtualAddressableBits())
return AddressableBits::AddressableBitToMask(num_bits_setting);
return m_code_address_mask;
}
lldb::addr_t Process::GetDataAddressMask() {
if (uint32_t num_bits_setting = GetVirtualAddressableBits())
return AddressableBits::AddressableBitToMask(num_bits_setting);
return m_data_address_mask;
}
lldb::addr_t Process::GetHighmemCodeAddressMask() {
if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
return AddressableBits::AddressableBitToMask(num_bits_setting);
if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK)
return m_highmem_code_address_mask;
return GetCodeAddressMask();
}
lldb::addr_t Process::GetHighmemDataAddressMask() {
if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
return AddressableBits::AddressableBitToMask(num_bits_setting);
if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK)
return m_highmem_data_address_mask;
return GetDataAddressMask();
}
void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) {
LLDB_LOG(GetLog(LLDBLog::Process),
"Setting Process code address mask to {0:x}", code_address_mask);
m_code_address_mask = code_address_mask;
}
void Process::SetDataAddressMask(lldb::addr_t data_address_mask) {
LLDB_LOG(GetLog(LLDBLog::Process),
"Setting Process data address mask to {0:x}", data_address_mask);
m_data_address_mask = data_address_mask;
}
void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) {
LLDB_LOG(GetLog(LLDBLog::Process),
"Setting Process highmem code address mask to {0:x}",
code_address_mask);
m_highmem_code_address_mask = code_address_mask;
}
void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) {
LLDB_LOG(GetLog(LLDBLog::Process),
"Setting Process highmem data address mask to {0:x}",
data_address_mask);
m_highmem_data_address_mask = data_address_mask;
}
addr_t Process::FixCodeAddress(addr_t addr) {
if (ABISP abi_sp = GetABI())
addr = abi_sp->FixCodeAddress(addr);
return addr;
}
addr_t Process::FixDataAddress(addr_t addr) {
if (ABISP abi_sp = GetABI())
addr = abi_sp->FixDataAddress(addr);
return addr;
}
addr_t Process::FixAnyAddress(addr_t addr) {
if (ABISP abi_sp = GetABI())
addr = abi_sp->FixAnyAddress(addr);
return addr;
}
void Process::DidExec() {
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
Target &target = GetTarget();
target.CleanupProcess();
target.ClearModules(false);
m_dynamic_checkers_up.reset();
m_abi_sp.reset();
m_system_runtime_up.reset();
m_os_up.reset();
m_dyld_up.reset();
m_jit_loaders_up.reset();
m_image_tokens.clear();
// After an exec, the inferior is a new process and these memory regions are
// no longer allocated.
m_allocated_memory_cache.Clear(/*deallocte_memory=*/false);
{
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
m_language_runtimes.clear();
}
m_instrumentation_runtimes.clear();
m_thread_list.DiscardThreadPlans();
m_memory_cache.Clear(true);
DoDidExec();
CompleteAttach();
// Flush the process (threads and all stack frames) after running
// CompleteAttach() in case the dynamic loader loaded things in new
// locations.
Flush();
// After we figure out what was loaded/unloaded in CompleteAttach, we need to
// let the target know so it can do any cleanup it needs to.
target.DidExec();
}
addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
if (address == nullptr) {
error = Status::FromErrorString("Invalid address argument");
return LLDB_INVALID_ADDRESS;
}
addr_t function_addr = LLDB_INVALID_ADDRESS;
addr_t addr = address->GetLoadAddress(&GetTarget());
std::map<addr_t, addr_t>::const_iterator iter =
m_resolved_indirect_addresses.find(addr);
if (iter != m_resolved_indirect_addresses.end()) {
function_addr = (*iter).second;
} else {
if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
Symbol *symbol = address->CalculateSymbolContextSymbol();
error = Status::FromErrorStringWithFormat(
"Unable to call resolver for indirect function %s",
symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
function_addr = LLDB_INVALID_ADDRESS;
} else {
if (ABISP abi_sp = GetABI())
function_addr = abi_sp->FixCodeAddress(function_addr);
m_resolved_indirect_addresses.insert(
std::pair<addr_t, addr_t>(addr, function_addr));
}
}
return function_addr;
}
void Process::ModulesDidLoad(ModuleList &module_list) {
// Inform the system runtime of the modified modules.
SystemRuntime *sys_runtime = GetSystemRuntime();
if (sys_runtime)
sys_runtime->ModulesDidLoad(module_list);
GetJITLoaders().ModulesDidLoad(module_list);
// Give the instrumentation runtimes a chance to be created before informing
// them of the modified modules.
InstrumentationRuntime::ModulesDidLoad(module_list, this,
m_instrumentation_runtimes);
for (auto &runtime : m_instrumentation_runtimes)
runtime.second->ModulesDidLoad(module_list);
// Give the language runtimes a chance to be created before informing them of
// the modified modules.
for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
runtime->ModulesDidLoad(module_list);
}
// If we don't have an operating system plug-in, try to load one since
// loading shared libraries might cause a new one to try and load
if (!m_os_up)
LoadOperatingSystemPlugin(false);
// Inform the structured-data plugins of the modified modules.
for (auto &pair : m_structured_data_plugin_map) {
if (pair.second)
pair.second->ModulesDidLoad(*this, module_list);
}
}
void Process::PrintWarningOptimization(const SymbolContext &sc) {
if (!GetWarningsOptimization())
return;
if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
return;
sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
}
void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
if (!GetWarningsUnsupportedLanguage())
return;
if (!sc.module_sp)
return;
LanguageType language = sc.GetLanguage();
if (language == eLanguageTypeUnknown ||
language == lldb::eLanguageTypeAssembly ||
language == lldb::eLanguageTypeMipsAssembler)
return;
LanguageSet plugins =
PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
if (plugins[language])
return;
sc.module_sp->ReportWarningUnsupportedLanguage(
language, GetTarget().GetDebugger().GetID());
}
bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
info.Clear();
PlatformSP platform_sp = GetTarget().GetPlatform();
if (!platform_sp)
return false;
return platform_sp->GetProcessInfo(GetID(), info);
}
lldb_private::UUID Process::FindModuleUUID(const llvm::StringRef path) {
return lldb_private::UUID();
}
ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
ThreadCollectionSP threads;
const MemoryHistorySP &memory_history =
MemoryHistory::FindPlugin(shared_from_this());
if (!memory_history) {
return threads;
}
threads = std::make_shared<ThreadCollection>(
memory_history->GetHistoryThreads(addr));
return threads;
}
InstrumentationRuntimeSP
Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
InstrumentationRuntimeCollection::iterator pos;
pos = m_instrumentation_runtimes.find(type);
if (pos == m_instrumentation_runtimes.end()) {
return InstrumentationRuntimeSP();
} else
return (*pos).second;
}
bool Process::GetModuleSpec(const FileSpec &module_file_spec,
const ArchSpec &arch, ModuleSpec &module_spec) {
module_spec.Clear();
return false;
}
size_t Process::AddImageToken(lldb::addr_t image_ptr) {
m_image_tokens.push_back(image_ptr);
return m_image_tokens.size() - 1;
}
lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
if (token < m_image_tokens.size())
return m_image_tokens[token];
return LLDB_INVALID_IMAGE_TOKEN;
}
void Process::ResetImageToken(size_t token) {
if (token < m_image_tokens.size())
m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN;
}
Address
Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
AddressRange range_bounds) {
Target &target = GetTarget();
DisassemblerSP disassembler_sp;
InstructionList *insn_list = nullptr;
Address retval = default_stop_addr;
if (!target.GetUseFastStepping())
return retval;
if (!default_stop_addr.IsValid())
return retval;
const char *plugin_name = nullptr;
const char *flavor = nullptr;
const char *cpu = nullptr;
const char *features = nullptr;
disassembler_sp = Disassembler::DisassembleRange(
target.GetArchitecture(), plugin_name, flavor, cpu, features, GetTarget(),
range_bounds);
if (disassembler_sp)
insn_list = &disassembler_sp->GetInstructionList();
if (insn_list == nullptr) {
return retval;
}
size_t insn_offset =
insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
if (insn_offset == UINT32_MAX) {
return retval;
}
uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
insn_offset, false /* ignore_calls*/, nullptr);
if (branch_index == UINT32_MAX) {
return retval;
}
if (branch_index > insn_offset) {
Address next_branch_insn_address =
insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
if (next_branch_insn_address.IsValid() &&
range_bounds.ContainsFileAddress(next_branch_insn_address)) {
retval = next_branch_insn_address;
}
}
return retval;
}
Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
MemoryRegionInfo &range_info) {
if (const lldb::ABISP &abi = GetABI())
load_addr = abi->FixAnyAddress(load_addr);
Status error = DoGetMemoryRegionInfo(load_addr, range_info);
// Reject a region that does not contain the requested address.
if (error.Success() && !range_info.GetRange().Contains(load_addr))
error = Status::FromErrorString("Invalid memory region");
return error;
}
Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
Status error;
lldb::addr_t range_end = 0;
const lldb::ABISP &abi = GetABI();
region_list.clear();
do {
lldb_private::MemoryRegionInfo region_info;
error = GetMemoryRegionInfo(range_end, region_info);
// GetMemoryRegionInfo should only return an error if it is unimplemented.
if (error.Fail()) {
region_list.clear();
break;
}
// We only check the end address, not start and end, because we assume that
// the start will not have non-address bits until the first unmappable
// region. We will have exited the loop by that point because the previous
// region, the last mappable region, will have non-address bits in its end
// address.
range_end = region_info.GetRange().GetRangeEnd();
if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
region_list.push_back(std::move(region_info));
}
} while (
// For a process with no non-address bits, all address bits
// set means the end of memory.
range_end != LLDB_INVALID_ADDRESS &&
// If we have non-address bits and some are set then the end
// is at or beyond the end of mappable memory.
!(abi && (abi->FixAnyAddress(range_end) != range_end)));
return error;
}
Status
Process::ConfigureStructuredData(llvm::StringRef type_name,
const StructuredData::ObjectSP &config_sp) {
// If you get this, the Process-derived class needs to implement a method to
// enable an already-reported asynchronous structured data feature. See
// ProcessGDBRemote for an example implementation over gdb-remote.
return Status::FromErrorString("unimplemented");
}
void Process::MapSupportedStructuredDataPlugins(
const StructuredData::Array &supported_type_names) {
Log *log = GetLog(LLDBLog::Process);
// Bail out early if there are no type names to map.
if (supported_type_names.GetSize() == 0) {
LLDB_LOG(log, "no structured data types supported");
return;
}
// These StringRefs are backed by the input parameter.
std::set<llvm::StringRef> type_names;
LLDB_LOG(log,
"the process supports the following async structured data types:");
supported_type_names.ForEach(
[&type_names, &log](StructuredData::Object *object) {
// There shouldn't be null objects in the array.
if (!object)
return false;
// All type names should be strings.
const llvm::StringRef type_name = object->GetStringValue();
if (type_name.empty())
return false;
type_names.insert(type_name);
LLDB_LOG(log, "- {0}", type_name);
return true;
});
// For each StructuredDataPlugin, if the plugin handles any of the types in
// the supported_type_names, map that type name to that plugin. Stop when
// we've consumed all the type names.
// FIXME: should we return an error if there are type names nobody
// supports?
for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) {
auto create_instance =
PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
plugin_index);
if (!create_instance)
break;
// Create the plugin.
StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
if (!plugin_sp) {
// This plugin doesn't think it can work with the process. Move on to the
// next.
continue;
}
// For any of the remaining type names, map any that this plugin supports.
std::vector<llvm::StringRef> names_to_remove;
for (llvm::StringRef type_name : type_names) {
if (plugin_sp->SupportsStructuredDataType(type_name)) {
m_structured_data_plugin_map.insert(
std::make_pair(type_name, plugin_sp));
names_to_remove.push_back(type_name);
LLDB_LOG(log, "using plugin {0} for type name {1}",
plugin_sp->GetPluginName(), type_name);
}
}
// Remove the type names that were consumed by this plugin.
for (llvm::StringRef type_name : names_to_remove)
type_names.erase(type_name);
}
}
bool Process::RouteAsyncStructuredData(
const StructuredData::ObjectSP object_sp) {
// Nothing to do if there's no data.
if (!object_sp)
return false;
// The contract is this must be a dictionary, so we can look up the routing
// key via the top-level 'type' string value within the dictionary.
StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
if (!dictionary)
return false;
// Grab the async structured type name (i.e. the feature/plugin name).
llvm::StringRef type_name;
if (!dictionary->GetValueForKeyAsString("type", type_name))
return false;
// Check if there's a plugin registered for this type name.
auto find_it = m_structured_data_plugin_map.find(type_name);
if (find_it == m_structured_data_plugin_map.end()) {
// We don't have a mapping for this structured data type.
return false;
}
// Route the structured data to the plugin.
find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
return true;
}
Status Process::UpdateAutomaticSignalFiltering() {
// Default implementation does nothign.
// No automatic signal filtering to speak of.
return Status();
}
UtilityFunction *Process::GetLoadImageUtilityFunction(
Platform *platform,
llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
if (platform != GetTarget().GetPlatform().get())
return nullptr;
llvm::call_once(m_dlopen_utility_func_flag_once,
[&] { m_dlopen_utility_func_up = factory(); });
return m_dlopen_utility_func_up.get();
}
llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
if (!IsLiveDebugSession())
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Can't trace a non-live process.");
return llvm::make_error<UnimplementedError>();
}
bool Process::CallVoidArgVoidPtrReturn(const Address *address,
addr_t &returned_func,
bool trap_exceptions) {
Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
if (thread == nullptr || address == nullptr)
return false;
EvaluateExpressionOptions options;
options.SetStopOthers(true);
options.SetUnwindOnError(true);
options.SetIgnoreBreakpoints(true);
options.SetTryAllThreads(true);
options.SetDebug(false);
options.SetTimeout(GetUtilityExpressionTimeout());
options.SetTrapExceptions(trap_exceptions);
auto type_system_or_err =
GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
if (!type_system_or_err) {
llvm::consumeError(type_system_or_err.takeError());
return false;
}
auto ts = *type_system_or_err;
if (!ts)
return false;
CompilerType void_ptr_type =
ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
*thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
if (call_plan_sp) {
DiagnosticManager diagnostics;
StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
if (frame) {
ExecutionContext exe_ctx;
frame->CalculateExecutionContext(exe_ctx);
ExpressionResults result =
RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
if (result == eExpressionCompleted) {
returned_func =
call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
LLDB_INVALID_ADDRESS);
if (GetAddressByteSize() == 4) {
if (returned_func == UINT32_MAX)
return false;
} else if (GetAddressByteSize() == 8) {
if (returned_func == UINT64_MAX)
return false;
}
return true;
}
}
}
return false;
}
llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
Architecture *arch = GetTarget().GetArchitecturePlugin();
const MemoryTagManager *tag_manager =
arch ? arch->GetMemoryTagManager() : nullptr;
if (!arch || !tag_manager) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"This architecture does not support memory tagging");
}
if (!SupportsMemoryTagging()) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Process does not support memory tagging");
}
return tag_manager;
}
llvm::Expected<std::vector<lldb::addr_t>>
Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
GetMemoryTagManager();
if (!tag_manager_or_err)
return tag_manager_or_err.takeError();
const MemoryTagManager *tag_manager = *tag_manager_or_err;
llvm::Expected<std::vector<uint8_t>> tag_data =
DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
if (!tag_data)
return tag_data.takeError();
return tag_manager->UnpackTagsData(*tag_data,
len / tag_manager->GetGranuleSize());
}
Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
const std::vector<lldb::addr_t> &tags) {
llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
GetMemoryTagManager();
if (!tag_manager_or_err)
return Status::FromError(tag_manager_or_err.takeError());
const MemoryTagManager *tag_manager = *tag_manager_or_err;
llvm::Expected<std::vector<uint8_t>> packed_tags =
tag_manager->PackTags(tags);
if (!packed_tags) {
return Status::FromError(packed_tags.takeError());
}
return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
*packed_tags);
}
// Create a CoreFileMemoryRange from a MemoryRegionInfo
static CoreFileMemoryRange
CreateCoreFileMemoryRange(const MemoryRegionInfo &region) {
const addr_t addr = region.GetRange().GetRangeBase();
llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize());
return {range, region.GetLLDBPermissions()};
}
// Add dirty pages to the core file ranges and return true if dirty pages
// were added. Return false if the dirty page information is not valid or in
// the region.
static bool AddDirtyPages(const MemoryRegionInfo &region,
CoreFileMemoryRanges &ranges) {
const auto &dirty_page_list = region.GetDirtyPageList();
if (!dirty_page_list)
return false;
const uint32_t lldb_permissions = region.GetLLDBPermissions();
const addr_t page_size = region.GetPageSize();
if (page_size == 0)
return false;
llvm::AddressRange range(0, 0);
for (addr_t page_addr : *dirty_page_list) {
if (range.empty()) {
// No range yet, initialize the range with the current dirty page.
range = llvm::AddressRange(page_addr, page_addr + page_size);
} else {
if (range.end() == page_addr) {
// Combine consective ranges.
range = llvm::AddressRange(range.start(), page_addr + page_size);
} else {
// Add previous contiguous range and init the new range with the
// current dirty page.
ranges.Append(range.start(), range.size(), {range, lldb_permissions});
range = llvm::AddressRange(page_addr, page_addr + page_size);
}
}
}
// The last range
if (!range.empty())
ranges.Append(range.start(), range.size(), {range, lldb_permissions});
return true;
}
// Given a region, add the region to \a ranges.
//
// Only add the region if it isn't empty and if it has some permissions.
// If \a try_dirty_pages is true, then try to add only the dirty pages for a
// given region. If the region has dirty page information, only dirty pages
// will be added to \a ranges, else the entire range will be added to \a
// ranges.
static void AddRegion(const MemoryRegionInfo &region, bool try_dirty_pages,
CoreFileMemoryRanges &ranges) {
// Don't add empty ranges.
if (region.GetRange().GetByteSize() == 0)
return;
// Don't add ranges with no read permissions.
if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0)
return;
if (try_dirty_pages && AddDirtyPages(region, ranges))
return;
ranges.Append(region.GetRange().GetRangeBase(),
region.GetRange().GetByteSize(),
CreateCoreFileMemoryRange(region));
}
static void SaveDynamicLoaderSections(Process &process,
const SaveCoreOptions &options,
CoreFileMemoryRanges &ranges,
std::set<addr_t> &stack_ends) {
DynamicLoader *dyld = process.GetDynamicLoader();
if (!dyld)
return;
std::vector<MemoryRegionInfo> dynamic_loader_mem_regions;
std::function<bool(const lldb_private::Thread &)> save_thread_predicate =
[&](const lldb_private::Thread &t) -> bool {
return options.ShouldThreadBeSaved(t.GetID());
};
dyld->CalculateDynamicSaveCoreRanges(process, dynamic_loader_mem_regions,
save_thread_predicate);
for (const auto &region : dynamic_loader_mem_regions) {
// The Dynamic Loader can give us regions that could include a truncated
// stack
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
AddRegion(region, true, ranges);
}
}
static void SaveOffRegionsWithStackPointers(Process &process,
const SaveCoreOptions &core_options,
const MemoryRegionInfos &regions,
CoreFileMemoryRanges &ranges,
std::set<addr_t> &stack_ends) {
const bool try_dirty_pages = true;
// Before we take any dump, we want to save off the used portions of the
// stacks and mark those memory regions as saved. This prevents us from saving
// the unused portion of the stack below the stack pointer. Saving space on
// the dump.
for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) {
if (!thread_sp)
continue;
StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0);
if (!frame_sp)
continue;
RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext();
if (!reg_ctx_sp)
continue;
const addr_t sp = reg_ctx_sp->GetSP();
const size_t red_zone = process.GetABI()->GetRedZoneSize();
lldb_private::MemoryRegionInfo sp_region;
if (process.GetMemoryRegionInfo(sp, sp_region).Success()) {
const size_t stack_head = (sp - red_zone);
const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head;
// Even if the SaveCoreOption doesn't want us to save the stack
// we still need to populate the stack_ends set so it doesn't get saved
// off in other calls
sp_region.GetRange().SetRangeBase(stack_head);
sp_region.GetRange().SetByteSize(stack_size);
const addr_t range_end = sp_region.GetRange().GetRangeEnd();
stack_ends.insert(range_end);
// This will return true if the threadlist the user specified is empty,
// or contains the thread id from thread_sp.
if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) {
AddRegion(sp_region, try_dirty_pages, ranges);
}
}
}
}
// Save all memory regions that are not empty or have at least some permissions
// for a full core file style.
static void GetCoreFileSaveRangesFull(Process &process,
const MemoryRegionInfos &regions,
CoreFileMemoryRanges &ranges,
std::set<addr_t> &stack_ends) {
// Don't add only dirty pages, add full regions.
const bool try_dirty_pages = false;
for (const auto &region : regions)
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
AddRegion(region, try_dirty_pages, ranges);
}
// Save only the dirty pages to the core file. Make sure the process has at
// least some dirty pages, as some OS versions don't support reporting what
// pages are dirty within an memory region. If no memory regions have dirty
// page information fall back to saving out all ranges with write permissions.
static void GetCoreFileSaveRangesDirtyOnly(Process &process,
const MemoryRegionInfos &regions,
CoreFileMemoryRanges &ranges,
std::set<addr_t> &stack_ends) {
// Iterate over the regions and find all dirty pages.
bool have_dirty_page_info = false;
for (const auto &region : regions) {
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
AddDirtyPages(region, ranges))
have_dirty_page_info = true;
}
if (!have_dirty_page_info) {
// We didn't find support for reporting dirty pages from the process
// plug-in so fall back to any region with write access permissions.
const bool try_dirty_pages = false;
for (const auto &region : regions)
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
region.GetWritable() == MemoryRegionInfo::eYes)
AddRegion(region, try_dirty_pages, ranges);
}
}
// Save all thread stacks to the core file. Some OS versions support reporting
// when a memory region is stack related. We check on this information, but we
// also use the stack pointers of each thread and add those in case the OS
// doesn't support reporting stack memory. This function also attempts to only
// emit dirty pages from the stack if the memory regions support reporting
// dirty regions as this will make the core file smaller. If the process
// doesn't support dirty regions, then it will fall back to adding the full
// stack region.
static void GetCoreFileSaveRangesStackOnly(Process &process,
const MemoryRegionInfos &regions,
CoreFileMemoryRanges &ranges,
std::set<addr_t> &stack_ends) {
const bool try_dirty_pages = true;
// Some platforms support annotating the region information that tell us that
// it comes from a thread stack. So look for those regions first.
for (const auto &region : regions) {
// Save all the stack memory ranges not associated with a stack pointer.
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
region.IsStackMemory() == MemoryRegionInfo::eYes)
AddRegion(region, try_dirty_pages, ranges);
}
}
static void GetUserSpecifiedCoreFileSaveRanges(Process &process,
const MemoryRegionInfos &regions,
const SaveCoreOptions &options,
CoreFileMemoryRanges &ranges) {
const auto &option_ranges = options.GetCoreFileMemoryRanges();
if (option_ranges.IsEmpty())
return;
for (const auto &range : regions) {
auto entry = option_ranges.FindEntryThatContains(range.GetRange());
if (entry) {
ranges.Append(range.GetRange().GetRangeBase(),
range.GetRange().GetByteSize(),
CreateCoreFileMemoryRange(range));
}
}
}
Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options,
CoreFileMemoryRanges &ranges) {
lldb_private::MemoryRegionInfos regions;
Status err = GetMemoryRegions(regions);
SaveCoreStyle core_style = options.GetStyle();
if (err.Fail())
return err;
if (regions.empty())
return Status::FromErrorString(
"failed to get any valid memory regions from the process");
if (core_style == eSaveCoreUnspecified)
return Status::FromErrorString(
"callers must set the core_style to something other than "
"eSaveCoreUnspecified");
GetUserSpecifiedCoreFileSaveRanges(*this, regions, options, ranges);
std::set<addr_t> stack_ends;
// For fully custom set ups, we don't want to even look at threads if there
// are no threads specified.
if (core_style != lldb::eSaveCoreCustomOnly ||
options.HasSpecifiedThreads()) {
SaveOffRegionsWithStackPointers(*this, options, regions, ranges,
stack_ends);
// Save off the dynamic loader sections, so if we are on an architecture
// that supports Thread Locals, that we include those as well.
SaveDynamicLoaderSections(*this, options, ranges, stack_ends);
}
switch (core_style) {
case eSaveCoreUnspecified:
case eSaveCoreCustomOnly:
break;
case eSaveCoreFull:
GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends);
break;
case eSaveCoreDirtyOnly:
GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends);
break;
case eSaveCoreStackOnly:
GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends);
break;
}
if (err.Fail())
return err;
if (ranges.IsEmpty())
return Status::FromErrorStringWithFormat(
"no valid address ranges found for core style");
return ranges.FinalizeCoreFileSaveRanges();
}
std::vector<ThreadSP>
Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) {
std::vector<ThreadSP> thread_list;
for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) {
if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) {
thread_list.push_back(thread_sp);
}
}
return thread_list;
}
void Process::SetAddressableBitMasks(AddressableBits bit_masks) {
uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits();
uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits();
if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0)
return;
if (low_memory_addr_bits != 0) {
addr_t low_addr_mask =
AddressableBits::AddressableBitToMask(low_memory_addr_bits);
SetCodeAddressMask(low_addr_mask);
SetDataAddressMask(low_addr_mask);
}
if (high_memory_addr_bits != 0) {
addr_t high_addr_mask =
AddressableBits::AddressableBitToMask(high_memory_addr_bits);
SetHighmemCodeAddressMask(high_addr_mask);
SetHighmemDataAddressMask(high_addr_mask);
}
}