| //===-- Process.cpp -------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <atomic> |
| #include <memory> |
| #include <mutex> |
| #include <optional> |
| |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Support/Threading.h" |
| |
| #include "lldb/Breakpoint/BreakpointLocation.h" |
| #include "lldb/Breakpoint/StoppointCallbackContext.h" |
| #include "lldb/Core/Debugger.h" |
| #include "lldb/Core/Module.h" |
| #include "lldb/Core/ModuleSpec.h" |
| #include "lldb/Core/PluginManager.h" |
| #include "lldb/Core/Progress.h" |
| #include "lldb/Expression/DiagnosticManager.h" |
| #include "lldb/Expression/DynamicCheckerFunctions.h" |
| #include "lldb/Expression/UserExpression.h" |
| #include "lldb/Expression/UtilityFunction.h" |
| #include "lldb/Host/ConnectionFileDescriptor.h" |
| #include "lldb/Host/FileSystem.h" |
| #include "lldb/Host/Host.h" |
| #include "lldb/Host/HostInfo.h" |
| #include "lldb/Host/OptionParser.h" |
| #include "lldb/Host/Pipe.h" |
| #include "lldb/Host/Terminal.h" |
| #include "lldb/Host/ThreadLauncher.h" |
| #include "lldb/Interpreter/CommandInterpreter.h" |
| #include "lldb/Interpreter/OptionArgParser.h" |
| #include "lldb/Interpreter/OptionValueProperties.h" |
| #include "lldb/Symbol/Function.h" |
| #include "lldb/Symbol/Symbol.h" |
| #include "lldb/Target/ABI.h" |
| #include "lldb/Target/AssertFrameRecognizer.h" |
| #include "lldb/Target/DynamicLoader.h" |
| #include "lldb/Target/InstrumentationRuntime.h" |
| #include "lldb/Target/JITLoader.h" |
| #include "lldb/Target/JITLoaderList.h" |
| #include "lldb/Target/Language.h" |
| #include "lldb/Target/LanguageRuntime.h" |
| #include "lldb/Target/MemoryHistory.h" |
| #include "lldb/Target/MemoryRegionInfo.h" |
| #include "lldb/Target/OperatingSystem.h" |
| #include "lldb/Target/Platform.h" |
| #include "lldb/Target/Process.h" |
| #include "lldb/Target/RegisterContext.h" |
| #include "lldb/Target/StopInfo.h" |
| #include "lldb/Target/StructuredDataPlugin.h" |
| #include "lldb/Target/SystemRuntime.h" |
| #include "lldb/Target/Target.h" |
| #include "lldb/Target/TargetList.h" |
| #include "lldb/Target/Thread.h" |
| #include "lldb/Target/ThreadPlan.h" |
| #include "lldb/Target/ThreadPlanBase.h" |
| #include "lldb/Target/ThreadPlanCallFunction.h" |
| #include "lldb/Target/ThreadPlanStack.h" |
| #include "lldb/Target/UnixSignals.h" |
| #include "lldb/Target/VerboseTrapFrameRecognizer.h" |
| #include "lldb/Utility/AddressableBits.h" |
| #include "lldb/Utility/Event.h" |
| #include "lldb/Utility/LLDBLog.h" |
| #include "lldb/Utility/Log.h" |
| #include "lldb/Utility/NameMatches.h" |
| #include "lldb/Utility/ProcessInfo.h" |
| #include "lldb/Utility/SelectHelper.h" |
| #include "lldb/Utility/State.h" |
| #include "lldb/Utility/Timer.h" |
| |
| using namespace lldb; |
| using namespace lldb_private; |
| using namespace std::chrono; |
| |
| // Comment out line below to disable memory caching, overriding the process |
| // setting target.process.disable-memory-cache |
| #define ENABLE_MEMORY_CACHING |
| |
| #ifdef ENABLE_MEMORY_CACHING |
| #define DISABLE_MEM_CACHE_DEFAULT false |
| #else |
| #define DISABLE_MEM_CACHE_DEFAULT true |
| #endif |
| |
| class ProcessOptionValueProperties |
| : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { |
| public: |
| ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} |
| |
| const Property * |
| GetPropertyAtIndex(size_t idx, |
| const ExecutionContext *exe_ctx) const override { |
| // When getting the value for a key from the process options, we will |
| // always try and grab the setting from the current process if there is |
| // one. Else we just use the one from this instance. |
| if (exe_ctx) { |
| Process *process = exe_ctx->GetProcessPtr(); |
| if (process) { |
| ProcessOptionValueProperties *instance_properties = |
| static_cast<ProcessOptionValueProperties *>( |
| process->GetValueProperties().get()); |
| if (this != instance_properties) |
| return instance_properties->ProtectedGetPropertyAtIndex(idx); |
| } |
| } |
| return ProtectedGetPropertyAtIndex(idx); |
| } |
| }; |
| |
| static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { |
| { |
| eFollowParent, |
| "parent", |
| "Continue tracing the parent process and detach the child.", |
| }, |
| { |
| eFollowChild, |
| "child", |
| "Trace the child process and detach the parent.", |
| }, |
| }; |
| |
| #define LLDB_PROPERTIES_process |
| #include "TargetProperties.inc" |
| |
| enum { |
| #define LLDB_PROPERTIES_process |
| #include "TargetPropertiesEnum.inc" |
| ePropertyExperimental, |
| }; |
| |
| #define LLDB_PROPERTIES_process_experimental |
| #include "TargetProperties.inc" |
| |
| enum { |
| #define LLDB_PROPERTIES_process_experimental |
| #include "TargetPropertiesEnum.inc" |
| }; |
| |
| class ProcessExperimentalOptionValueProperties |
| : public Cloneable<ProcessExperimentalOptionValueProperties, |
| OptionValueProperties> { |
| public: |
| ProcessExperimentalOptionValueProperties() |
| : Cloneable(Properties::GetExperimentalSettingsName()) {} |
| }; |
| |
| ProcessExperimentalProperties::ProcessExperimentalProperties() |
| : Properties(OptionValuePropertiesSP( |
| new ProcessExperimentalOptionValueProperties())) { |
| m_collection_sp->Initialize(g_process_experimental_properties); |
| } |
| |
| ProcessProperties::ProcessProperties(lldb_private::Process *process) |
| : Properties(), |
| m_process(process) // Can be nullptr for global ProcessProperties |
| { |
| if (process == nullptr) { |
| // Global process properties, set them up one time |
| m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process"); |
| m_collection_sp->Initialize(g_process_properties); |
| m_collection_sp->AppendProperty( |
| "thread", "Settings specific to threads.", true, |
| Thread::GetGlobalProperties().GetValueProperties()); |
| } else { |
| m_collection_sp = |
| OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); |
| m_collection_sp->SetValueChangedCallback( |
| ePropertyPythonOSPluginPath, |
| [this] { m_process->LoadOperatingSystemPlugin(true); }); |
| } |
| |
| m_experimental_properties_up = |
| std::make_unique<ProcessExperimentalProperties>(); |
| m_collection_sp->AppendProperty( |
| Properties::GetExperimentalSettingsName(), |
| "Experimental settings - setting these won't produce " |
| "errors if the setting is not present.", |
| true, m_experimental_properties_up->GetValueProperties()); |
| } |
| |
| ProcessProperties::~ProcessProperties() = default; |
| |
| bool ProcessProperties::GetDisableMemoryCache() const { |
| const uint32_t idx = ePropertyDisableMemCache; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| uint64_t ProcessProperties::GetMemoryCacheLineSize() const { |
| const uint32_t idx = ePropertyMemCacheLineSize; |
| return GetPropertyAtIndexAs<uint64_t>( |
| idx, g_process_properties[idx].default_uint_value); |
| } |
| |
| Args ProcessProperties::GetExtraStartupCommands() const { |
| Args args; |
| const uint32_t idx = ePropertyExtraStartCommand; |
| m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); |
| return args; |
| } |
| |
| void ProcessProperties::SetExtraStartupCommands(const Args &args) { |
| const uint32_t idx = ePropertyExtraStartCommand; |
| m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); |
| } |
| |
| FileSpec ProcessProperties::GetPythonOSPluginPath() const { |
| const uint32_t idx = ePropertyPythonOSPluginPath; |
| return GetPropertyAtIndexAs<FileSpec>(idx, {}); |
| } |
| |
| uint32_t ProcessProperties::GetVirtualAddressableBits() const { |
| const uint32_t idx = ePropertyVirtualAddressableBits; |
| return GetPropertyAtIndexAs<uint64_t>( |
| idx, g_process_properties[idx].default_uint_value); |
| } |
| |
| void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { |
| const uint32_t idx = ePropertyVirtualAddressableBits; |
| SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); |
| } |
| |
| uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { |
| const uint32_t idx = ePropertyHighmemVirtualAddressableBits; |
| return GetPropertyAtIndexAs<uint64_t>( |
| idx, g_process_properties[idx].default_uint_value); |
| } |
| |
| void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { |
| const uint32_t idx = ePropertyHighmemVirtualAddressableBits; |
| SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); |
| } |
| |
| void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { |
| const uint32_t idx = ePropertyPythonOSPluginPath; |
| SetPropertyAtIndex(idx, file); |
| } |
| |
| bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { |
| const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { |
| const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; |
| SetPropertyAtIndex(idx, ignore); |
| } |
| |
| bool ProcessProperties::GetUnwindOnErrorInExpressions() const { |
| const uint32_t idx = ePropertyUnwindOnErrorInExpressions; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { |
| const uint32_t idx = ePropertyUnwindOnErrorInExpressions; |
| SetPropertyAtIndex(idx, ignore); |
| } |
| |
| bool ProcessProperties::GetStopOnSharedLibraryEvents() const { |
| const uint32_t idx = ePropertyStopOnSharedLibraryEvents; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { |
| const uint32_t idx = ePropertyStopOnSharedLibraryEvents; |
| SetPropertyAtIndex(idx, stop); |
| } |
| |
| bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { |
| const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { |
| const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; |
| SetPropertyAtIndex(idx, disable); |
| m_process->Flush(); |
| } |
| |
| bool ProcessProperties::GetDetachKeepsStopped() const { |
| const uint32_t idx = ePropertyDetachKeepsStopped; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| void ProcessProperties::SetDetachKeepsStopped(bool stop) { |
| const uint32_t idx = ePropertyDetachKeepsStopped; |
| SetPropertyAtIndex(idx, stop); |
| } |
| |
| bool ProcessProperties::GetWarningsOptimization() const { |
| const uint32_t idx = ePropertyWarningOptimization; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| bool ProcessProperties::GetWarningsUnsupportedLanguage() const { |
| const uint32_t idx = ePropertyWarningUnsupportedLanguage; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| bool ProcessProperties::GetStopOnExec() const { |
| const uint32_t idx = ePropertyStopOnExec; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { |
| const uint32_t idx = ePropertyUtilityExpressionTimeout; |
| uint64_t value = GetPropertyAtIndexAs<uint64_t>( |
| idx, g_process_properties[idx].default_uint_value); |
| return std::chrono::seconds(value); |
| } |
| |
| std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { |
| const uint32_t idx = ePropertyInterruptTimeout; |
| uint64_t value = GetPropertyAtIndexAs<uint64_t>( |
| idx, g_process_properties[idx].default_uint_value); |
| return std::chrono::seconds(value); |
| } |
| |
| bool ProcessProperties::GetSteppingRunsAllThreads() const { |
| const uint32_t idx = ePropertySteppingRunsAllThreads; |
| return GetPropertyAtIndexAs<bool>( |
| idx, g_process_properties[idx].default_uint_value != 0); |
| } |
| |
| bool ProcessProperties::GetOSPluginReportsAllThreads() const { |
| const bool fail_value = true; |
| const Property *exp_property = |
| m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); |
| OptionValueProperties *exp_values = |
| exp_property->GetValue()->GetAsProperties(); |
| if (!exp_values) |
| return fail_value; |
| |
| return exp_values |
| ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) |
| .value_or(fail_value); |
| } |
| |
| void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { |
| const Property *exp_property = |
| m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); |
| OptionValueProperties *exp_values = |
| exp_property->GetValue()->GetAsProperties(); |
| if (exp_values) |
| exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, |
| does_report); |
| } |
| |
| FollowForkMode ProcessProperties::GetFollowForkMode() const { |
| const uint32_t idx = ePropertyFollowForkMode; |
| return GetPropertyAtIndexAs<FollowForkMode>( |
| idx, static_cast<FollowForkMode>( |
| g_process_properties[idx].default_uint_value)); |
| } |
| |
| ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, |
| llvm::StringRef plugin_name, |
| ListenerSP listener_sp, |
| const FileSpec *crash_file_path, |
| bool can_connect) { |
| static uint32_t g_process_unique_id = 0; |
| |
| ProcessSP process_sp; |
| ProcessCreateInstance create_callback = nullptr; |
| if (!plugin_name.empty()) { |
| create_callback = |
| PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); |
| if (create_callback) { |
| process_sp = create_callback(target_sp, listener_sp, crash_file_path, |
| can_connect); |
| if (process_sp) { |
| if (process_sp->CanDebug(target_sp, true)) { |
| process_sp->m_process_unique_id = ++g_process_unique_id; |
| } else |
| process_sp.reset(); |
| } |
| } |
| } else { |
| for (uint32_t idx = 0; |
| (create_callback = |
| PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; |
| ++idx) { |
| process_sp = create_callback(target_sp, listener_sp, crash_file_path, |
| can_connect); |
| if (process_sp) { |
| if (process_sp->CanDebug(target_sp, false)) { |
| process_sp->m_process_unique_id = ++g_process_unique_id; |
| break; |
| } else |
| process_sp.reset(); |
| } |
| } |
| } |
| return process_sp; |
| } |
| |
| llvm::StringRef Process::GetStaticBroadcasterClass() { |
| static constexpr llvm::StringLiteral class_name("lldb.process"); |
| return class_name; |
| } |
| |
| Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) |
| : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { |
| // This constructor just delegates to the full Process constructor, |
| // defaulting to using the Host's UnixSignals. |
| } |
| |
| Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, |
| const UnixSignalsSP &unix_signals_sp) |
| : ProcessProperties(this), |
| Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), |
| Process::GetStaticBroadcasterClass().str()), |
| m_target_wp(target_sp), m_public_state(eStateUnloaded), |
| m_private_state(eStateUnloaded), |
| m_private_state_broadcaster(nullptr, |
| "lldb.process.internal_state_broadcaster"), |
| m_private_state_control_broadcaster( |
| nullptr, "lldb.process.internal_state_control_broadcaster"), |
| m_private_state_listener_sp( |
| Listener::MakeListener("lldb.process.internal_state_listener")), |
| m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), |
| m_thread_id_to_index_id_map(), m_exit_status(-1), |
| m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), |
| m_extended_thread_list(*this), m_extended_thread_stop_id(0), |
| m_queue_list(this), m_queue_list_stop_id(0), |
| m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), |
| m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), |
| m_stdin_forward(false), m_stdout_data(), m_stderr_data(), |
| m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), |
| m_memory_cache(*this), m_allocated_memory_cache(*this), |
| m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), |
| m_private_run_lock(), m_currently_handling_do_on_removals(false), |
| m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID), |
| m_finalizing(false), m_destructing(false), |
| m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), |
| m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), |
| m_can_interpret_function_calls(false), m_run_thread_plan_lock(), |
| m_can_jit(eCanJITDontKnow), |
| m_crash_info_dict_sp(new StructuredData::Dictionary()) { |
| CheckInWithManager(); |
| |
| Log *log = GetLog(LLDBLog::Object); |
| LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); |
| |
| if (!m_unix_signals_sp) |
| m_unix_signals_sp = std::make_shared<UnixSignals>(); |
| |
| SetEventName(eBroadcastBitStateChanged, "state-changed"); |
| SetEventName(eBroadcastBitInterrupt, "interrupt"); |
| SetEventName(eBroadcastBitSTDOUT, "stdout-available"); |
| SetEventName(eBroadcastBitSTDERR, "stderr-available"); |
| SetEventName(eBroadcastBitProfileData, "profile-data-available"); |
| SetEventName(eBroadcastBitStructuredData, "structured-data-available"); |
| |
| m_private_state_control_broadcaster.SetEventName( |
| eBroadcastInternalStateControlStop, "control-stop"); |
| m_private_state_control_broadcaster.SetEventName( |
| eBroadcastInternalStateControlPause, "control-pause"); |
| m_private_state_control_broadcaster.SetEventName( |
| eBroadcastInternalStateControlResume, "control-resume"); |
| |
| // The listener passed into process creation is the primary listener: |
| // It always listens for all the event bits for Process: |
| SetPrimaryListener(listener_sp); |
| |
| m_private_state_listener_sp->StartListeningForEvents( |
| &m_private_state_broadcaster, |
| eBroadcastBitStateChanged | eBroadcastBitInterrupt); |
| |
| m_private_state_listener_sp->StartListeningForEvents( |
| &m_private_state_control_broadcaster, |
| eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | |
| eBroadcastInternalStateControlResume); |
| // We need something valid here, even if just the default UnixSignalsSP. |
| assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); |
| |
| // Allow the platform to override the default cache line size |
| OptionValueSP value_sp = |
| m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) |
| ->GetValue(); |
| uint64_t platform_cache_line_size = |
| target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); |
| if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) |
| value_sp->SetValueAs(platform_cache_line_size); |
| |
| // FIXME: Frame recognizer registration should not be done in Target. |
| // We should have a plugin do the registration instead, for example, a |
| // common C LanguageRuntime plugin. |
| RegisterAssertFrameRecognizer(this); |
| RegisterVerboseTrapFrameRecognizer(*this); |
| } |
| |
| Process::~Process() { |
| Log *log = GetLog(LLDBLog::Object); |
| LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); |
| StopPrivateStateThread(); |
| |
| // ThreadList::Clear() will try to acquire this process's mutex, so |
| // explicitly clear the thread list here to ensure that the mutex is not |
| // destroyed before the thread list. |
| m_thread_list.Clear(); |
| } |
| |
| ProcessProperties &Process::GetGlobalProperties() { |
| // NOTE: intentional leak so we don't crash if global destructor chain gets |
| // called as other threads still use the result of this function |
| static ProcessProperties *g_settings_ptr = |
| new ProcessProperties(nullptr); |
| return *g_settings_ptr; |
| } |
| |
| void Process::Finalize(bool destructing) { |
| if (m_finalizing.exchange(true)) |
| return; |
| if (destructing) |
| m_destructing.exchange(true); |
| |
| // Destroy the process. This will call the virtual function DoDestroy under |
| // the hood, giving our derived class a chance to do the ncessary tear down. |
| DestroyImpl(false); |
| |
| // Clear our broadcaster before we proceed with destroying |
| Broadcaster::Clear(); |
| |
| // Do any cleanup needed prior to being destructed... Subclasses that |
| // override this method should call this superclass method as well. |
| |
| // We need to destroy the loader before the derived Process class gets |
| // destroyed since it is very likely that undoing the loader will require |
| // access to the real process. |
| m_dynamic_checkers_up.reset(); |
| m_abi_sp.reset(); |
| m_os_up.reset(); |
| m_system_runtime_up.reset(); |
| m_dyld_up.reset(); |
| m_jit_loaders_up.reset(); |
| m_thread_plans.Clear(); |
| m_thread_list_real.Destroy(); |
| m_thread_list.Destroy(); |
| m_extended_thread_list.Destroy(); |
| m_queue_list.Clear(); |
| m_queue_list_stop_id = 0; |
| m_watchpoint_resource_list.Clear(); |
| std::vector<Notifications> empty_notifications; |
| m_notifications.swap(empty_notifications); |
| m_image_tokens.clear(); |
| m_memory_cache.Clear(); |
| m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); |
| { |
| std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
| m_language_runtimes.clear(); |
| } |
| m_instrumentation_runtimes.clear(); |
| m_next_event_action_up.reset(); |
| // Clear the last natural stop ID since it has a strong reference to this |
| // process |
| m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); |
| // We have to be very careful here as the m_private_state_listener might |
| // contain events that have ProcessSP values in them which can keep this |
| // process around forever. These events need to be cleared out. |
| m_private_state_listener_sp->Clear(); |
| m_public_run_lock.TrySetRunning(); // This will do nothing if already locked |
| m_public_run_lock.SetStopped(); |
| m_private_run_lock.TrySetRunning(); // This will do nothing if already locked |
| m_private_run_lock.SetStopped(); |
| m_structured_data_plugin_map.clear(); |
| } |
| |
| void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { |
| m_notifications.push_back(callbacks); |
| if (callbacks.initialize != nullptr) |
| callbacks.initialize(callbacks.baton, this); |
| } |
| |
| bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { |
| std::vector<Notifications>::iterator pos, end = m_notifications.end(); |
| for (pos = m_notifications.begin(); pos != end; ++pos) { |
| if (pos->baton == callbacks.baton && |
| pos->initialize == callbacks.initialize && |
| pos->process_state_changed == callbacks.process_state_changed) { |
| m_notifications.erase(pos); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Process::SynchronouslyNotifyStateChanged(StateType state) { |
| std::vector<Notifications>::iterator notification_pos, |
| notification_end = m_notifications.end(); |
| for (notification_pos = m_notifications.begin(); |
| notification_pos != notification_end; ++notification_pos) { |
| if (notification_pos->process_state_changed) |
| notification_pos->process_state_changed(notification_pos->baton, this, |
| state); |
| } |
| } |
| |
| // FIXME: We need to do some work on events before the general Listener sees |
| // them. |
| // For instance if we are continuing from a breakpoint, we need to ensure that |
| // we do the little "insert real insn, step & stop" trick. But we can't do |
| // that when the event is delivered by the broadcaster - since that is done on |
| // the thread that is waiting for new events, so if we needed more than one |
| // event for our handling, we would stall. So instead we do it when we fetch |
| // the event off of the queue. |
| // |
| |
| StateType Process::GetNextEvent(EventSP &event_sp) { |
| StateType state = eStateInvalid; |
| |
| if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp, |
| std::chrono::seconds(0)) && |
| event_sp) |
| state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| |
| return state; |
| } |
| |
| void Process::SyncIOHandler(uint32_t iohandler_id, |
| const Timeout<std::micro> &timeout) { |
| // don't sync (potentially context switch) in case where there is no process |
| // IO |
| if (!ProcessIOHandlerExists()) |
| return; |
| |
| auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); |
| |
| Log *log = GetLog(LLDBLog::Process); |
| if (Result) { |
| LLDB_LOG( |
| log, |
| "waited from m_iohandler_sync to change from {0}. New value is {1}.", |
| iohandler_id, *Result); |
| } else { |
| LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", |
| iohandler_id); |
| } |
| } |
| |
| StateType Process::WaitForProcessToStop( |
| const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, |
| ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, |
| SelectMostRelevant select_most_relevant) { |
| // We can't just wait for a "stopped" event, because the stopped event may |
| // have restarted the target. We have to actually check each event, and in |
| // the case of a stopped event check the restarted flag on the event. |
| if (event_sp_ptr) |
| event_sp_ptr->reset(); |
| StateType state = GetState(); |
| // If we are exited or detached, we won't ever get back to any other valid |
| // state... |
| if (state == eStateDetached || state == eStateExited) |
| return state; |
| |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOG(log, "timeout = {0}", timeout); |
| |
| if (!wait_always && StateIsStoppedState(state, true) && |
| StateIsStoppedState(GetPrivateState(), true)) { |
| LLDB_LOGF(log, |
| "Process::%s returning without waiting for events; process " |
| "private and public states are already 'stopped'.", |
| __FUNCTION__); |
| // We need to toggle the run lock as this won't get done in |
| // SetPublicState() if the process is hijacked. |
| if (hijack_listener_sp && use_run_lock) |
| m_public_run_lock.SetStopped(); |
| return state; |
| } |
| |
| while (state != eStateInvalid) { |
| EventSP event_sp; |
| state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); |
| if (event_sp_ptr && event_sp) |
| *event_sp_ptr = event_sp; |
| |
| bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); |
| Process::HandleProcessStateChangedEvent( |
| event_sp, stream, select_most_relevant, pop_process_io_handler); |
| |
| switch (state) { |
| case eStateCrashed: |
| case eStateDetached: |
| case eStateExited: |
| case eStateUnloaded: |
| // We need to toggle the run lock as this won't get done in |
| // SetPublicState() if the process is hijacked. |
| if (hijack_listener_sp && use_run_lock) |
| m_public_run_lock.SetStopped(); |
| return state; |
| case eStateStopped: |
| if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) |
| continue; |
| else { |
| // We need to toggle the run lock as this won't get done in |
| // SetPublicState() if the process is hijacked. |
| if (hijack_listener_sp && use_run_lock) |
| m_public_run_lock.SetStopped(); |
| return state; |
| } |
| default: |
| continue; |
| } |
| } |
| return state; |
| } |
| |
| bool Process::HandleProcessStateChangedEvent( |
| const EventSP &event_sp, Stream *stream, |
| SelectMostRelevant select_most_relevant, |
| bool &pop_process_io_handler) { |
| const bool handle_pop = pop_process_io_handler; |
| |
| pop_process_io_handler = false; |
| ProcessSP process_sp = |
| Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); |
| |
| if (!process_sp) |
| return false; |
| |
| StateType event_state = |
| Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| if (event_state == eStateInvalid) |
| return false; |
| |
| switch (event_state) { |
| case eStateInvalid: |
| case eStateUnloaded: |
| case eStateAttaching: |
| case eStateLaunching: |
| case eStateStepping: |
| case eStateDetached: |
| if (stream) |
| stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), |
| StateAsCString(event_state)); |
| if (event_state == eStateDetached) |
| pop_process_io_handler = true; |
| break; |
| |
| case eStateConnected: |
| case eStateRunning: |
| // Don't be chatty when we run... |
| break; |
| |
| case eStateExited: |
| if (stream) |
| process_sp->GetStatus(*stream); |
| pop_process_io_handler = true; |
| break; |
| |
| case eStateStopped: |
| case eStateCrashed: |
| case eStateSuspended: |
| // Make sure the program hasn't been auto-restarted: |
| if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { |
| if (stream) { |
| size_t num_reasons = |
| Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); |
| if (num_reasons > 0) { |
| // FIXME: Do we want to report this, or would that just be annoyingly |
| // chatty? |
| if (num_reasons == 1) { |
| const char *reason = |
| Process::ProcessEventData::GetRestartedReasonAtIndex( |
| event_sp.get(), 0); |
| stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", |
| process_sp->GetID(), |
| reason ? reason : "<UNKNOWN REASON>"); |
| } else { |
| stream->Printf("Process %" PRIu64 |
| " stopped and restarted, reasons:\n", |
| process_sp->GetID()); |
| |
| for (size_t i = 0; i < num_reasons; i++) { |
| const char *reason = |
| Process::ProcessEventData::GetRestartedReasonAtIndex( |
| event_sp.get(), i); |
| stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); |
| } |
| } |
| } |
| } |
| } else { |
| StopInfoSP curr_thread_stop_info_sp; |
| // Lock the thread list so it doesn't change on us, this is the scope for |
| // the locker: |
| { |
| ThreadList &thread_list = process_sp->GetThreadList(); |
| std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); |
| |
| ThreadSP curr_thread(thread_list.GetSelectedThread()); |
| ThreadSP thread; |
| StopReason curr_thread_stop_reason = eStopReasonInvalid; |
| bool prefer_curr_thread = false; |
| if (curr_thread && curr_thread->IsValid()) { |
| curr_thread_stop_reason = curr_thread->GetStopReason(); |
| switch (curr_thread_stop_reason) { |
| case eStopReasonNone: |
| case eStopReasonInvalid: |
| // Don't prefer the current thread if it didn't stop for a reason. |
| break; |
| case eStopReasonSignal: { |
| // We need to do the same computation we do for other threads |
| // below in case the current thread happens to be the one that |
| // stopped for the no-stop signal. |
| uint64_t signo = curr_thread->GetStopInfo()->GetValue(); |
| if (process_sp->GetUnixSignals()->GetShouldStop(signo)) |
| prefer_curr_thread = true; |
| } break; |
| default: |
| prefer_curr_thread = true; |
| break; |
| } |
| curr_thread_stop_info_sp = curr_thread->GetStopInfo(); |
| } |
| |
| if (!prefer_curr_thread) { |
| // Prefer a thread that has just completed its plan over another |
| // thread as current thread. |
| ThreadSP plan_thread; |
| ThreadSP other_thread; |
| |
| const size_t num_threads = thread_list.GetSize(); |
| size_t i; |
| for (i = 0; i < num_threads; ++i) { |
| thread = thread_list.GetThreadAtIndex(i); |
| StopReason thread_stop_reason = thread->GetStopReason(); |
| switch (thread_stop_reason) { |
| case eStopReasonInvalid: |
| case eStopReasonNone: |
| break; |
| |
| case eStopReasonSignal: { |
| // Don't select a signal thread if we weren't going to stop at |
| // that signal. We have to have had another reason for stopping |
| // here, and the user doesn't want to see this thread. |
| uint64_t signo = thread->GetStopInfo()->GetValue(); |
| if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { |
| if (!other_thread) |
| other_thread = thread; |
| } |
| break; |
| } |
| case eStopReasonTrace: |
| case eStopReasonBreakpoint: |
| case eStopReasonWatchpoint: |
| case eStopReasonException: |
| case eStopReasonExec: |
| case eStopReasonFork: |
| case eStopReasonVFork: |
| case eStopReasonVForkDone: |
| case eStopReasonThreadExiting: |
| case eStopReasonInstrumentation: |
| case eStopReasonProcessorTrace: |
| case eStopReasonInterrupt: |
| if (!other_thread) |
| other_thread = thread; |
| break; |
| case eStopReasonPlanComplete: |
| if (!plan_thread) |
| plan_thread = thread; |
| break; |
| } |
| } |
| if (plan_thread) |
| thread_list.SetSelectedThreadByID(plan_thread->GetID()); |
| else if (other_thread) |
| thread_list.SetSelectedThreadByID(other_thread->GetID()); |
| else { |
| if (curr_thread && curr_thread->IsValid()) |
| thread = curr_thread; |
| else |
| thread = thread_list.GetThreadAtIndex(0); |
| |
| if (thread) |
| thread_list.SetSelectedThreadByID(thread->GetID()); |
| } |
| } |
| } |
| // Drop the ThreadList mutex by here, since GetThreadStatus below might |
| // have to run code, e.g. for Data formatters, and if we hold the |
| // ThreadList mutex, then the process is going to have a hard time |
| // restarting the process. |
| if (stream) { |
| Debugger &debugger = process_sp->GetTarget().GetDebugger(); |
| if (debugger.GetTargetList().GetSelectedTarget().get() == |
| &process_sp->GetTarget()) { |
| ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); |
| |
| if (!thread_sp || !thread_sp->IsValid()) |
| return false; |
| |
| const bool only_threads_with_stop_reason = true; |
| const uint32_t start_frame = |
| thread_sp->GetSelectedFrameIndex(select_most_relevant); |
| const uint32_t num_frames = 1; |
| const uint32_t num_frames_with_source = 1; |
| const bool stop_format = true; |
| |
| process_sp->GetStatus(*stream); |
| process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, |
| start_frame, num_frames, |
| num_frames_with_source, |
| stop_format); |
| if (curr_thread_stop_info_sp) { |
| lldb::addr_t crashing_address; |
| ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( |
| curr_thread_stop_info_sp, &crashing_address); |
| if (valobj_sp) { |
| const ValueObject::GetExpressionPathFormat format = |
| ValueObject::GetExpressionPathFormat:: |
| eGetExpressionPathFormatHonorPointers; |
| stream->PutCString("Likely cause: "); |
| valobj_sp->GetExpressionPath(*stream, format); |
| stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); |
| } |
| } |
| } else { |
| uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( |
| process_sp->GetTarget().shared_from_this()); |
| if (target_idx != UINT32_MAX) |
| stream->Printf("Target %d: (", target_idx); |
| else |
| stream->Printf("Target <unknown index>: ("); |
| process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); |
| stream->Printf(") stopped.\n"); |
| } |
| } |
| |
| // Pop the process IO handler |
| pop_process_io_handler = true; |
| } |
| break; |
| } |
| |
| if (handle_pop && pop_process_io_handler) |
| process_sp->PopProcessIOHandler(); |
| |
| return true; |
| } |
| |
| bool Process::HijackProcessEvents(ListenerSP listener_sp) { |
| if (listener_sp) { |
| return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | |
| eBroadcastBitInterrupt); |
| } else |
| return false; |
| } |
| |
| void Process::RestoreProcessEvents() { RestoreBroadcaster(); } |
| |
| StateType Process::GetStateChangedEvents(EventSP &event_sp, |
| const Timeout<std::micro> &timeout, |
| ListenerSP hijack_listener_sp) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); |
| |
| ListenerSP listener_sp = hijack_listener_sp; |
| if (!listener_sp) |
| listener_sp = GetPrimaryListener(); |
| |
| StateType state = eStateInvalid; |
| if (listener_sp->GetEventForBroadcasterWithType( |
| this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, |
| timeout)) { |
| if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) |
| state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| else |
| LLDB_LOG(log, "got no event or was interrupted."); |
| } |
| |
| LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); |
| return state; |
| } |
| |
| Event *Process::PeekAtStateChangedEvents() { |
| Log *log = GetLog(LLDBLog::Process); |
| |
| LLDB_LOGF(log, "Process::%s...", __FUNCTION__); |
| |
| Event *event_ptr; |
| event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( |
| this, eBroadcastBitStateChanged); |
| if (log) { |
| if (event_ptr) { |
| LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, |
| StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); |
| } else { |
| LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); |
| } |
| } |
| return event_ptr; |
| } |
| |
| StateType |
| Process::GetStateChangedEventsPrivate(EventSP &event_sp, |
| const Timeout<std::micro> &timeout) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); |
| |
| StateType state = eStateInvalid; |
| if (m_private_state_listener_sp->GetEventForBroadcasterWithType( |
| &m_private_state_broadcaster, |
| eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, |
| timeout)) |
| if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) |
| state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| |
| LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, |
| state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); |
| return state; |
| } |
| |
| bool Process::GetEventsPrivate(EventSP &event_sp, |
| const Timeout<std::micro> &timeout, |
| bool control_only) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); |
| |
| if (control_only) |
| return m_private_state_listener_sp->GetEventForBroadcaster( |
| &m_private_state_control_broadcaster, event_sp, timeout); |
| else |
| return m_private_state_listener_sp->GetEvent(event_sp, timeout); |
| } |
| |
| bool Process::IsRunning() const { |
| return StateIsRunningState(m_public_state.GetValue()); |
| } |
| |
| int Process::GetExitStatus() { |
| std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
| |
| if (m_public_state.GetValue() == eStateExited) |
| return m_exit_status; |
| return -1; |
| } |
| |
| const char *Process::GetExitDescription() { |
| std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
| |
| if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) |
| return m_exit_string.c_str(); |
| return nullptr; |
| } |
| |
| bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { |
| // Use a mutex to protect setting the exit status. |
| std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
| |
| Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); |
| LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", |
| GetPluginName(), status, exit_string); |
| |
| // We were already in the exited state |
| if (m_private_state.GetValue() == eStateExited) { |
| LLDB_LOG( |
| log, |
| "(plugin = {0}) ignoring exit status because state was already set " |
| "to eStateExited", |
| GetPluginName()); |
| return false; |
| } |
| |
| m_exit_status = status; |
| if (!exit_string.empty()) |
| m_exit_string = exit_string.str(); |
| else |
| m_exit_string.clear(); |
| |
| // Clear the last natural stop ID since it has a strong reference to this |
| // process |
| m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); |
| |
| SetPrivateState(eStateExited); |
| |
| // Allow subclasses to do some cleanup |
| DidExit(); |
| |
| return true; |
| } |
| |
| bool Process::IsAlive() { |
| switch (m_private_state.GetValue()) { |
| case eStateConnected: |
| case eStateAttaching: |
| case eStateLaunching: |
| case eStateStopped: |
| case eStateRunning: |
| case eStateStepping: |
| case eStateCrashed: |
| case eStateSuspended: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // This static callback can be used to watch for local child processes on the |
| // current host. The child process exits, the process will be found in the |
| // global target list (we want to be completely sure that the |
| // lldb_private::Process doesn't go away before we can deliver the signal. |
| bool Process::SetProcessExitStatus( |
| lldb::pid_t pid, bool exited, |
| int signo, // Zero for no signal |
| int exit_status // Exit value of process if signal is zero |
| ) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, |
| "Process::SetProcessExitStatus (pid=%" PRIu64 |
| ", exited=%i, signal=%i, exit_status=%i)\n", |
| pid, exited, signo, exit_status); |
| |
| if (exited) { |
| TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); |
| if (target_sp) { |
| ProcessSP process_sp(target_sp->GetProcessSP()); |
| if (process_sp) { |
| llvm::StringRef signal_str = |
| process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); |
| process_sp->SetExitStatus(exit_status, signal_str); |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| bool Process::UpdateThreadList(ThreadList &old_thread_list, |
| ThreadList &new_thread_list) { |
| m_thread_plans.ClearThreadCache(); |
| return DoUpdateThreadList(old_thread_list, new_thread_list); |
| } |
| |
| void Process::UpdateThreadListIfNeeded() { |
| const uint32_t stop_id = GetStopID(); |
| if (m_thread_list.GetSize(false) == 0 || |
| stop_id != m_thread_list.GetStopID()) { |
| bool clear_unused_threads = true; |
| const StateType state = GetPrivateState(); |
| if (StateIsStoppedState(state, true)) { |
| std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); |
| m_thread_list.SetStopID(stop_id); |
| |
| // m_thread_list does have its own mutex, but we need to hold onto the |
| // mutex between the call to UpdateThreadList(...) and the |
| // os->UpdateThreadList(...) so it doesn't change on us |
| ThreadList &old_thread_list = m_thread_list; |
| ThreadList real_thread_list(*this); |
| ThreadList new_thread_list(*this); |
| // Always update the thread list with the protocol specific thread list, |
| // but only update if "true" is returned |
| if (UpdateThreadList(m_thread_list_real, real_thread_list)) { |
| // Don't call into the OperatingSystem to update the thread list if we |
| // are shutting down, since that may call back into the SBAPI's, |
| // requiring the API lock which is already held by whoever is shutting |
| // us down, causing a deadlock. |
| OperatingSystem *os = GetOperatingSystem(); |
| if (os && !m_destroy_in_process) { |
| // Clear any old backing threads where memory threads might have been |
| // backed by actual threads from the lldb_private::Process subclass |
| size_t num_old_threads = old_thread_list.GetSize(false); |
| for (size_t i = 0; i < num_old_threads; ++i) |
| old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); |
| // See if the OS plugin reports all threads. If it does, then |
| // it is safe to clear unseen thread's plans here. Otherwise we |
| // should preserve them in case they show up again: |
| clear_unused_threads = GetOSPluginReportsAllThreads(); |
| |
| // Turn off dynamic types to ensure we don't run any expressions. |
| // Objective-C can run an expression to determine if a SBValue is a |
| // dynamic type or not and we need to avoid this. OperatingSystem |
| // plug-ins can't run expressions that require running code... |
| |
| Target &target = GetTarget(); |
| const lldb::DynamicValueType saved_prefer_dynamic = |
| target.GetPreferDynamicValue(); |
| if (saved_prefer_dynamic != lldb::eNoDynamicValues) |
| target.SetPreferDynamicValue(lldb::eNoDynamicValues); |
| |
| // Now let the OperatingSystem plug-in update the thread list |
| |
| os->UpdateThreadList( |
| old_thread_list, // Old list full of threads created by OS plug-in |
| real_thread_list, // The actual thread list full of threads |
| // created by each lldb_private::Process |
| // subclass |
| new_thread_list); // The new thread list that we will show to the |
| // user that gets filled in |
| |
| if (saved_prefer_dynamic != lldb::eNoDynamicValues) |
| target.SetPreferDynamicValue(saved_prefer_dynamic); |
| } else { |
| // No OS plug-in, the new thread list is the same as the real thread |
| // list. |
| new_thread_list = real_thread_list; |
| } |
| |
| m_thread_list_real.Update(real_thread_list); |
| m_thread_list.Update(new_thread_list); |
| m_thread_list.SetStopID(stop_id); |
| |
| if (GetLastNaturalStopID() != m_extended_thread_stop_id) { |
| // Clear any extended threads that we may have accumulated previously |
| m_extended_thread_list.Clear(); |
| m_extended_thread_stop_id = GetLastNaturalStopID(); |
| |
| m_queue_list.Clear(); |
| m_queue_list_stop_id = GetLastNaturalStopID(); |
| } |
| } |
| // Now update the plan stack map. |
| // If we do have an OS plugin, any absent real threads in the |
| // m_thread_list have already been removed from the ThreadPlanStackMap. |
| // So any remaining threads are OS Plugin threads, and those we want to |
| // preserve in case they show up again. |
| m_thread_plans.Update(m_thread_list, clear_unused_threads); |
| } |
| } |
| } |
| |
| ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { |
| return m_thread_plans.Find(tid); |
| } |
| |
| bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { |
| return m_thread_plans.PrunePlansForTID(tid); |
| } |
| |
| void Process::PruneThreadPlans() { |
| m_thread_plans.Update(GetThreadList(), true, false); |
| } |
| |
| bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, |
| lldb::DescriptionLevel desc_level, |
| bool internal, bool condense_trivial, |
| bool skip_unreported_plans) { |
| return m_thread_plans.DumpPlansForTID( |
| strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); |
| } |
| void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, |
| bool internal, bool condense_trivial, |
| bool skip_unreported_plans) { |
| m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, |
| skip_unreported_plans); |
| } |
| |
| void Process::UpdateQueueListIfNeeded() { |
| if (m_system_runtime_up) { |
| if (m_queue_list.GetSize() == 0 || |
| m_queue_list_stop_id != GetLastNaturalStopID()) { |
| const StateType state = GetPrivateState(); |
| if (StateIsStoppedState(state, true)) { |
| m_system_runtime_up->PopulateQueueList(m_queue_list); |
| m_queue_list_stop_id = GetLastNaturalStopID(); |
| } |
| } |
| } |
| } |
| |
| ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { |
| OperatingSystem *os = GetOperatingSystem(); |
| if (os) |
| return os->CreateThread(tid, context); |
| return ThreadSP(); |
| } |
| |
| uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { |
| return AssignIndexIDToThread(thread_id); |
| } |
| |
| bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { |
| return (m_thread_id_to_index_id_map.find(thread_id) != |
| m_thread_id_to_index_id_map.end()); |
| } |
| |
| uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { |
| uint32_t result = 0; |
| std::map<uint64_t, uint32_t>::iterator iterator = |
| m_thread_id_to_index_id_map.find(thread_id); |
| if (iterator == m_thread_id_to_index_id_map.end()) { |
| result = ++m_thread_index_id; |
| m_thread_id_to_index_id_map[thread_id] = result; |
| } else { |
| result = iterator->second; |
| } |
| |
| return result; |
| } |
| |
| StateType Process::GetState() { |
| if (CurrentThreadIsPrivateStateThread()) |
| return m_private_state.GetValue(); |
| else |
| return m_public_state.GetValue(); |
| } |
| |
| void Process::SetPublicState(StateType new_state, bool restarted) { |
| const bool new_state_is_stopped = StateIsStoppedState(new_state, false); |
| if (new_state_is_stopped) { |
| // This will only set the time if the public stop time has no value, so |
| // it is ok to call this multiple times. With a public stop we can't look |
| // at the stop ID because many private stops might have happened, so we |
| // can't check for a stop ID of zero. This allows the "statistics" command |
| // to dump the time it takes to reach somewhere in your code, like a |
| // breakpoint you set. |
| GetTarget().GetStatistics().SetFirstPublicStopTime(); |
| } |
| |
| Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); |
| LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", |
| GetPluginName().data(), StateAsCString(new_state), restarted); |
| const StateType old_state = m_public_state.GetValue(); |
| m_public_state.SetValue(new_state); |
| |
| // On the transition from Run to Stopped, we unlock the writer end of the run |
| // lock. The lock gets locked in Resume, which is the public API to tell the |
| // program to run. |
| if (!StateChangedIsExternallyHijacked()) { |
| if (new_state == eStateDetached) { |
| LLDB_LOGF(log, |
| "(plugin = %s, state = %s) -- unlocking run lock for detach", |
| GetPluginName().data(), StateAsCString(new_state)); |
| m_public_run_lock.SetStopped(); |
| } else { |
| const bool old_state_is_stopped = StateIsStoppedState(old_state, false); |
| if ((old_state_is_stopped != new_state_is_stopped)) { |
| if (new_state_is_stopped && !restarted) { |
| LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", |
| GetPluginName().data(), StateAsCString(new_state)); |
| m_public_run_lock.SetStopped(); |
| } |
| } |
| } |
| } |
| } |
| |
| Status Process::Resume() { |
| Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); |
| LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); |
| if (!m_public_run_lock.TrySetRunning()) { |
| LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.", |
| GetPluginName().data()); |
| return Status::FromErrorString( |
| "Resume request failed - process still running."); |
| } |
| Status error = PrivateResume(); |
| if (!error.Success()) { |
| // Undo running state change |
| m_public_run_lock.SetStopped(); |
| } |
| return error; |
| } |
| |
| Status Process::ResumeSynchronous(Stream *stream) { |
| Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); |
| LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); |
| if (!m_public_run_lock.TrySetRunning()) { |
| LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); |
| return Status::FromErrorString( |
| "Resume request failed - process still running."); |
| } |
| |
| ListenerSP listener_sp( |
| Listener::MakeListener(ResumeSynchronousHijackListenerName.data())); |
| HijackProcessEvents(listener_sp); |
| |
| Status error = PrivateResume(); |
| if (error.Success()) { |
| StateType state = |
| WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream, |
| true /* use_run_lock */, SelectMostRelevantFrame); |
| const bool must_be_alive = |
| false; // eStateExited is ok, so this must be false |
| if (!StateIsStoppedState(state, must_be_alive)) |
| error = Status::FromErrorStringWithFormat( |
| "process not in stopped state after synchronous resume: %s", |
| StateAsCString(state)); |
| } else { |
| // Undo running state change |
| m_public_run_lock.SetStopped(); |
| } |
| |
| // Undo the hijacking of process events... |
| RestoreProcessEvents(); |
| |
| return error; |
| } |
| |
| bool Process::StateChangedIsExternallyHijacked() { |
| if (IsHijackedForEvent(eBroadcastBitStateChanged)) { |
| llvm::StringRef hijacking_name = GetHijackingListenerName(); |
| if (!hijacking_name.starts_with("lldb.internal")) |
| return true; |
| } |
| return false; |
| } |
| |
| bool Process::StateChangedIsHijackedForSynchronousResume() { |
| if (IsHijackedForEvent(eBroadcastBitStateChanged)) { |
| llvm::StringRef hijacking_name = GetHijackingListenerName(); |
| if (hijacking_name == ResumeSynchronousHijackListenerName) |
| return true; |
| } |
| return false; |
| } |
| |
| StateType Process::GetPrivateState() { return m_private_state.GetValue(); } |
| |
| void Process::SetPrivateState(StateType new_state) { |
| // Use m_destructing not m_finalizing here. If we are finalizing a process |
| // that we haven't started tearing down, we'd like to be able to nicely |
| // detach if asked, but that requires the event system be live. That will |
| // not be true for an in-the-middle-of-being-destructed Process, since the |
| // event system relies on Process::shared_from_this, which may have already |
| // been destroyed. |
| if (m_destructing) |
| return; |
| |
| Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); |
| bool state_changed = false; |
| |
| LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), |
| StateAsCString(new_state)); |
| |
| std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); |
| std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); |
| |
| const StateType old_state = m_private_state.GetValueNoLock(); |
| state_changed = old_state != new_state; |
| |
| const bool old_state_is_stopped = StateIsStoppedState(old_state, false); |
| const bool new_state_is_stopped = StateIsStoppedState(new_state, false); |
| if (old_state_is_stopped != new_state_is_stopped) { |
| if (new_state_is_stopped) |
| m_private_run_lock.SetStopped(); |
| else |
| m_private_run_lock.SetRunning(); |
| } |
| |
| if (state_changed) { |
| m_private_state.SetValueNoLock(new_state); |
| EventSP event_sp( |
| new Event(eBroadcastBitStateChanged, |
| new ProcessEventData(shared_from_this(), new_state))); |
| if (StateIsStoppedState(new_state, false)) { |
| // Note, this currently assumes that all threads in the list stop when |
| // the process stops. In the future we will want to support a debugging |
| // model where some threads continue to run while others are stopped. |
| // When that happens we will either need a way for the thread list to |
| // identify which threads are stopping or create a special thread list |
| // containing only threads which actually stopped. |
| // |
| // The process plugin is responsible for managing the actual behavior of |
| // the threads and should have stopped any threads that are going to stop |
| // before we get here. |
| m_thread_list.DidStop(); |
| |
| if (m_mod_id.BumpStopID() == 0) |
| GetTarget().GetStatistics().SetFirstPrivateStopTime(); |
| |
| if (!m_mod_id.IsLastResumeForUserExpression()) |
| m_mod_id.SetStopEventForLastNaturalStopID(event_sp); |
| m_memory_cache.Clear(); |
| LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", |
| GetPluginName().data(), StateAsCString(new_state), |
| m_mod_id.GetStopID()); |
| } |
| |
| m_private_state_broadcaster.BroadcastEvent(event_sp); |
| } else { |
| LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", |
| GetPluginName().data(), StateAsCString(new_state)); |
| } |
| } |
| |
| void Process::SetRunningUserExpression(bool on) { |
| m_mod_id.SetRunningUserExpression(on); |
| } |
| |
| void Process::SetRunningUtilityFunction(bool on) { |
| m_mod_id.SetRunningUtilityFunction(on); |
| } |
| |
| addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } |
| |
| const lldb::ABISP &Process::GetABI() { |
| if (!m_abi_sp) |
| m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); |
| return m_abi_sp; |
| } |
| |
| std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { |
| std::vector<LanguageRuntime *> language_runtimes; |
| |
| if (m_finalizing) |
| return language_runtimes; |
| |
| std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
| // Before we pass off a copy of the language runtimes, we must make sure that |
| // our collection is properly populated. It's possible that some of the |
| // language runtimes were not loaded yet, either because nobody requested it |
| // yet or the proper condition for loading wasn't yet met (e.g. libc++.so |
| // hadn't been loaded). |
| for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { |
| if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) |
| language_runtimes.emplace_back(runtime); |
| } |
| |
| return language_runtimes; |
| } |
| |
| LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { |
| if (m_finalizing) |
| return nullptr; |
| |
| LanguageRuntime *runtime = nullptr; |
| |
| std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
| LanguageRuntimeCollection::iterator pos; |
| pos = m_language_runtimes.find(language); |
| if (pos == m_language_runtimes.end() || !pos->second) { |
| lldb::LanguageRuntimeSP runtime_sp( |
| LanguageRuntime::FindPlugin(this, language)); |
| |
| m_language_runtimes[language] = runtime_sp; |
| runtime = runtime_sp.get(); |
| } else |
| runtime = pos->second.get(); |
| |
| if (runtime) |
| // It's possible that a language runtime can support multiple LanguageTypes, |
| // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, |
| // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the |
| // primary language type and make sure that our runtime supports it. |
| assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); |
| |
| return runtime; |
| } |
| |
| bool Process::IsPossibleDynamicValue(ValueObject &in_value) { |
| if (m_finalizing) |
| return false; |
| |
| if (in_value.IsDynamic()) |
| return false; |
| LanguageType known_type = in_value.GetObjectRuntimeLanguage(); |
| |
| if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { |
| LanguageRuntime *runtime = GetLanguageRuntime(known_type); |
| return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; |
| } |
| |
| for (LanguageRuntime *runtime : GetLanguageRuntimes()) { |
| if (runtime->CouldHaveDynamicValue(in_value)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { |
| m_dynamic_checkers_up.reset(dynamic_checkers); |
| } |
| |
| StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { |
| return m_breakpoint_site_list; |
| } |
| |
| const StopPointSiteList<BreakpointSite> & |
| Process::GetBreakpointSiteList() const { |
| return m_breakpoint_site_list; |
| } |
| |
| void Process::DisableAllBreakpointSites() { |
| m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { |
| // bp_site->SetEnabled(true); |
| DisableBreakpointSite(bp_site); |
| }); |
| } |
| |
| Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { |
| Status error(DisableBreakpointSiteByID(break_id)); |
| |
| if (error.Success()) |
| m_breakpoint_site_list.Remove(break_id); |
| |
| return error; |
| } |
| |
| Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { |
| Status error; |
| BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); |
| if (bp_site_sp) { |
| if (bp_site_sp->IsEnabled()) |
| error = DisableBreakpointSite(bp_site_sp.get()); |
| } else { |
| error = Status::FromErrorStringWithFormat( |
| "invalid breakpoint site ID: %" PRIu64, break_id); |
| } |
| |
| return error; |
| } |
| |
| Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { |
| Status error; |
| BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); |
| if (bp_site_sp) { |
| if (!bp_site_sp->IsEnabled()) |
| error = EnableBreakpointSite(bp_site_sp.get()); |
| } else { |
| error = Status::FromErrorStringWithFormat( |
| "invalid breakpoint site ID: %" PRIu64, break_id); |
| } |
| return error; |
| } |
| |
| lldb::break_id_t |
| Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, |
| bool use_hardware) { |
| addr_t load_addr = LLDB_INVALID_ADDRESS; |
| |
| bool show_error = true; |
| switch (GetState()) { |
| case eStateInvalid: |
| case eStateUnloaded: |
| case eStateConnected: |
| case eStateAttaching: |
| case eStateLaunching: |
| case eStateDetached: |
| case eStateExited: |
| show_error = false; |
| break; |
| |
| case eStateStopped: |
| case eStateRunning: |
| case eStateStepping: |
| case eStateCrashed: |
| case eStateSuspended: |
| show_error = IsAlive(); |
| break; |
| } |
| |
| // Reset the IsIndirect flag here, in case the location changes from pointing |
| // to a indirect symbol to a regular symbol. |
| constituent->SetIsIndirect(false); |
| |
| if (constituent->ShouldResolveIndirectFunctions()) { |
| Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); |
| if (symbol && symbol->IsIndirect()) { |
| Status error; |
| Address symbol_address = symbol->GetAddress(); |
| load_addr = ResolveIndirectFunction(&symbol_address, error); |
| if (!error.Success() && show_error) { |
| GetTarget().GetDebugger().GetErrorStream().Printf( |
| "warning: failed to resolve indirect function at 0x%" PRIx64 |
| " for breakpoint %i.%i: %s\n", |
| symbol->GetLoadAddress(&GetTarget()), |
| constituent->GetBreakpoint().GetID(), constituent->GetID(), |
| error.AsCString() ? error.AsCString() : "unknown error"); |
| return LLDB_INVALID_BREAK_ID; |
| } |
| Address resolved_address(load_addr); |
| load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); |
| constituent->SetIsIndirect(true); |
| } else |
| load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); |
| } else |
| load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); |
| |
| if (load_addr != LLDB_INVALID_ADDRESS) { |
| BreakpointSiteSP bp_site_sp; |
| |
| // Look up this breakpoint site. If it exists, then add this new |
| // constituent, otherwise create a new breakpoint site and add it. |
| |
| bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); |
| |
| if (bp_site_sp) { |
| bp_site_sp->AddConstituent(constituent); |
| constituent->SetBreakpointSite(bp_site_sp); |
| return bp_site_sp->GetID(); |
| } else { |
| bp_site_sp.reset( |
| new BreakpointSite(constituent, load_addr, use_hardware)); |
| if (bp_site_sp) { |
| Status error = EnableBreakpointSite(bp_site_sp.get()); |
| if (error.Success()) { |
| constituent->SetBreakpointSite(bp_site_sp); |
| return m_breakpoint_site_list.Add(bp_site_sp); |
| } else { |
| if (show_error || use_hardware) { |
| // Report error for setting breakpoint... |
| GetTarget().GetDebugger().GetErrorStream().Printf( |
| "warning: failed to set breakpoint site at 0x%" PRIx64 |
| " for breakpoint %i.%i: %s\n", |
| load_addr, constituent->GetBreakpoint().GetID(), |
| constituent->GetID(), |
| error.AsCString() ? error.AsCString() : "unknown error"); |
| } |
| } |
| } |
| } |
| } |
| // We failed to enable the breakpoint |
| return LLDB_INVALID_BREAK_ID; |
| } |
| |
| void Process::RemoveConstituentFromBreakpointSite( |
| lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, |
| BreakpointSiteSP &bp_site_sp) { |
| uint32_t num_constituents = |
| bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id); |
| if (num_constituents == 0) { |
| // Don't try to disable the site if we don't have a live process anymore. |
| if (IsAlive()) |
| DisableBreakpointSite(bp_site_sp.get()); |
| m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); |
| } |
| } |
| |
| size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, |
| uint8_t *buf) const { |
| size_t bytes_removed = 0; |
| StopPointSiteList<BreakpointSite> bp_sites_in_range; |
| |
| if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, |
| bp_sites_in_range)) { |
| bp_sites_in_range.ForEach([bp_addr, size, |
| buf](BreakpointSite *bp_site) -> void { |
| if (bp_site->GetType() == BreakpointSite::eSoftware) { |
| addr_t intersect_addr; |
| size_t intersect_size; |
| size_t opcode_offset; |
| if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, |
| &intersect_size, &opcode_offset)) { |
| assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); |
| assert(bp_addr < intersect_addr + intersect_size && |
| intersect_addr + intersect_size <= bp_addr + size); |
| assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); |
| size_t buf_offset = intersect_addr - bp_addr; |
| ::memcpy(buf + buf_offset, |
| bp_site->GetSavedOpcodeBytes() + opcode_offset, |
| intersect_size); |
| } |
| } |
| }); |
| } |
| return bytes_removed; |
| } |
| |
| size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { |
| PlatformSP platform_sp(GetTarget().GetPlatform()); |
| if (platform_sp) |
| return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); |
| return 0; |
| } |
| |
| Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { |
| Status error; |
| assert(bp_site != nullptr); |
| Log *log = GetLog(LLDBLog::Breakpoints); |
| const addr_t bp_addr = bp_site->GetLoadAddress(); |
| LLDB_LOGF( |
| log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, |
| bp_site->GetID(), (uint64_t)bp_addr); |
| if (bp_site->IsEnabled()) { |
| LLDB_LOGF( |
| log, |
| "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
| " -- already enabled", |
| bp_site->GetID(), (uint64_t)bp_addr); |
| return error; |
| } |
| |
| if (bp_addr == LLDB_INVALID_ADDRESS) { |
| error = Status::FromErrorString( |
| "BreakpointSite contains an invalid load address."); |
| return error; |
| } |
| // Ask the lldb::Process subclass to fill in the correct software breakpoint |
| // trap for the breakpoint site |
| const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); |
| |
| if (bp_opcode_size == 0) { |
| error = Status::FromErrorStringWithFormat( |
| "Process::GetSoftwareBreakpointTrapOpcode() " |
| "returned zero, unable to get breakpoint " |
| "trap for address 0x%" PRIx64, |
| bp_addr); |
| } else { |
| const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); |
| |
| if (bp_opcode_bytes == nullptr) { |
| error = Status::FromErrorString( |
| "BreakpointSite doesn't contain a valid breakpoint trap opcode."); |
| return error; |
| } |
| |
| // Save the original opcode by reading it |
| if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, |
| error) == bp_opcode_size) { |
| // Write a software breakpoint in place of the original opcode |
| if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == |
| bp_opcode_size) { |
| uint8_t verify_bp_opcode_bytes[64]; |
| if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, |
| error) == bp_opcode_size) { |
| if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, |
| bp_opcode_size) == 0) { |
| bp_site->SetEnabled(true); |
| bp_site->SetType(BreakpointSite::eSoftware); |
| LLDB_LOGF(log, |
| "Process::EnableSoftwareBreakpoint (site_id = %d) " |
| "addr = 0x%" PRIx64 " -- SUCCESS", |
| bp_site->GetID(), (uint64_t)bp_addr); |
| } else |
| error = Status::FromErrorString( |
| "failed to verify the breakpoint trap in memory."); |
| } else |
| error = Status::FromErrorString( |
| "Unable to read memory to verify breakpoint trap."); |
| } else |
| error = Status::FromErrorString( |
| "Unable to write breakpoint trap to memory."); |
| } else |
| error = Status::FromErrorString( |
| "Unable to read memory at breakpoint address."); |
| } |
| if (log && error.Fail()) |
| LLDB_LOGF( |
| log, |
| "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
| " -- FAILED: %s", |
| bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); |
| return error; |
| } |
| |
| Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { |
| Status error; |
| assert(bp_site != nullptr); |
| Log *log = GetLog(LLDBLog::Breakpoints); |
| addr_t bp_addr = bp_site->GetLoadAddress(); |
| lldb::user_id_t breakID = bp_site->GetID(); |
| LLDB_LOGF(log, |
| "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 |
| ") addr = 0x%" PRIx64, |
| breakID, (uint64_t)bp_addr); |
| |
| if (bp_site->IsHardware()) { |
| error = |
| Status::FromErrorString("Breakpoint site is a hardware breakpoint."); |
| } else if (bp_site->IsEnabled()) { |
| const size_t break_op_size = bp_site->GetByteSize(); |
| const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); |
| if (break_op_size > 0) { |
| // Clear a software breakpoint instruction |
| uint8_t curr_break_op[8]; |
| assert(break_op_size <= sizeof(curr_break_op)); |
| bool break_op_found = false; |
| |
| // Read the breakpoint opcode |
| if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == |
| break_op_size) { |
| bool verify = false; |
| // Make sure the breakpoint opcode exists at this address |
| if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { |
| break_op_found = true; |
| // We found a valid breakpoint opcode at this address, now restore |
| // the saved opcode. |
| if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), |
| break_op_size, error) == break_op_size) { |
| verify = true; |
| } else |
| error = Status::FromErrorString( |
| "Memory write failed when restoring original opcode."); |
| } else { |
| error = Status::FromErrorString( |
| "Original breakpoint trap is no longer in memory."); |
| // Set verify to true and so we can check if the original opcode has |
| // already been restored |
| verify = true; |
| } |
| |
| if (verify) { |
| uint8_t verify_opcode[8]; |
| assert(break_op_size < sizeof(verify_opcode)); |
| // Verify that our original opcode made it back to the inferior |
| if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == |
| break_op_size) { |
| // compare the memory we just read with the original opcode |
| if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, |
| break_op_size) == 0) { |
| // SUCCESS |
| bp_site->SetEnabled(false); |
| LLDB_LOGF(log, |
| "Process::DisableSoftwareBreakpoint (site_id = %d) " |
| "addr = 0x%" PRIx64 " -- SUCCESS", |
| bp_site->GetID(), (uint64_t)bp_addr); |
| return error; |
| } else { |
| if (break_op_found) |
| error = Status::FromErrorString( |
| "Failed to restore original opcode."); |
| } |
| } else |
| error = |
| Status::FromErrorString("Failed to read memory to verify that " |
| "breakpoint trap was restored."); |
| } |
| } else |
| error = Status::FromErrorString( |
| "Unable to read memory that should contain the breakpoint trap."); |
| } |
| } else { |
| LLDB_LOGF( |
| log, |
| "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
| " -- already disabled", |
| bp_site->GetID(), (uint64_t)bp_addr); |
| return error; |
| } |
| |
| LLDB_LOGF( |
| log, |
| "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
| " -- FAILED: %s", |
| bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); |
| return error; |
| } |
| |
| // Uncomment to verify memory caching works after making changes to caching |
| // code |
| //#define VERIFY_MEMORY_READS |
| |
| size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { |
| if (ABISP abi_sp = GetABI()) |
| addr = abi_sp->FixAnyAddress(addr); |
| |
| error.Clear(); |
| if (!GetDisableMemoryCache()) { |
| #if defined(VERIFY_MEMORY_READS) |
| // Memory caching is enabled, with debug verification |
| |
| if (buf && size) { |
| // Uncomment the line below to make sure memory caching is working. |
| // I ran this through the test suite and got no assertions, so I am |
| // pretty confident this is working well. If any changes are made to |
| // memory caching, uncomment the line below and test your changes! |
| |
| // Verify all memory reads by using the cache first, then redundantly |
| // reading the same memory from the inferior and comparing to make sure |
| // everything is exactly the same. |
| std::string verify_buf(size, '\0'); |
| assert(verify_buf.size() == size); |
| const size_t cache_bytes_read = |
| m_memory_cache.Read(this, addr, buf, size, error); |
| Status verify_error; |
| const size_t verify_bytes_read = |
| ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), |
| verify_buf.size(), verify_error); |
| assert(cache_bytes_read == verify_bytes_read); |
| assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); |
| assert(verify_error.Success() == error.Success()); |
| return cache_bytes_read; |
| } |
| return 0; |
| #else // !defined(VERIFY_MEMORY_READS) |
| // Memory caching is enabled, without debug verification |
| |
| return m_memory_cache.Read(addr, buf, size, error); |
| #endif // defined (VERIFY_MEMORY_READS) |
| } else { |
| // Memory caching is disabled |
| |
| return ReadMemoryFromInferior(addr, buf, size, error); |
| } |
| } |
| |
| void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, |
| const uint8_t *buf, size_t size, |
| AddressRanges &matches, size_t alignment, |
| size_t max_matches) { |
| // Inputs are already validated in FindInMemory() functions. |
| assert(buf != nullptr); |
| assert(size > 0); |
| assert(alignment > 0); |
| assert(max_matches > 0); |
| assert(start_addr != LLDB_INVALID_ADDRESS); |
| assert(end_addr != LLDB_INVALID_ADDRESS); |
| assert(start_addr < end_addr); |
| |
| lldb::addr_t start = llvm::alignTo(start_addr, alignment); |
| while (matches.size() < max_matches && (start + size) < end_addr) { |
| const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size); |
| if (found_addr == LLDB_INVALID_ADDRESS) |
| break; |
| |
| if (found_addr % alignment) { |
| // We need to check the alignment because the FindInMemory uses a special |
| // algorithm to efficiently search mememory but doesn't support alignment. |
| start = llvm::alignTo(start + 1, alignment); |
| continue; |
| } |
| |
| matches.emplace_back(found_addr, size); |
| start = found_addr + alignment; |
| } |
| } |
| |
| AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, |
| const AddressRanges &ranges, |
| size_t alignment, size_t max_matches, |
| Status &error) { |
| AddressRanges matches; |
| if (buf == nullptr) { |
| error = Status::FromErrorString("buffer is null"); |
| return matches; |
| } |
| if (size == 0) { |
| error = Status::FromErrorString("buffer size is zero"); |
| return matches; |
| } |
| if (ranges.empty()) { |
| error = Status::FromErrorString("empty ranges"); |
| return matches; |
| } |
| if (alignment == 0) { |
| error = Status::FromErrorString("alignment must be greater than zero"); |
| return matches; |
| } |
| if (max_matches == 0) { |
| error = Status::FromErrorString("max_matches must be greater than zero"); |
| return matches; |
| } |
| |
| int resolved_ranges = 0; |
| Target &target = GetTarget(); |
| for (size_t i = 0; i < ranges.size(); ++i) { |
| if (matches.size() >= max_matches) |
| break; |
| const AddressRange &range = ranges[i]; |
| if (range.IsValid() == false) |
| continue; |
| |
| const lldb::addr_t start_addr = |
| range.GetBaseAddress().GetLoadAddress(&target); |
| if (start_addr == LLDB_INVALID_ADDRESS) |
| continue; |
| |
| ++resolved_ranges; |
| const lldb::addr_t end_addr = start_addr + range.GetByteSize(); |
| DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, |
| max_matches); |
| } |
| |
| if (resolved_ranges > 0) |
| error.Clear(); |
| else |
| error = Status::FromErrorString("unable to resolve any ranges"); |
| |
| return matches; |
| } |
| |
| lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, |
| const AddressRange &range, size_t alignment, |
| Status &error) { |
| if (buf == nullptr) { |
| error = Status::FromErrorString("buffer is null"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| if (size == 0) { |
| error = Status::FromErrorString("buffer size is zero"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| if (!range.IsValid()) { |
| error = Status::FromErrorString("range is invalid"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| if (alignment == 0) { |
| error = Status::FromErrorString("alignment must be greater than zero"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| Target &target = GetTarget(); |
| const lldb::addr_t start_addr = |
| range.GetBaseAddress().GetLoadAddress(&target); |
| if (start_addr == LLDB_INVALID_ADDRESS) { |
| error = Status::FromErrorString("range load address is invalid"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| const lldb::addr_t end_addr = start_addr + range.GetByteSize(); |
| |
| AddressRanges matches; |
| DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1); |
| if (matches.empty()) |
| return LLDB_INVALID_ADDRESS; |
| |
| error.Clear(); |
| return matches[0].GetBaseAddress().GetLoadAddress(&target); |
| } |
| |
| size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, |
| Status &error) { |
| char buf[256]; |
| out_str.clear(); |
| addr_t curr_addr = addr; |
| while (true) { |
| size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); |
| if (length == 0) |
| break; |
| out_str.append(buf, length); |
| // If we got "length - 1" bytes, we didn't get the whole C string, we need |
| // to read some more characters |
| if (length == sizeof(buf) - 1) |
| curr_addr += length; |
| else |
| break; |
| } |
| return out_str.size(); |
| } |
| |
| // Deprecated in favor of ReadStringFromMemory which has wchar support and |
| // correct code to find null terminators. |
| size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, |
| size_t dst_max_len, |
| Status &result_error) { |
| size_t total_cstr_len = 0; |
| if (dst && dst_max_len) { |
| result_error.Clear(); |
| // NULL out everything just to be safe |
| memset(dst, 0, dst_max_len); |
| addr_t curr_addr = addr; |
| const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); |
| size_t bytes_left = dst_max_len - 1; |
| char *curr_dst = dst; |
| |
| while (bytes_left > 0) { |
| addr_t cache_line_bytes_left = |
| cache_line_size - (curr_addr % cache_line_size); |
| addr_t bytes_to_read = |
| std::min<addr_t>(bytes_left, cache_line_bytes_left); |
| Status error; |
| size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); |
| |
| if (bytes_read == 0) { |
| result_error = std::move(error); |
| dst[total_cstr_len] = '\0'; |
| break; |
| } |
| const size_t len = strlen(curr_dst); |
| |
| total_cstr_len += len; |
| |
| if (len < bytes_to_read) |
| break; |
| |
| curr_dst += bytes_read; |
| curr_addr += bytes_read; |
| bytes_left -= bytes_read; |
| } |
| } else { |
| if (dst == nullptr) |
| result_error = Status::FromErrorString("invalid arguments"); |
| else |
| result_error.Clear(); |
| } |
| return total_cstr_len; |
| } |
| |
| size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, |
| Status &error) { |
| LLDB_SCOPED_TIMER(); |
| |
| if (ABISP abi_sp = GetABI()) |
| addr = abi_sp->FixAnyAddress(addr); |
| |
| if (buf == nullptr || size == 0) |
| return 0; |
| |
| size_t bytes_read = 0; |
| uint8_t *bytes = (uint8_t *)buf; |
| |
| while (bytes_read < size) { |
| const size_t curr_size = size - bytes_read; |
| const size_t curr_bytes_read = |
| DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); |
| bytes_read += curr_bytes_read; |
| if (curr_bytes_read == curr_size || curr_bytes_read == 0) |
| break; |
| } |
| |
| // Replace any software breakpoint opcodes that fall into this range back |
| // into "buf" before we return |
| if (bytes_read > 0) |
| RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); |
| return bytes_read; |
| } |
| |
| uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, |
| size_t integer_byte_size, |
| uint64_t fail_value, |
| Status &error) { |
| Scalar scalar; |
| if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, |
| error)) |
| return scalar.ULongLong(fail_value); |
| return fail_value; |
| } |
| |
| int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, |
| size_t integer_byte_size, |
| int64_t fail_value, |
| Status &error) { |
| Scalar scalar; |
| if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, |
| error)) |
| return scalar.SLongLong(fail_value); |
| return fail_value; |
| } |
| |
| addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { |
| Scalar scalar; |
| if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, |
| error)) |
| return scalar.ULongLong(LLDB_INVALID_ADDRESS); |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, |
| Status &error) { |
| Scalar scalar; |
| const uint32_t addr_byte_size = GetAddressByteSize(); |
| if (addr_byte_size <= 4) |
| scalar = (uint32_t)ptr_value; |
| else |
| scalar = ptr_value; |
| return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == |
| addr_byte_size; |
| } |
| |
| size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, |
| Status &error) { |
| size_t bytes_written = 0; |
| const uint8_t *bytes = (const uint8_t *)buf; |
| |
| while (bytes_written < size) { |
| const size_t curr_size = size - bytes_written; |
| const size_t curr_bytes_written = DoWriteMemory( |
| addr + bytes_written, bytes + bytes_written, curr_size, error); |
| bytes_written += curr_bytes_written; |
| if (curr_bytes_written == curr_size || curr_bytes_written == 0) |
| break; |
| } |
| return bytes_written; |
| } |
| |
| size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, |
| Status &error) { |
| if (ABISP abi_sp = GetABI()) |
| addr = abi_sp->FixAnyAddress(addr); |
| |
| #if defined(ENABLE_MEMORY_CACHING) |
| m_memory_cache.Flush(addr, size); |
| #endif |
| |
| if (buf == nullptr || size == 0) |
| return 0; |
| |
| m_mod_id.BumpMemoryID(); |
| |
| // We need to write any data that would go where any current software traps |
| // (enabled software breakpoints) any software traps (breakpoints) that we |
| // may have placed in our tasks memory. |
| |
| StopPointSiteList<BreakpointSite> bp_sites_in_range; |
| if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) |
| return WriteMemoryPrivate(addr, buf, size, error); |
| |
| // No breakpoint sites overlap |
| if (bp_sites_in_range.IsEmpty()) |
| return WriteMemoryPrivate(addr, buf, size, error); |
| |
| const uint8_t *ubuf = (const uint8_t *)buf; |
| uint64_t bytes_written = 0; |
| |
| bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, |
| &error](BreakpointSite *bp) -> void { |
| if (error.Fail()) |
| return; |
| |
| if (bp->GetType() != BreakpointSite::eSoftware) |
| return; |
| |
| addr_t intersect_addr; |
| size_t intersect_size; |
| size_t opcode_offset; |
| const bool intersects = bp->IntersectsRange( |
| addr, size, &intersect_addr, &intersect_size, &opcode_offset); |
| UNUSED_IF_ASSERT_DISABLED(intersects); |
| assert(intersects); |
| assert(addr <= intersect_addr && intersect_addr < addr + size); |
| assert(addr < intersect_addr + intersect_size && |
| intersect_addr + intersect_size <= addr + size); |
| assert(opcode_offset + intersect_size <= bp->GetByteSize()); |
| |
| // Check for bytes before this breakpoint |
| const addr_t curr_addr = addr + bytes_written; |
| if (intersect_addr > curr_addr) { |
| // There are some bytes before this breakpoint that we need to just |
| // write to memory |
| size_t curr_size = intersect_addr - curr_addr; |
| size_t curr_bytes_written = |
| WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); |
| bytes_written += curr_bytes_written; |
| if (curr_bytes_written != curr_size) { |
| // We weren't able to write all of the requested bytes, we are |
| // done looping and will return the number of bytes that we have |
| // written so far. |
| if (error.Success()) |
| error = Status::FromErrorString("could not write all bytes"); |
| } |
| } |
| // Now write any bytes that would cover up any software breakpoints |
| // directly into the breakpoint opcode buffer |
| ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, |
| intersect_size); |
| bytes_written += intersect_size; |
| }); |
| |
| // Write any remaining bytes after the last breakpoint if we have any left |
| if (bytes_written < size) |
| bytes_written += |
| WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, |
| size - bytes_written, error); |
| |
| return bytes_written; |
| } |
| |
| size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, |
| size_t byte_size, Status &error) { |
| if (byte_size == UINT32_MAX) |
| byte_size = scalar.GetByteSize(); |
| if (byte_size > 0) { |
| uint8_t buf[32]; |
| const size_t mem_size = |
| scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); |
| if (mem_size > 0) |
| return WriteMemory(addr, buf, mem_size, error); |
| else |
| error = Status::FromErrorString("failed to get scalar as memory data"); |
| } else { |
| error = Status::FromErrorString("invalid scalar value"); |
| } |
| return 0; |
| } |
| |
| size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, |
| bool is_signed, Scalar &scalar, |
| Status &error) { |
| uint64_t uval = 0; |
| if (byte_size == 0) { |
| error = Status::FromErrorString("byte size is zero"); |
| } else if (byte_size & (byte_size - 1)) { |
| error = Status::FromErrorStringWithFormat( |
| "byte size %u is not a power of 2", byte_size); |
| } else if (byte_size <= sizeof(uval)) { |
| const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); |
| if (bytes_read == byte_size) { |
| DataExtractor data(&uval, sizeof(uval), GetByteOrder(), |
| GetAddressByteSize()); |
| lldb::offset_t offset = 0; |
| if (byte_size <= 4) |
| scalar = data.GetMaxU32(&offset, byte_size); |
| else |
| scalar = data.GetMaxU64(&offset, byte_size); |
| if (is_signed) |
| scalar.SignExtend(byte_size * 8); |
| return bytes_read; |
| } |
| } else { |
| error = Status::FromErrorStringWithFormat( |
| "byte size of %u is too large for integer scalar type", byte_size); |
| } |
| return 0; |
| } |
| |
| Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { |
| Status error; |
| for (const auto &Entry : entries) { |
| WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), |
| error); |
| if (!error.Success()) |
| break; |
| } |
| return error; |
| } |
| |
| #define USE_ALLOCATE_MEMORY_CACHE 1 |
| addr_t Process::AllocateMemory(size_t size, uint32_t permissions, |
| Status &error) { |
| if (GetPrivateState() != eStateStopped) { |
| error = Status::FromErrorString( |
| "cannot allocate memory while process is running"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| #if defined(USE_ALLOCATE_MEMORY_CACHE) |
| return m_allocated_memory_cache.AllocateMemory(size, permissions, error); |
| #else |
| addr_t allocated_addr = DoAllocateMemory(size, permissions, error); |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, |
| "Process::AllocateMemory(size=%" PRIu64 |
| ", permissions=%s) => 0x%16.16" PRIx64 |
| " (m_stop_id = %u m_memory_id = %u)", |
| (uint64_t)size, GetPermissionsAsCString(permissions), |
| (uint64_t)allocated_addr, m_mod_id.GetStopID(), |
| m_mod_id.GetMemoryID()); |
| return allocated_addr; |
| #endif |
| } |
| |
| addr_t Process::CallocateMemory(size_t size, uint32_t permissions, |
| Status &error) { |
| addr_t return_addr = AllocateMemory(size, permissions, error); |
| if (error.Success()) { |
| std::string buffer(size, 0); |
| WriteMemory(return_addr, buffer.c_str(), size, error); |
| } |
| return return_addr; |
| } |
| |
| bool Process::CanJIT() { |
| if (m_can_jit == eCanJITDontKnow) { |
| Log *log = GetLog(LLDBLog::Process); |
| Status err; |
| |
| uint64_t allocated_memory = AllocateMemory( |
| 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, |
| err); |
| |
| if (err.Success()) { |
| m_can_jit = eCanJITYes; |
| LLDB_LOGF(log, |
| "Process::%s pid %" PRIu64 |
| " allocation test passed, CanJIT () is true", |
| __FUNCTION__, GetID()); |
| } else { |
| m_can_jit = eCanJITNo; |
| LLDB_LOGF(log, |
| "Process::%s pid %" PRIu64 |
| " allocation test failed, CanJIT () is false: %s", |
| __FUNCTION__, GetID(), err.AsCString()); |
| } |
| |
| DeallocateMemory(allocated_memory); |
| } |
| |
| return m_can_jit == eCanJITYes; |
| } |
| |
| void Process::SetCanJIT(bool can_jit) { |
| m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); |
| } |
| |
| void Process::SetCanRunCode(bool can_run_code) { |
| SetCanJIT(can_run_code); |
| m_can_interpret_function_calls = can_run_code; |
| } |
| |
| Status Process::DeallocateMemory(addr_t ptr) { |
| Status error; |
| #if defined(USE_ALLOCATE_MEMORY_CACHE) |
| if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { |
| error = Status::FromErrorStringWithFormat( |
| "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); |
| } |
| #else |
| error = DoDeallocateMemory(ptr); |
| |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, |
| "Process::DeallocateMemory(addr=0x%16.16" PRIx64 |
| ") => err = %s (m_stop_id = %u, m_memory_id = %u)", |
| ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), |
| m_mod_id.GetMemoryID()); |
| #endif |
| return error; |
| } |
| |
| bool Process::GetWatchpointReportedAfter() { |
| if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) |
| return *subclass_override; |
| |
| bool reported_after = true; |
| const ArchSpec &arch = GetTarget().GetArchitecture(); |
| if (!arch.IsValid()) |
| return reported_after; |
| llvm::Triple triple = arch.GetTriple(); |
| |
| if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || |
| triple.isAArch64() || triple.isArmMClass() || triple.isARM()) |
| reported_after = false; |
| |
| return reported_after; |
| } |
| |
| ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, |
| lldb::addr_t header_addr, |
| size_t size_to_read) { |
| Log *log = GetLog(LLDBLog::Host); |
| if (log) { |
| LLDB_LOGF(log, |
| "Process::ReadModuleFromMemory reading %s binary from memory", |
| file_spec.GetPath().c_str()); |
| } |
| ModuleSP module_sp(new Module(file_spec, ArchSpec())); |
| if (module_sp) { |
| Status error; |
| std::unique_ptr<Progress> progress_up; |
| // Reading an ObjectFile from a local corefile is very fast, |
| // only print a progress update if we're reading from a |
| // live session which might go over gdb remote serial protocol. |
| if (IsLiveDebugSession()) |
| progress_up = std::make_unique<Progress>( |
| "Reading binary from memory", file_spec.GetFilename().GetString()); |
| |
| ObjectFile *objfile = module_sp->GetMemoryObjectFile( |
| shared_from_this(), header_addr, error, size_to_read); |
| if (objfile) |
| return module_sp; |
| } |
| return ModuleSP(); |
| } |
| |
| bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, |
| uint32_t &permissions) { |
| MemoryRegionInfo range_info; |
| permissions = 0; |
| Status error(GetMemoryRegionInfo(load_addr, range_info)); |
| if (!error.Success()) |
| return false; |
| if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || |
| range_info.GetWritable() == MemoryRegionInfo::eDontKnow || |
| range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { |
| return false; |
| } |
| permissions = range_info.GetLLDBPermissions(); |
| return true; |
| } |
| |
| Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { |
| Status error; |
| error = Status::FromErrorString("watchpoints are not supported"); |
| return error; |
| } |
| |
| Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { |
| Status error; |
| error = Status::FromErrorString("watchpoints are not supported"); |
| return error; |
| } |
| |
| StateType |
| Process::WaitForProcessStopPrivate(EventSP &event_sp, |
| const Timeout<std::micro> &timeout) { |
| StateType state; |
| |
| while (true) { |
| event_sp.reset(); |
| state = GetStateChangedEventsPrivate(event_sp, timeout); |
| |
| if (StateIsStoppedState(state, false)) |
| break; |
| |
| // If state is invalid, then we timed out |
| if (state == eStateInvalid) |
| break; |
| |
| if (event_sp) |
| HandlePrivateEvent(event_sp); |
| } |
| return state; |
| } |
| |
| void Process::LoadOperatingSystemPlugin(bool flush) { |
| std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); |
| if (flush) |
| m_thread_list.Clear(); |
| m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); |
| if (flush) |
| Flush(); |
| } |
| |
| Status Process::Launch(ProcessLaunchInfo &launch_info) { |
| StateType state_after_launch = eStateInvalid; |
| EventSP first_stop_event_sp; |
| Status status = |
| LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); |
| if (status.Fail()) |
| return status; |
| |
| if (state_after_launch != eStateStopped && |
| state_after_launch != eStateCrashed) |
| return Status(); |
| |
| // Note, the stop event was consumed above, but not handled. This |
| // was done to give DidLaunch a chance to run. The target is either |
| // stopped or crashed. Directly set the state. This is done to |
| // prevent a stop message with a bunch of spurious output on thread |
| // status, as well as not pop a ProcessIOHandler. |
| SetPublicState(state_after_launch, false); |
| |
| if (PrivateStateThreadIsValid()) |
| ResumePrivateStateThread(); |
| else |
| StartPrivateStateThread(); |
| |
| // Target was stopped at entry as was intended. Need to notify the |
| // listeners about it. |
| if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) |
| HandlePrivateEvent(first_stop_event_sp); |
| |
| return Status(); |
| } |
| |
| Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, |
| EventSP &event_sp) { |
| Status error; |
| m_abi_sp.reset(); |
| m_dyld_up.reset(); |
| m_jit_loaders_up.reset(); |
| m_system_runtime_up.reset(); |
| m_os_up.reset(); |
| |
| { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| m_process_input_reader.reset(); |
| } |
| |
| Module *exe_module = GetTarget().GetExecutableModulePointer(); |
| |
| // The "remote executable path" is hooked up to the local Executable |
| // module. But we should be able to debug a remote process even if the |
| // executable module only exists on the remote. However, there needs to |
| // be a way to express this path, without actually having a module. |
| // The way to do that is to set the ExecutableFile in the LaunchInfo. |
| // Figure that out here: |
| |
| FileSpec exe_spec_to_use; |
| if (!exe_module) { |
| if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { |
| error = Status::FromErrorString("executable module does not exist"); |
| return error; |
| } |
| exe_spec_to_use = launch_info.GetExecutableFile(); |
| } else |
| exe_spec_to_use = exe_module->GetFileSpec(); |
| |
| if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { |
| // Install anything that might need to be installed prior to launching. |
| // For host systems, this will do nothing, but if we are connected to a |
| // remote platform it will install any needed binaries |
| error = GetTarget().Install(&launch_info); |
| if (error.Fail()) |
| return error; |
| } |
| |
| // Listen and queue events that are broadcasted during the process launch. |
| ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); |
| HijackProcessEvents(listener_sp); |
| auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); |
| |
| if (PrivateStateThreadIsValid()) |
| PausePrivateStateThread(); |
| |
| error = WillLaunch(exe_module); |
| if (error.Fail()) { |
| std::string local_exec_file_path = exe_spec_to_use.GetPath(); |
| return Status::FromErrorStringWithFormat("file doesn't exist: '%s'", |
| local_exec_file_path.c_str()); |
| } |
| |
| const bool restarted = false; |
| SetPublicState(eStateLaunching, restarted); |
| m_should_detach = false; |
| |
| if (m_public_run_lock.TrySetRunning()) { |
| // Now launch using these arguments. |
| error = DoLaunch(exe_module, launch_info); |
| } else { |
| // This shouldn't happen |
| error = Status::FromErrorString("failed to acquire process run lock"); |
| } |
| |
| if (error.Fail()) { |
| if (GetID() != LLDB_INVALID_PROCESS_ID) { |
| SetID(LLDB_INVALID_PROCESS_ID); |
| const char *error_string = error.AsCString(); |
| if (error_string == nullptr) |
| error_string = "launch failed"; |
| SetExitStatus(-1, error_string); |
| } |
| return error; |
| } |
| |
| // Now wait for the process to launch and return control to us, and then |
| // call DidLaunch: |
| state = WaitForProcessStopPrivate(event_sp, seconds(10)); |
| |
| if (state == eStateInvalid || !event_sp) { |
| // We were able to launch the process, but we failed to catch the |
| // initial stop. |
| error = Status::FromErrorString("failed to catch stop after launch"); |
| SetExitStatus(0, error.AsCString()); |
| Destroy(false); |
| return error; |
| } |
| |
| if (state == eStateExited) { |
| // We exited while trying to launch somehow. Don't call DidLaunch |
| // as that's not likely to work, and return an invalid pid. |
| HandlePrivateEvent(event_sp); |
| return Status(); |
| } |
| |
| if (state == eStateStopped || state == eStateCrashed) { |
| DidLaunch(); |
| |
| // Now that we know the process type, update its signal responses from the |
| // ones stored in the Target: |
| if (m_unix_signals_sp) { |
| StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); |
| GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); |
| } |
| |
| DynamicLoader *dyld = GetDynamicLoader(); |
| if (dyld) |
| dyld->DidLaunch(); |
| |
| GetJITLoaders().DidLaunch(); |
| |
| SystemRuntime *system_runtime = GetSystemRuntime(); |
| if (system_runtime) |
| system_runtime->DidLaunch(); |
| |
| if (!m_os_up) |
| LoadOperatingSystemPlugin(false); |
| |
| // We successfully launched the process and stopped, now it the |
| // right time to set up signal filters before resuming. |
| UpdateAutomaticSignalFiltering(); |
| return Status(); |
| } |
| |
| return Status::FromErrorStringWithFormat( |
| "Unexpected process state after the launch: %s, expected %s, " |
| "%s, %s or %s", |
| StateAsCString(state), StateAsCString(eStateInvalid), |
| StateAsCString(eStateExited), StateAsCString(eStateStopped), |
| StateAsCString(eStateCrashed)); |
| } |
| |
| Status Process::LoadCore() { |
| Status error = DoLoadCore(); |
| if (error.Success()) { |
| ListenerSP listener_sp( |
| Listener::MakeListener("lldb.process.load_core_listener")); |
| HijackProcessEvents(listener_sp); |
| |
| if (PrivateStateThreadIsValid()) |
| ResumePrivateStateThread(); |
| else |
| StartPrivateStateThread(); |
| |
| DynamicLoader *dyld = GetDynamicLoader(); |
| if (dyld) |
| dyld->DidAttach(); |
| |
| GetJITLoaders().DidAttach(); |
| |
| SystemRuntime *system_runtime = GetSystemRuntime(); |
| if (system_runtime) |
| system_runtime->DidAttach(); |
| |
| if (!m_os_up) |
| LoadOperatingSystemPlugin(false); |
| |
| // We successfully loaded a core file, now pretend we stopped so we can |
| // show all of the threads in the core file and explore the crashed state. |
| SetPrivateState(eStateStopped); |
| |
| // Wait for a stopped event since we just posted one above... |
| lldb::EventSP event_sp; |
| StateType state = |
| WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp, |
| nullptr, true, SelectMostRelevantFrame); |
| |
| if (!StateIsStoppedState(state, false)) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", |
| StateAsCString(state)); |
| error = Status::FromErrorString( |
| "Did not get stopped event after loading the core file."); |
| } |
| RestoreProcessEvents(); |
| } |
| return error; |
| } |
| |
| DynamicLoader *Process::GetDynamicLoader() { |
| if (!m_dyld_up) |
| m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); |
| return m_dyld_up.get(); |
| } |
| |
| void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { |
| m_dyld_up = std::move(dyld_up); |
| } |
| |
| DataExtractor Process::GetAuxvData() { return DataExtractor(); } |
| |
| llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { |
| return false; |
| } |
| |
| JITLoaderList &Process::GetJITLoaders() { |
| if (!m_jit_loaders_up) { |
| m_jit_loaders_up = std::make_unique<JITLoaderList>(); |
| JITLoader::LoadPlugins(this, *m_jit_loaders_up); |
| } |
| return *m_jit_loaders_up; |
| } |
| |
| SystemRuntime *Process::GetSystemRuntime() { |
| if (!m_system_runtime_up) |
| m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); |
| return m_system_runtime_up.get(); |
| } |
| |
| Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, |
| uint32_t exec_count) |
| : NextEventAction(process), m_exec_count(exec_count) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF( |
| log, |
| "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, |
| __FUNCTION__, static_cast<void *>(process), exec_count); |
| } |
| |
| Process::NextEventAction::EventActionResult |
| Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { |
| Log *log = GetLog(LLDBLog::Process); |
| |
| StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); |
| LLDB_LOGF(log, |
| "Process::AttachCompletionHandler::%s called with state %s (%d)", |
| __FUNCTION__, StateAsCString(state), static_cast<int>(state)); |
| |
| switch (state) { |
| case eStateAttaching: |
| return eEventActionSuccess; |
| |
| case eStateRunning: |
| case eStateConnected: |
| return eEventActionRetry; |
| |
| case eStateStopped: |
| case eStateCrashed: |
| // During attach, prior to sending the eStateStopped event, |
| // lldb_private::Process subclasses must set the new process ID. |
| assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); |
| // We don't want these events to be reported, so go set the |
| // ShouldReportStop here: |
| m_process->GetThreadList().SetShouldReportStop(eVoteNo); |
| |
| if (m_exec_count > 0) { |
| --m_exec_count; |
| |
| LLDB_LOGF(log, |
| "Process::AttachCompletionHandler::%s state %s: reduced " |
| "remaining exec count to %" PRIu32 ", requesting resume", |
| __FUNCTION__, StateAsCString(state), m_exec_count); |
| |
| RequestResume(); |
| return eEventActionRetry; |
| } else { |
| LLDB_LOGF(log, |
| "Process::AttachCompletionHandler::%s state %s: no more " |
| "execs expected to start, continuing with attach", |
| __FUNCTION__, StateAsCString(state)); |
| |
| m_process->CompleteAttach(); |
| return eEventActionSuccess; |
| } |
| break; |
| |
| default: |
| case eStateExited: |
| case eStateInvalid: |
| break; |
| } |
| |
| m_exit_string.assign("No valid Process"); |
| return eEventActionExit; |
| } |
| |
| Process::NextEventAction::EventActionResult |
| Process::AttachCompletionHandler::HandleBeingInterrupted() { |
| return eEventActionSuccess; |
| } |
| |
| const char *Process::AttachCompletionHandler::GetExitString() { |
| return m_exit_string.c_str(); |
| } |
| |
| ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { |
| if (m_listener_sp) |
| return m_listener_sp; |
| else |
| return debugger.GetListener(); |
| } |
| |
| Status Process::WillLaunch(Module *module) { |
| return DoWillLaunch(module); |
| } |
| |
| Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { |
| return DoWillAttachToProcessWithID(pid); |
| } |
| |
| Status Process::WillAttachToProcessWithName(const char *process_name, |
| bool wait_for_launch) { |
| return DoWillAttachToProcessWithName(process_name, wait_for_launch); |
| } |
| |
| Status Process::Attach(ProcessAttachInfo &attach_info) { |
| m_abi_sp.reset(); |
| { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| m_process_input_reader.reset(); |
| } |
| m_dyld_up.reset(); |
| m_jit_loaders_up.reset(); |
| m_system_runtime_up.reset(); |
| m_os_up.reset(); |
| |
| lldb::pid_t attach_pid = attach_info.GetProcessID(); |
| Status error; |
| if (attach_pid == LLDB_INVALID_PROCESS_ID) { |
| char process_name[PATH_MAX]; |
| |
| if (attach_info.GetExecutableFile().GetPath(process_name, |
| sizeof(process_name))) { |
| const bool wait_for_launch = attach_info.GetWaitForLaunch(); |
| |
| if (wait_for_launch) { |
| error = WillAttachToProcessWithName(process_name, wait_for_launch); |
| if (error.Success()) { |
| if (m_public_run_lock.TrySetRunning()) { |
| m_should_detach = true; |
| const bool restarted = false; |
| SetPublicState(eStateAttaching, restarted); |
| // Now attach using these arguments. |
| error = DoAttachToProcessWithName(process_name, attach_info); |
| } else { |
| // This shouldn't happen |
| error = |
| Status::FromErrorString("failed to acquire process run lock"); |
| } |
| |
| if (error.Fail()) { |
| if (GetID() != LLDB_INVALID_PROCESS_ID) { |
| SetID(LLDB_INVALID_PROCESS_ID); |
| if (error.AsCString() == nullptr) |
| error = Status::FromErrorString("attach failed"); |
| |
| SetExitStatus(-1, error.AsCString()); |
| } |
| } else { |
| SetNextEventAction(new Process::AttachCompletionHandler( |
| this, attach_info.GetResumeCount())); |
| StartPrivateStateThread(); |
| } |
| return error; |
| } |
| } else { |
| ProcessInstanceInfoList process_infos; |
| PlatformSP platform_sp(GetTarget().GetPlatform()); |
| |
| if (platform_sp) { |
| ProcessInstanceInfoMatch match_info; |
| match_info.GetProcessInfo() = attach_info; |
| match_info.SetNameMatchType(NameMatch::Equals); |
| platform_sp->FindProcesses(match_info, process_infos); |
| const uint32_t num_matches = process_infos.size(); |
| if (num_matches == 1) { |
| attach_pid = process_infos[0].GetProcessID(); |
| // Fall through and attach using the above process ID |
| } else { |
| match_info.GetProcessInfo().GetExecutableFile().GetPath( |
| process_name, sizeof(process_name)); |
| if (num_matches > 1) { |
| StreamString s; |
| ProcessInstanceInfo::DumpTableHeader(s, true, false); |
| for (size_t i = 0; i < num_matches; i++) { |
| process_infos[i].DumpAsTableRow( |
| s, platform_sp->GetUserIDResolver(), true, false); |
| } |
| error = Status::FromErrorStringWithFormat( |
| "more than one process named %s:\n%s", process_name, |
| s.GetData()); |
| } else |
| error = Status::FromErrorStringWithFormat( |
| "could not find a process named %s", process_name); |
| } |
| } else { |
| error = Status::FromErrorString( |
| "invalid platform, can't find processes by name"); |
| return error; |
| } |
| } |
| } else { |
| error = Status::FromErrorString("invalid process name"); |
| } |
| } |
| |
| if (attach_pid != LLDB_INVALID_PROCESS_ID) { |
| error = WillAttachToProcessWithID(attach_pid); |
| if (error.Success()) { |
| |
| if (m_public_run_lock.TrySetRunning()) { |
| // Now attach using these arguments. |
| m_should_detach = true; |
| const bool restarted = false; |
| SetPublicState(eStateAttaching, restarted); |
| error = DoAttachToProcessWithID(attach_pid, attach_info); |
| } else { |
| // This shouldn't happen |
| error = Status::FromErrorString("failed to acquire process run lock"); |
| } |
| |
| if (error.Success()) { |
| SetNextEventAction(new Process::AttachCompletionHandler( |
| this, attach_info.GetResumeCount())); |
| StartPrivateStateThread(); |
| } else { |
| if (GetID() != LLDB_INVALID_PROCESS_ID) |
| SetID(LLDB_INVALID_PROCESS_ID); |
| |
| const char *error_string = error.AsCString(); |
| if (error_string == nullptr) |
| error_string = "attach failed"; |
| |
| SetExitStatus(-1, error_string); |
| } |
| } |
| } |
| return error; |
| } |
| |
| void Process::CompleteAttach() { |
| Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); |
| LLDB_LOGF(log, "Process::%s()", __FUNCTION__); |
| |
| // Let the process subclass figure out at much as it can about the process |
| // before we go looking for a dynamic loader plug-in. |
| ArchSpec process_arch; |
| DidAttach(process_arch); |
| |
| if (process_arch.IsValid()) { |
| LLDB_LOG(log, |
| "Process::{0} replacing process architecture with DidAttach() " |
| "architecture: \"{1}\"", |
| __FUNCTION__, process_arch.GetTriple().getTriple()); |
| GetTarget().SetArchitecture(process_arch); |
| } |
| |
| // We just attached. If we have a platform, ask it for the process |
| // architecture, and if it isn't the same as the one we've already set, |
| // switch architectures. |
| PlatformSP platform_sp(GetTarget().GetPlatform()); |
| assert(platform_sp); |
| ArchSpec process_host_arch = GetSystemArchitecture(); |
| if (platform_sp) { |
| const ArchSpec &target_arch = GetTarget().GetArchitecture(); |
| if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( |
| target_arch, process_host_arch, |
| ArchSpec::CompatibleMatch, nullptr)) { |
| ArchSpec platform_arch; |
| platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( |
| target_arch, process_host_arch, &platform_arch); |
| if (platform_sp) { |
| GetTarget().SetPlatform(platform_sp); |
| GetTarget().SetArchitecture(platform_arch); |
| LLDB_LOG(log, |
| "switching platform to {0} and architecture to {1} based on " |
| "info from attach", |
| platform_sp->GetName(), platform_arch.GetTriple().getTriple()); |
| } |
| } else if (!process_arch.IsValid()) { |
| ProcessInstanceInfo process_info; |
| GetProcessInfo(process_info); |
| const ArchSpec &process_arch = process_info.GetArchitecture(); |
| const ArchSpec &target_arch = GetTarget().GetArchitecture(); |
| if (process_arch.IsValid() && |
| target_arch.IsCompatibleMatch(process_arch) && |
| !target_arch.IsExactMatch(process_arch)) { |
| GetTarget().SetArchitecture(process_arch); |
| LLDB_LOGF(log, |
| "Process::%s switching architecture to %s based on info " |
| "the platform retrieved for pid %" PRIu64, |
| __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), |
| GetID()); |
| } |
| } |
| } |
| // Now that we know the process type, update its signal responses from the |
| // ones stored in the Target: |
| if (m_unix_signals_sp) { |
| StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); |
| GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); |
| } |
| |
| // We have completed the attach, now it is time to find the dynamic loader |
| // plug-in |
| DynamicLoader *dyld = GetDynamicLoader(); |
| if (dyld) { |
| dyld->DidAttach(); |
| if (log) { |
| ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
| LLDB_LOG(log, |
| "after DynamicLoader::DidAttach(), target " |
| "executable is {0} (using {1} plugin)", |
| exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), |
| dyld->GetPluginName()); |
| } |
| } |
| |
| GetJITLoaders().DidAttach(); |
| |
| SystemRuntime *system_runtime = GetSystemRuntime(); |
| if (system_runtime) { |
| system_runtime->DidAttach(); |
| if (log) { |
| ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
| LLDB_LOG(log, |
| "after SystemRuntime::DidAttach(), target " |
| "executable is {0} (using {1} plugin)", |
| exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), |
| system_runtime->GetPluginName()); |
| } |
| } |
| |
| if (!m_os_up) { |
| LoadOperatingSystemPlugin(false); |
| if (m_os_up) { |
| // Somebody might have gotten threads before now, but we need to force the |
| // update after we've loaded the OperatingSystem plugin or it won't get a |
| // chance to process the threads. |
| m_thread_list.Clear(); |
| UpdateThreadListIfNeeded(); |
| } |
| } |
| // Figure out which one is the executable, and set that in our target: |
| ModuleSP new_executable_module_sp; |
| for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { |
| if (module_sp && module_sp->IsExecutable()) { |
| if (GetTarget().GetExecutableModulePointer() != module_sp.get()) |
| new_executable_module_sp = module_sp; |
| break; |
| } |
| } |
| if (new_executable_module_sp) { |
| GetTarget().SetExecutableModule(new_executable_module_sp, |
| eLoadDependentsNo); |
| if (log) { |
| ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
| LLDB_LOGF( |
| log, |
| "Process::%s after looping through modules, target executable is %s", |
| __FUNCTION__, |
| exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() |
| : "<none>"); |
| } |
| } |
| } |
| |
| Status Process::ConnectRemote(llvm::StringRef remote_url) { |
| m_abi_sp.reset(); |
| { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| m_process_input_reader.reset(); |
| } |
| |
| // Find the process and its architecture. Make sure it matches the |
| // architecture of the current Target, and if not adjust it. |
| |
| Status error(DoConnectRemote(remote_url)); |
| if (error.Success()) { |
| if (GetID() != LLDB_INVALID_PROCESS_ID) { |
| EventSP event_sp; |
| StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); |
| |
| if (state == eStateStopped || state == eStateCrashed) { |
| // If we attached and actually have a process on the other end, then |
| // this ended up being the equivalent of an attach. |
| CompleteAttach(); |
| |
| // This delays passing the stopped event to listeners till |
| // CompleteAttach gets a chance to complete... |
| HandlePrivateEvent(event_sp); |
| } |
| } |
| |
| if (PrivateStateThreadIsValid()) |
| ResumePrivateStateThread(); |
| else |
| StartPrivateStateThread(); |
| } |
| return error; |
| } |
| |
| Status Process::PrivateResume() { |
| Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); |
| LLDB_LOGF(log, |
| "Process::PrivateResume() m_stop_id = %u, public state: %s " |
| "private state: %s", |
| m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), |
| StateAsCString(m_private_state.GetValue())); |
| |
| // If signals handing status changed we might want to update our signal |
| // filters before resuming. |
| UpdateAutomaticSignalFiltering(); |
| // Clear any crash info we accumulated for this stop, but don't do so if we |
| // are running functions; we don't want to wipe out the real stop's info. |
| if (!GetModID().IsLastResumeForUserExpression()) |
| ResetExtendedCrashInfoDict(); |
| |
| Status error(WillResume()); |
| // Tell the process it is about to resume before the thread list |
| if (error.Success()) { |
| // Now let the thread list know we are about to resume so it can let all of |
| // our threads know that they are about to be resumed. Threads will each be |
| // called with Thread::WillResume(StateType) where StateType contains the |
| // state that they are supposed to have when the process is resumed |
| // (suspended/running/stepping). Threads should also check their resume |
| // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to |
| // start back up with a signal. |
| if (m_thread_list.WillResume()) { |
| // Last thing, do the PreResumeActions. |
| if (!RunPreResumeActions()) { |
| error = Status::FromErrorString( |
| "Process::PrivateResume PreResumeActions failed, not resuming."); |
| } else { |
| m_mod_id.BumpResumeID(); |
| error = DoResume(); |
| if (error.Success()) { |
| DidResume(); |
| m_thread_list.DidResume(); |
| LLDB_LOGF(log, "Process thinks the process has resumed."); |
| } else { |
| LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); |
| return error; |
| } |
| } |
| } else { |
| // Somebody wanted to run without running (e.g. we were faking a step |
| // from one frame of a set of inlined frames that share the same PC to |
| // another.) So generate a continue & a stopped event, and let the world |
| // handle them. |
| LLDB_LOGF(log, |
| "Process::PrivateResume() asked to simulate a start & stop."); |
| |
| SetPrivateState(eStateRunning); |
| SetPrivateState(eStateStopped); |
| } |
| } else |
| LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", |
| error.AsCString("<unknown error>")); |
| return error; |
| } |
| |
| Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { |
| if (!StateIsRunningState(m_public_state.GetValue())) |
| return Status::FromErrorString("Process is not running."); |
| |
| // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in |
| // case it was already set and some thread plan logic calls halt on its own. |
| m_clear_thread_plans_on_stop |= clear_thread_plans; |
| |
| ListenerSP halt_listener_sp( |
| Listener::MakeListener("lldb.process.halt_listener")); |
| HijackProcessEvents(halt_listener_sp); |
| |
| EventSP event_sp; |
| |
| SendAsyncInterrupt(); |
| |
| if (m_public_state.GetValue() == eStateAttaching) { |
| // Don't hijack and eat the eStateExited as the code that was doing the |
| // attach will be waiting for this event... |
| RestoreProcessEvents(); |
| Destroy(false); |
| SetExitStatus(SIGKILL, "Cancelled async attach."); |
| return Status(); |
| } |
| |
| // Wait for the process halt timeout seconds for the process to stop. |
| // If we are going to use the run lock, that means we're stopping out to the |
| // user, so we should also select the most relevant frame. |
| SelectMostRelevant select_most_relevant = |
| use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; |
| StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, |
| halt_listener_sp, nullptr, |
| use_run_lock, select_most_relevant); |
| RestoreProcessEvents(); |
| |
| if (state == eStateInvalid || !event_sp) { |
| // We timed out and didn't get a stop event... |
| return Status::FromErrorStringWithFormat("Halt timed out. State = %s", |
| StateAsCString(GetState())); |
| } |
| |
| BroadcastEvent(event_sp); |
| |
| return Status(); |
| } |
| |
| lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, |
| const uint8_t *buf, size_t size) { |
| const size_t region_size = high - low; |
| |
| if (region_size < size) |
| return LLDB_INVALID_ADDRESS; |
| |
| // See "Boyer-Moore string search algorithm". |
| std::vector<size_t> bad_char_heuristic(256, size); |
| for (size_t idx = 0; idx < size - 1; idx++) { |
| decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; |
| bad_char_heuristic[bcu_idx] = size - idx - 1; |
| } |
| |
| // Memory we're currently searching through. |
| llvm::SmallVector<uint8_t, 0> mem; |
| // Position of the memory buffer. |
| addr_t mem_pos = low; |
| // Maximum number of bytes read (and buffered). We need to read at least |
| // `size` bytes for a successful match. |
| const size_t max_read_size = std::max<size_t>(size, 0x10000); |
| |
| for (addr_t cur_addr = low; cur_addr <= (high - size);) { |
| if (cur_addr + size > mem_pos + mem.size()) { |
| // We need to read more data. We don't attempt to reuse the data we've |
| // already read (up to `size-1` bytes from `cur_addr` to |
| // `mem_pos+mem.size()`). This is fine for patterns much smaller than |
| // max_read_size. For very |
| // long patterns we may need to do something more elaborate. |
| mem.resize_for_overwrite(max_read_size); |
| Status error; |
| mem.resize(ReadMemory(cur_addr, mem.data(), |
| std::min<addr_t>(mem.size(), high - cur_addr), |
| error)); |
| mem_pos = cur_addr; |
| if (size > mem.size()) { |
| // We didn't read enough data. Skip to the next memory region. |
| MemoryRegionInfo info; |
| error = GetMemoryRegionInfo(mem_pos + mem.size(), info); |
| if (error.Fail()) |
| break; |
| cur_addr = info.GetRange().GetRangeEnd(); |
| continue; |
| } |
| } |
| int64_t j = size - 1; |
| while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos]) |
| j--; |
| if (j < 0) |
| return cur_addr; // We have a match. |
| cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]]; |
| } |
| |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { |
| Status error; |
| |
| // Check both the public & private states here. If we're hung evaluating an |
| // expression, for instance, then the public state will be stopped, but we |
| // still need to interrupt. |
| if (m_public_state.GetValue() == eStateRunning || |
| m_private_state.GetValue() == eStateRunning) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); |
| |
| ListenerSP listener_sp( |
| Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); |
| HijackProcessEvents(listener_sp); |
| |
| SendAsyncInterrupt(); |
| |
| // Consume the interrupt event. |
| StateType state = WaitForProcessToStop(GetInterruptTimeout(), |
| &exit_event_sp, true, listener_sp); |
| |
| RestoreProcessEvents(); |
| |
| // If the process exited while we were waiting for it to stop, put the |
| // exited event into the shared pointer passed in and return. Our caller |
| // doesn't need to do anything else, since they don't have a process |
| // anymore... |
| |
| if (state == eStateExited || m_private_state.GetValue() == eStateExited) { |
| LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", |
| __FUNCTION__); |
| return error; |
| } else |
| exit_event_sp.reset(); // It is ok to consume any non-exit stop events |
| |
| if (state != eStateStopped) { |
| LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, |
| StateAsCString(state)); |
| // If we really couldn't stop the process then we should just error out |
| // here, but if the lower levels just bobbled sending the event and we |
| // really are stopped, then continue on. |
| StateType private_state = m_private_state.GetValue(); |
| if (private_state != eStateStopped) { |
| return Status::FromErrorStringWithFormat( |
| "Attempt to stop the target in order to detach timed out. " |
| "State = %s", |
| StateAsCString(GetState())); |
| } |
| } |
| } |
| return error; |
| } |
| |
| Status Process::Detach(bool keep_stopped) { |
| EventSP exit_event_sp; |
| Status error; |
| m_destroy_in_process = true; |
| |
| error = WillDetach(); |
| |
| if (error.Success()) { |
| if (DetachRequiresHalt()) { |
| error = StopForDestroyOrDetach(exit_event_sp); |
| if (!error.Success()) { |
| m_destroy_in_process = false; |
| return error; |
| } else if (exit_event_sp) { |
| // We shouldn't need to do anything else here. There's no process left |
| // to detach from... |
| StopPrivateStateThread(); |
| m_destroy_in_process = false; |
| return error; |
| } |
| } |
| |
| m_thread_list.DiscardThreadPlans(); |
| DisableAllBreakpointSites(); |
| |
| error = DoDetach(keep_stopped); |
| if (error.Success()) { |
| DidDetach(); |
| StopPrivateStateThread(); |
| } else { |
| return error; |
| } |
| } |
| m_destroy_in_process = false; |
| |
| // If we exited when we were waiting for a process to stop, then forward the |
| // event here so we don't lose the event |
| if (exit_event_sp) { |
| // Directly broadcast our exited event because we shut down our private |
| // state thread above |
| BroadcastEvent(exit_event_sp); |
| } |
| |
| // If we have been interrupted (to kill us) in the middle of running, we may |
| // not end up propagating the last events through the event system, in which |
| // case we might strand the write lock. Unlock it here so when we do to tear |
| // down the process we don't get an error destroying the lock. |
| |
| m_public_run_lock.SetStopped(); |
| return error; |
| } |
| |
| Status Process::Destroy(bool force_kill) { |
| // If we've already called Process::Finalize then there's nothing useful to |
| // be done here. Finalize has actually called Destroy already. |
| if (m_finalizing) |
| return {}; |
| return DestroyImpl(force_kill); |
| } |
| |
| Status Process::DestroyImpl(bool force_kill) { |
| // Tell ourselves we are in the process of destroying the process, so that we |
| // don't do any unnecessary work that might hinder the destruction. Remember |
| // to set this back to false when we are done. That way if the attempt |
| // failed and the process stays around for some reason it won't be in a |
| // confused state. |
| |
| if (force_kill) |
| m_should_detach = false; |
| |
| if (GetShouldDetach()) { |
| // FIXME: This will have to be a process setting: |
| bool keep_stopped = false; |
| Detach(keep_stopped); |
| } |
| |
| m_destroy_in_process = true; |
| |
| Status error(WillDestroy()); |
| if (error.Success()) { |
| EventSP exit_event_sp; |
| if (DestroyRequiresHalt()) { |
| error = StopForDestroyOrDetach(exit_event_sp); |
| } |
| |
| if (m_public_state.GetValue() == eStateStopped) { |
| // Ditch all thread plans, and remove all our breakpoints: in case we |
| // have to restart the target to kill it, we don't want it hitting a |
| // breakpoint... Only do this if we've stopped, however, since if we |
| // didn't manage to halt it above, then we're not going to have much luck |
| // doing this now. |
| m_thread_list.DiscardThreadPlans(); |
| DisableAllBreakpointSites(); |
| } |
| |
| error = DoDestroy(); |
| if (error.Success()) { |
| DidDestroy(); |
| StopPrivateStateThread(); |
| } |
| m_stdio_communication.StopReadThread(); |
| m_stdio_communication.Disconnect(); |
| m_stdin_forward = false; |
| |
| { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| if (m_process_input_reader) { |
| m_process_input_reader->SetIsDone(true); |
| m_process_input_reader->Cancel(); |
| m_process_input_reader.reset(); |
| } |
| } |
| |
| // If we exited when we were waiting for a process to stop, then forward |
| // the event here so we don't lose the event |
| if (exit_event_sp) { |
| // Directly broadcast our exited event because we shut down our private |
| // state thread above |
| BroadcastEvent(exit_event_sp); |
| } |
| |
| // If we have been interrupted (to kill us) in the middle of running, we |
| // may not end up propagating the last events through the event system, in |
| // which case we might strand the write lock. Unlock it here so when we do |
| // to tear down the process we don't get an error destroying the lock. |
| m_public_run_lock.SetStopped(); |
| } |
| |
| m_destroy_in_process = false; |
| |
| return error; |
| } |
| |
| Status Process::Signal(int signal) { |
| Status error(WillSignal()); |
| if (error.Success()) { |
| error = DoSignal(signal); |
| if (error.Success()) |
| DidSignal(); |
| } |
| return error; |
| } |
| |
| void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { |
| assert(signals_sp && "null signals_sp"); |
| m_unix_signals_sp = std::move(signals_sp); |
| } |
| |
| const lldb::UnixSignalsSP &Process::GetUnixSignals() { |
| assert(m_unix_signals_sp && "null m_unix_signals_sp"); |
| return m_unix_signals_sp; |
| } |
| |
| lldb::ByteOrder Process::GetByteOrder() const { |
| return GetTarget().GetArchitecture().GetByteOrder(); |
| } |
| |
| uint32_t Process::GetAddressByteSize() const { |
| return GetTarget().GetArchitecture().GetAddressByteSize(); |
| } |
| |
| bool Process::ShouldBroadcastEvent(Event *event_ptr) { |
| const StateType state = |
| Process::ProcessEventData::GetStateFromEvent(event_ptr); |
| bool return_value = true; |
| Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); |
| |
| switch (state) { |
| case eStateDetached: |
| case eStateExited: |
| case eStateUnloaded: |
| m_stdio_communication.SynchronizeWithReadThread(); |
| m_stdio_communication.StopReadThread(); |
| m_stdio_communication.Disconnect(); |
| m_stdin_forward = false; |
| |
| [[fallthrough]]; |
| case eStateConnected: |
| case eStateAttaching: |
| case eStateLaunching: |
| // These events indicate changes in the state of the debugging session, |
| // always report them. |
| return_value = true; |
| break; |
| case eStateInvalid: |
| // We stopped for no apparent reason, don't report it. |
| return_value = false; |
| break; |
| case eStateRunning: |
| case eStateStepping: |
| // If we've started the target running, we handle the cases where we are |
| // already running and where there is a transition from stopped to running |
| // differently. running -> running: Automatically suppress extra running |
| // events stopped -> running: Report except when there is one or more no |
| // votes |
| // and no yes votes. |
| SynchronouslyNotifyStateChanged(state); |
| if (m_force_next_event_delivery) |
| return_value = true; |
| else { |
| switch (m_last_broadcast_state) { |
| case eStateRunning: |
| case eStateStepping: |
| // We always suppress multiple runnings with no PUBLIC stop in between. |
| return_value = false; |
| break; |
| default: |
| // TODO: make this work correctly. For now always report |
| // run if we aren't running so we don't miss any running events. If I |
| // run the lldb/test/thread/a.out file and break at main.cpp:58, run |
| // and hit the breakpoints on multiple threads, then somehow during the |
| // stepping over of all breakpoints no run gets reported. |
| |
| // This is a transition from stop to run. |
| switch (m_thread_list.ShouldReportRun(event_ptr)) { |
| case eVoteYes: |
| case eVoteNoOpinion: |
| return_value = true; |
| break; |
| case eVoteNo: |
| return_value = false; |
| break; |
| } |
| break; |
| } |
| } |
| break; |
| case eStateStopped: |
| case eStateCrashed: |
| case eStateSuspended: |
| // We've stopped. First see if we're going to restart the target. If we |
| // are going to stop, then we always broadcast the event. If we aren't |
| // going to stop, let the thread plans decide if we're going to report this |
| // event. If no thread has an opinion, we don't report it. |
| |
| m_stdio_communication.SynchronizeWithReadThread(); |
| RefreshStateAfterStop(); |
| if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { |
| LLDB_LOGF(log, |
| "Process::ShouldBroadcastEvent (%p) stopped due to an " |
| "interrupt, state: %s", |
| static_cast<void *>(event_ptr), StateAsCString(state)); |
| // Even though we know we are going to stop, we should let the threads |
| // have a look at the stop, so they can properly set their state. |
| m_thread_list.ShouldStop(event_ptr); |
| return_value = true; |
| } else { |
| bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); |
| bool should_resume = false; |
| |
| // It makes no sense to ask "ShouldStop" if we've already been |
| // restarted... Asking the thread list is also not likely to go well, |
| // since we are running again. So in that case just report the event. |
| |
| if (!was_restarted) |
| should_resume = !m_thread_list.ShouldStop(event_ptr); |
| |
| if (was_restarted || should_resume || m_resume_requested) { |
| Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); |
| LLDB_LOGF(log, |
| "Process::ShouldBroadcastEvent: should_resume: %i state: " |
| "%s was_restarted: %i report_stop_vote: %d.", |
| should_resume, StateAsCString(state), was_restarted, |
| report_stop_vote); |
| |
| switch (report_stop_vote) { |
| case eVoteYes: |
| return_value = true; |
| break; |
| case eVoteNoOpinion: |
| case eVoteNo: |
| return_value = false; |
| break; |
| } |
| |
| if (!was_restarted) { |
| LLDB_LOGF(log, |
| "Process::ShouldBroadcastEvent (%p) Restarting process " |
| "from state: %s", |
| static_cast<void *>(event_ptr), StateAsCString(state)); |
| ProcessEventData::SetRestartedInEvent(event_ptr, true); |
| PrivateResume(); |
| } |
| } else { |
| return_value = true; |
| SynchronouslyNotifyStateChanged(state); |
| } |
| } |
| break; |
| } |
| |
| // Forcing the next event delivery is a one shot deal. So reset it here. |
| m_force_next_event_delivery = false; |
| |
| // We do some coalescing of events (for instance two consecutive running |
| // events get coalesced.) But we only coalesce against events we actually |
| // broadcast. So we use m_last_broadcast_state to track that. NB - you |
| // can't use "m_public_state.GetValue()" for that purpose, as was originally |
| // done, because the PublicState reflects the last event pulled off the |
| // queue, and there may be several events stacked up on the queue unserviced. |
| // So the PublicState may not reflect the last broadcasted event yet. |
| // m_last_broadcast_state gets updated here. |
| |
| if (return_value) |
| m_last_broadcast_state = state; |
| |
| LLDB_LOGF(log, |
| "Process::ShouldBroadcastEvent (%p) => new state: %s, last " |
| "broadcast state: %s - %s", |
| static_cast<void *>(event_ptr), StateAsCString(state), |
| StateAsCString(m_last_broadcast_state), |
| return_value ? "YES" : "NO"); |
| return return_value; |
| } |
| |
| bool Process::StartPrivateStateThread(bool is_secondary_thread) { |
| Log *log = GetLog(LLDBLog::Events); |
| |
| bool already_running = PrivateStateThreadIsValid(); |
| LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, |
| already_running ? " already running" |
| : " starting private state thread"); |
| |
| if (!is_secondary_thread && already_running) |
| return true; |
| |
| // Create a thread that watches our internal state and controls which events |
| // make it to clients (into the DCProcess event queue). |
| char thread_name[1024]; |
| uint32_t max_len = llvm::get_max_thread_name_length(); |
| if (max_len > 0 && max_len <= 30) { |
| // On platforms with abbreviated thread name lengths, choose thread names |
| // that fit within the limit. |
| if (already_running) |
| snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); |
| else |
| snprintf(thread_name, sizeof(thread_name), "intern-state"); |
| } else { |
| if (already_running) |
| snprintf(thread_name, sizeof(thread_name), |
| "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", |
| GetID()); |
| else |
| snprintf(thread_name, sizeof(thread_name), |
| "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); |
| } |
| |
| llvm::Expected<HostThread> private_state_thread = |
| ThreadLauncher::LaunchThread( |
| thread_name, |
| [this, is_secondary_thread] { |
| return RunPrivateStateThread(is_secondary_thread); |
| }, |
| 8 * 1024 * 1024); |
| if (!private_state_thread) { |
| LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), |
| "failed to launch host thread: {0}"); |
| return false; |
| } |
| |
| assert(private_state_thread->IsJoinable()); |
| m_private_state_thread = *private_state_thread; |
| ResumePrivateStateThread(); |
| return true; |
| } |
| |
| void Process::PausePrivateStateThread() { |
| ControlPrivateStateThread(eBroadcastInternalStateControlPause); |
| } |
| |
| void Process::ResumePrivateStateThread() { |
| ControlPrivateStateThread(eBroadcastInternalStateControlResume); |
| } |
| |
| void Process::StopPrivateStateThread() { |
| if (m_private_state_thread.IsJoinable()) |
| ControlPrivateStateThread(eBroadcastInternalStateControlStop); |
| else { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF( |
| log, |
| "Went to stop the private state thread, but it was already invalid."); |
| } |
| } |
| |
| void Process::ControlPrivateStateThread(uint32_t signal) { |
| Log *log = GetLog(LLDBLog::Process); |
| |
| assert(signal == eBroadcastInternalStateControlStop || |
| signal == eBroadcastInternalStateControlPause || |
| signal == eBroadcastInternalStateControlResume); |
| |
| LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); |
| |
| // Signal the private state thread |
| if (m_private_state_thread.IsJoinable()) { |
| // Broadcast the event. |
| // It is important to do this outside of the if below, because it's |
| // possible that the thread state is invalid but that the thread is waiting |
| // on a control event instead of simply being on its way out (this should |
| // not happen, but it apparently can). |
| LLDB_LOGF(log, "Sending control event of type: %d.", signal); |
| std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); |
| m_private_state_control_broadcaster.BroadcastEvent(signal, |
| event_receipt_sp); |
| |
| // Wait for the event receipt or for the private state thread to exit |
| bool receipt_received = false; |
| if (PrivateStateThreadIsValid()) { |
| while (!receipt_received) { |
| // Check for a receipt for n seconds and then check if the private |
| // state thread is still around. |
| receipt_received = |
| event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); |
| if (!receipt_received) { |
| // Check if the private state thread is still around. If it isn't |
| // then we are done waiting |
| if (!PrivateStateThreadIsValid()) |
| break; // Private state thread exited or is exiting, we are done |
| } |
| } |
| } |
| |
| if (signal == eBroadcastInternalStateControlStop) { |
| thread_result_t result = {}; |
| m_private_state_thread.Join(&result); |
| m_private_state_thread.Reset(); |
| } |
| } else { |
| LLDB_LOGF( |
| log, |
| "Private state thread already dead, no need to signal it to stop."); |
| } |
| } |
| |
| void Process::SendAsyncInterrupt(Thread *thread) { |
| if (thread != nullptr) |
| m_interrupt_tid = thread->GetProtocolID(); |
| else |
| m_interrupt_tid = LLDB_INVALID_THREAD_ID; |
| if (PrivateStateThreadIsValid()) |
| m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, |
| nullptr); |
| else |
| BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); |
| } |
| |
| void Process::HandlePrivateEvent(EventSP &event_sp) { |
| Log *log = GetLog(LLDBLog::Process); |
| m_resume_requested = false; |
| |
| const StateType new_state = |
| Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| |
| // First check to see if anybody wants a shot at this event: |
| if (m_next_event_action_up) { |
| NextEventAction::EventActionResult action_result = |
| m_next_event_action_up->PerformAction(event_sp); |
| LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); |
| |
| switch (action_result) { |
| case NextEventAction::eEventActionSuccess: |
| SetNextEventAction(nullptr); |
| break; |
| |
| case NextEventAction::eEventActionRetry: |
| break; |
| |
| case NextEventAction::eEventActionExit: |
| // Handle Exiting Here. If we already got an exited event, we should |
| // just propagate it. Otherwise, swallow this event, and set our state |
| // to exit so the next event will kill us. |
| if (new_state != eStateExited) { |
| // FIXME: should cons up an exited event, and discard this one. |
| SetExitStatus(0, m_next_event_action_up->GetExitString()); |
| SetNextEventAction(nullptr); |
| return; |
| } |
| SetNextEventAction(nullptr); |
| break; |
| } |
| } |
| |
| // See if we should broadcast this state to external clients? |
| const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); |
| |
| if (should_broadcast) { |
| const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); |
| if (log) { |
| LLDB_LOGF(log, |
| "Process::%s (pid = %" PRIu64 |
| ") broadcasting new state %s (old state %s) to %s", |
| __FUNCTION__, GetID(), StateAsCString(new_state), |
| StateAsCString(GetState()), |
| is_hijacked ? "hijacked" : "public"); |
| } |
| Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); |
| if (StateIsRunningState(new_state)) { |
| // Only push the input handler if we aren't fowarding events, as this |
| // means the curses GUI is in use... Or don't push it if we are launching |
| // since it will come up stopped. |
| if (!GetTarget().GetDebugger().IsForwardingEvents() && |
| new_state != eStateLaunching && new_state != eStateAttaching) { |
| PushProcessIOHandler(); |
| m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, |
| eBroadcastAlways); |
| LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", |
| __FUNCTION__, m_iohandler_sync.GetValue()); |
| } |
| } else if (StateIsStoppedState(new_state, false)) { |
| if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { |
| // If the lldb_private::Debugger is handling the events, we don't want |
| // to pop the process IOHandler here, we want to do it when we receive |
| // the stopped event so we can carefully control when the process |
| // IOHandler is popped because when we stop we want to display some |
| // text stating how and why we stopped, then maybe some |
| // process/thread/frame info, and then we want the "(lldb) " prompt to |
| // show up. If we pop the process IOHandler here, then we will cause |
| // the command interpreter to become the top IOHandler after the |
| // process pops off and it will update its prompt right away... See the |
| // Debugger.cpp file where it calls the function as |
| // "process_sp->PopProcessIOHandler()" to see where I am talking about. |
| // Otherwise we end up getting overlapping "(lldb) " prompts and |
| // garbled output. |
| // |
| // If we aren't handling the events in the debugger (which is indicated |
| // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or |
| // we are hijacked, then we always pop the process IO handler manually. |
| // Hijacking happens when the internal process state thread is running |
| // thread plans, or when commands want to run in synchronous mode and |
| // they call "process->WaitForProcessToStop()". An example of something |
| // that will hijack the events is a simple expression: |
| // |
| // (lldb) expr (int)puts("hello") |
| // |
| // This will cause the internal process state thread to resume and halt |
| // the process (and _it_ will hijack the eBroadcastBitStateChanged |
| // events) and we do need the IO handler to be pushed and popped |
| // correctly. |
| |
| if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) |
| PopProcessIOHandler(); |
| } |
| } |
| |
| BroadcastEvent(event_sp); |
| } else { |
| if (log) { |
| LLDB_LOGF( |
| log, |
| "Process::%s (pid = %" PRIu64 |
| ") suppressing state %s (old state %s): should_broadcast == false", |
| __FUNCTION__, GetID(), StateAsCString(new_state), |
| StateAsCString(GetState())); |
| } |
| } |
| } |
| |
| Status Process::HaltPrivate() { |
| EventSP event_sp; |
| Status error(WillHalt()); |
| if (error.Fail()) |
| return error; |
| |
| // Ask the process subclass to actually halt our process |
| bool caused_stop; |
| error = DoHalt(caused_stop); |
| |
| DidHalt(); |
| return error; |
| } |
| |
| thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { |
| bool control_only = true; |
| |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", |
| __FUNCTION__, static_cast<void *>(this), GetID()); |
| |
| bool exit_now = false; |
| bool interrupt_requested = false; |
| while (!exit_now) { |
| EventSP event_sp; |
| GetEventsPrivate(event_sp, std::nullopt, control_only); |
| if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { |
| LLDB_LOGF(log, |
| "Process::%s (arg = %p, pid = %" PRIu64 |
| ") got a control event: %d", |
| __FUNCTION__, static_cast<void *>(this), GetID(), |
| event_sp->GetType()); |
| |
| switch (event_sp->GetType()) { |
| case eBroadcastInternalStateControlStop: |
| exit_now = true; |
| break; // doing any internal state management below |
| |
| case eBroadcastInternalStateControlPause: |
| control_only = true; |
| break; |
| |
| case eBroadcastInternalStateControlResume: |
| control_only = false; |
| break; |
| } |
| |
| continue; |
| } else if (event_sp->GetType() == eBroadcastBitInterrupt) { |
| if (m_public_state.GetValue() == eStateAttaching) { |
| LLDB_LOGF(log, |
| "Process::%s (arg = %p, pid = %" PRIu64 |
| ") woke up with an interrupt while attaching - " |
| "forwarding interrupt.", |
| __FUNCTION__, static_cast<void *>(this), GetID()); |
| // The server may be spinning waiting for a process to appear, in which |
| // case we should tell it to stop doing that. Normally, we don't NEED |
| // to do that because we will next close the communication to the stub |
| // and that will get it to shut down. But there are remote debugging |
| // cases where relying on that side-effect causes the shutdown to be |
| // flakey, so we should send a positive signal to interrupt the wait. |
| Status error = HaltPrivate(); |
| BroadcastEvent(eBroadcastBitInterrupt, nullptr); |
| } else if (StateIsRunningState(m_last_broadcast_state)) { |
| LLDB_LOGF(log, |
| "Process::%s (arg = %p, pid = %" PRIu64 |
| ") woke up with an interrupt - Halting.", |
| __FUNCTION__, static_cast<void *>(this), GetID()); |
| Status error = HaltPrivate(); |
| if (error.Fail() && log) |
| LLDB_LOGF(log, |
| "Process::%s (arg = %p, pid = %" PRIu64 |
| ") failed to halt the process: %s", |
| __FUNCTION__, static_cast<void *>(this), GetID(), |
| error.AsCString()); |
| // Halt should generate a stopped event. Make a note of the fact that |
| // we were doing the interrupt, so we can set the interrupted flag |
| // after we receive the event. We deliberately set this to true even if |
| // HaltPrivate failed, so that we can interrupt on the next natural |
| // stop. |
| interrupt_requested = true; |
| } else { |
| // This can happen when someone (e.g. Process::Halt) sees that we are |
| // running and sends an interrupt request, but the process actually |
| // stops before we receive it. In that case, we can just ignore the |
| // request. We use m_last_broadcast_state, because the Stopped event |
| // may not have been popped of the event queue yet, which is when the |
| // public state gets updated. |
| LLDB_LOGF(log, |
| "Process::%s ignoring interrupt as we have already stopped.", |
| __FUNCTION__); |
| } |
| continue; |
| } |
| |
| const StateType internal_state = |
| Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| |
| if (internal_state != eStateInvalid) { |
| if (m_clear_thread_plans_on_stop && |
| StateIsStoppedState(internal_state, true)) { |
| m_clear_thread_plans_on_stop = false; |
| m_thread_list.DiscardThreadPlans(); |
| } |
| |
| if (interrupt_requested) { |
| if (StateIsStoppedState(internal_state, true)) { |
| // Only mark interrupt event if it is not thread specific async |
| // interrupt. |
| if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) { |
| // We requested the interrupt, so mark this as such in the stop |
| // event so clients can tell an interrupted process from a natural |
| // stop |
| ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); |
| } |
| interrupt_requested = false; |
| } else if (log) { |
| LLDB_LOGF(log, |
| "Process::%s interrupt_requested, but a non-stopped " |
| "state '%s' received.", |
| __FUNCTION__, StateAsCString(internal_state)); |
| } |
| } |
| |
| HandlePrivateEvent(event_sp); |
| } |
| |
| if (internal_state == eStateInvalid || internal_state == eStateExited || |
| internal_state == eStateDetached) { |
| LLDB_LOGF(log, |
| "Process::%s (arg = %p, pid = %" PRIu64 |
| ") about to exit with internal state %s...", |
| __FUNCTION__, static_cast<void *>(this), GetID(), |
| StateAsCString(internal_state)); |
| |
| break; |
| } |
| } |
| |
| // Verify log is still enabled before attempting to write to it... |
| LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", |
| __FUNCTION__, static_cast<void *>(this), GetID()); |
| |
| // If we are a secondary thread, then the primary thread we are working for |
| // will have already acquired the public_run_lock, and isn't done with what |
| // it was doing yet, so don't try to change it on the way out. |
| if (!is_secondary_thread) |
| m_public_run_lock.SetStopped(); |
| return {}; |
| } |
| |
| // Process Event Data |
| |
| Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} |
| |
| Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, |
| StateType state) |
| : EventData(), m_process_wp(), m_state(state) { |
| if (process_sp) |
| m_process_wp = process_sp; |
| } |
| |
| Process::ProcessEventData::~ProcessEventData() = default; |
| |
| llvm::StringRef Process::ProcessEventData::GetFlavorString() { |
| return "Process::ProcessEventData"; |
| } |
| |
| llvm::StringRef Process::ProcessEventData::GetFlavor() const { |
| return ProcessEventData::GetFlavorString(); |
| } |
| |
| bool Process::ProcessEventData::ShouldStop(Event *event_ptr, |
| bool &found_valid_stopinfo) { |
| found_valid_stopinfo = false; |
| |
| ProcessSP process_sp(m_process_wp.lock()); |
| if (!process_sp) |
| return false; |
| |
| ThreadList &curr_thread_list = process_sp->GetThreadList(); |
| uint32_t num_threads = curr_thread_list.GetSize(); |
| |
| // The actions might change one of the thread's stop_info's opinions about |
| // whether we should stop the process, so we need to query that as we go. |
| |
| // One other complication here, is that we try to catch any case where the |
| // target has run (except for expressions) and immediately exit, but if we |
| // get that wrong (which is possible) then the thread list might have |
| // changed, and that would cause our iteration here to crash. We could |
| // make a copy of the thread list, but we'd really like to also know if it |
| // has changed at all, so we store the original thread ID's of all threads and |
| // check what we get back against this list & bag out if anything differs. |
| std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads; |
| for (uint32_t idx = 0; idx < num_threads; ++idx) { |
| lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); |
| |
| /* |
| Filter out all suspended threads, they could not be the reason |
| of stop and no need to perform any actions on them. |
| */ |
| if (thread_sp->GetResumeState() != eStateSuspended) |
| not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID()); |
| } |
| |
| // Use this to track whether we should continue from here. We will only |
| // continue the target running if no thread says we should stop. Of course |
| // if some thread's PerformAction actually sets the target running, then it |
| // doesn't matter what the other threads say... |
| |
| bool still_should_stop = false; |
| |
| // Sometimes - for instance if we have a bug in the stub we are talking to, |
| // we stop but no thread has a valid stop reason. In that case we should |
| // just stop, because we have no way of telling what the right thing to do |
| // is, and it's better to let the user decide than continue behind their |
| // backs. |
| |
| for (auto [thread_sp, thread_index] : not_suspended_threads) { |
| if (curr_thread_list.GetSize() != num_threads) { |
| Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); |
| LLDB_LOGF( |
| log, |
| "Number of threads changed from %u to %u while processing event.", |
| num_threads, curr_thread_list.GetSize()); |
| break; |
| } |
| |
| if (thread_sp->GetIndexID() != thread_index) { |
| Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); |
| LLDB_LOG(log, |
| "The thread {0} changed from {1} to {2} while processing event.", |
| thread_sp.get(), thread_index, thread_sp->GetIndexID()); |
| break; |
| } |
| |
| StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
| if (stop_info_sp && stop_info_sp->IsValid()) { |
| found_valid_stopinfo = true; |
| bool this_thread_wants_to_stop; |
| if (stop_info_sp->GetOverrideShouldStop()) { |
| this_thread_wants_to_stop = |
| stop_info_sp->GetOverriddenShouldStopValue(); |
| } else { |
| stop_info_sp->PerformAction(event_ptr); |
| // The stop action might restart the target. If it does, then we |
| // want to mark that in the event so that whoever is receiving it |
| // will know to wait for the running event and reflect that state |
| // appropriately. We also need to stop processing actions, since they |
| // aren't expecting the target to be running. |
| |
| // FIXME: we might have run. |
| if (stop_info_sp->HasTargetRunSinceMe()) { |
| SetRestarted(true); |
| break; |
| } |
| |
| this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); |
| } |
| |
| if (!still_should_stop) |
| still_should_stop = this_thread_wants_to_stop; |
| } |
| } |
| |
| return still_should_stop; |
| } |
| |
| bool Process::ProcessEventData::ForwardEventToPendingListeners( |
| Event *event_ptr) { |
| // STDIO and the other async event notifications should always be forwarded. |
| if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) |
| return true; |
| |
| // For state changed events, if the update state is zero, we are handling |
| // this on the private state thread. We should wait for the public event. |
| return m_update_state == 1; |
| } |
| |
| void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { |
| // We only have work to do for state changed events: |
| if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) |
| return; |
| |
| ProcessSP process_sp(m_process_wp.lock()); |
| |
| if (!process_sp) |
| return; |
| |
| // This function gets called twice for each event, once when the event gets |
| // pulled off of the private process event queue, and then any number of |
| // times, first when it gets pulled off of the public event queue, then other |
| // times when we're pretending that this is where we stopped at the end of |
| // expression evaluation. m_update_state is used to distinguish these three |
| // cases; it is 0 when we're just pulling it off for private handling, and > |
| // 1 for expression evaluation, and we don't want to do the breakpoint |
| // command handling then. |
| if (m_update_state != 1) |
| return; |
| |
| process_sp->SetPublicState( |
| m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); |
| |
| if (m_state == eStateStopped && !m_restarted) { |
| // Let process subclasses know we are about to do a public stop and do |
| // anything they might need to in order to speed up register and memory |
| // accesses. |
| process_sp->WillPublicStop(); |
| } |
| |
| // If this is a halt event, even if the halt stopped with some reason other |
| // than a plain interrupt (e.g. we had already stopped for a breakpoint when |
| // the halt request came through) don't do the StopInfo actions, as they may |
| // end up restarting the process. |
| if (m_interrupted) |
| return; |
| |
| // If we're not stopped or have restarted, then skip the StopInfo actions: |
| if (m_state != eStateStopped || m_restarted) { |
| return; |
| } |
| |
| bool does_anybody_have_an_opinion = false; |
| bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); |
| |
| if (GetRestarted()) { |
| return; |
| } |
| |
| if (!still_should_stop && does_anybody_have_an_opinion) { |
| // We've been asked to continue, so do that here. |
| SetRestarted(true); |
| // Use the private resume method here, since we aren't changing the run |
| // lock state. |
| process_sp->PrivateResume(); |
| } else { |
| bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && |
| !process_sp->StateChangedIsHijackedForSynchronousResume(); |
| |
| if (!hijacked) { |
| // If we didn't restart, run the Stop Hooks here. |
| // Don't do that if state changed events aren't hooked up to the |
| // public (or SyncResume) broadcasters. StopHooks are just for |
| // real public stops. They might also restart the target, |
| // so watch for that. |
| if (process_sp->GetTarget().RunStopHooks()) |
| SetRestarted(true); |
| } |
| } |
| } |
| |
| void Process::ProcessEventData::Dump(Stream *s) const { |
| ProcessSP process_sp(m_process_wp.lock()); |
| |
| if (process_sp) |
| s->Printf(" process = %p (pid = %" PRIu64 "), ", |
| static_cast<void *>(process_sp.get()), process_sp->GetID()); |
| else |
| s->PutCString(" process = NULL, "); |
| |
| s->Printf("state = %s", StateAsCString(GetState())); |
| } |
| |
| const Process::ProcessEventData * |
| Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { |
| if (event_ptr) { |
| const EventData *event_data = event_ptr->GetData(); |
| if (event_data && |
| event_data->GetFlavor() == ProcessEventData::GetFlavorString()) |
| return static_cast<const ProcessEventData *>(event_ptr->GetData()); |
| } |
| return nullptr; |
| } |
| |
| ProcessSP |
| Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { |
| ProcessSP process_sp; |
| const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
| if (data) |
| process_sp = data->GetProcessSP(); |
| return process_sp; |
| } |
| |
| StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { |
| const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
| if (data == nullptr) |
| return eStateInvalid; |
| else |
| return data->GetState(); |
| } |
| |
| bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { |
| const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
| if (data == nullptr) |
| return false; |
| else |
| return data->GetRestarted(); |
| } |
| |
| void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, |
| bool new_value) { |
| ProcessEventData *data = |
| const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
| if (data != nullptr) |
| data->SetRestarted(new_value); |
| } |
| |
| size_t |
| Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { |
| ProcessEventData *data = |
| const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
| if (data != nullptr) |
| return data->GetNumRestartedReasons(); |
| else |
| return 0; |
| } |
| |
| const char * |
| Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, |
| size_t idx) { |
| ProcessEventData *data = |
| const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
| if (data != nullptr) |
| return data->GetRestartedReasonAtIndex(idx); |
| else |
| return nullptr; |
| } |
| |
| void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, |
| const char *reason) { |
| ProcessEventData *data = |
| const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
| if (data != nullptr) |
| data->AddRestartedReason(reason); |
| } |
| |
| bool Process::ProcessEventData::GetInterruptedFromEvent( |
| const Event *event_ptr) { |
| const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
| if (data == nullptr) |
| return false; |
| else |
| return data->GetInterrupted(); |
| } |
| |
| void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, |
| bool new_value) { |
| ProcessEventData *data = |
| const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
| if (data != nullptr) |
| data->SetInterrupted(new_value); |
| } |
| |
| bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { |
| ProcessEventData *data = |
| const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
| if (data) { |
| data->SetUpdateStateOnRemoval(); |
| return true; |
| } |
| return false; |
| } |
| |
| lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } |
| |
| void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { |
| exe_ctx.SetTargetPtr(&GetTarget()); |
| exe_ctx.SetProcessPtr(this); |
| exe_ctx.SetThreadPtr(nullptr); |
| exe_ctx.SetFramePtr(nullptr); |
| } |
| |
| // uint32_t |
| // Process::ListProcessesMatchingName (const char *name, StringList &matches, |
| // std::vector<lldb::pid_t> &pids) |
| //{ |
| // return 0; |
| //} |
| // |
| // ArchSpec |
| // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) |
| //{ |
| // return Host::GetArchSpecForExistingProcess (pid); |
| //} |
| // |
| // ArchSpec |
| // Process::GetArchSpecForExistingProcess (const char *process_name) |
| //{ |
| // return Host::GetArchSpecForExistingProcess (process_name); |
| //} |
| |
| EventSP Process::CreateEventFromProcessState(uint32_t event_type) { |
| auto event_data_sp = |
| std::make_shared<ProcessEventData>(shared_from_this(), GetState()); |
| return std::make_shared<Event>(event_type, event_data_sp); |
| } |
| |
| void Process::AppendSTDOUT(const char *s, size_t len) { |
| std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
| m_stdout_data.append(s, len); |
| auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT); |
| BroadcastEventIfUnique(event_sp); |
| } |
| |
| void Process::AppendSTDERR(const char *s, size_t len) { |
| std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
| m_stderr_data.append(s, len); |
| auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR); |
| BroadcastEventIfUnique(event_sp); |
| } |
| |
| void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { |
| std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); |
| m_profile_data.push_back(one_profile_data); |
| auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData); |
| BroadcastEventIfUnique(event_sp); |
| } |
| |
| void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, |
| const StructuredDataPluginSP &plugin_sp) { |
| auto data_sp = std::make_shared<EventDataStructuredData>( |
| shared_from_this(), object_sp, plugin_sp); |
| BroadcastEvent(eBroadcastBitStructuredData, data_sp); |
| } |
| |
| StructuredDataPluginSP |
| Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { |
| auto find_it = m_structured_data_plugin_map.find(type_name); |
| if (find_it != m_structured_data_plugin_map.end()) |
| return find_it->second; |
| else |
| return StructuredDataPluginSP(); |
| } |
| |
| size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { |
| std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); |
| if (m_profile_data.empty()) |
| return 0; |
| |
| std::string &one_profile_data = m_profile_data.front(); |
| size_t bytes_available = one_profile_data.size(); |
| if (bytes_available > 0) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", |
| static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
| if (bytes_available > buf_size) { |
| memcpy(buf, one_profile_data.c_str(), buf_size); |
| one_profile_data.erase(0, buf_size); |
| bytes_available = buf_size; |
| } else { |
| memcpy(buf, one_profile_data.c_str(), bytes_available); |
| m_profile_data.erase(m_profile_data.begin()); |
| } |
| } |
| return bytes_available; |
| } |
| |
| // Process STDIO |
| |
| size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { |
| std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
| size_t bytes_available = m_stdout_data.size(); |
| if (bytes_available > 0) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", |
| static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
| if (bytes_available > buf_size) { |
| memcpy(buf, m_stdout_data.c_str(), buf_size); |
| m_stdout_data.erase(0, buf_size); |
| bytes_available = buf_size; |
| } else { |
| memcpy(buf, m_stdout_data.c_str(), bytes_available); |
| m_stdout_data.clear(); |
| } |
| } |
| return bytes_available; |
| } |
| |
| size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { |
| std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); |
| size_t bytes_available = m_stderr_data.size(); |
| if (bytes_available > 0) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", |
| static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
| if (bytes_available > buf_size) { |
| memcpy(buf, m_stderr_data.c_str(), buf_size); |
| m_stderr_data.erase(0, buf_size); |
| bytes_available = buf_size; |
| } else { |
| memcpy(buf, m_stderr_data.c_str(), bytes_available); |
| m_stderr_data.clear(); |
| } |
| } |
| return bytes_available; |
| } |
| |
| void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, |
| size_t src_len) { |
| Process *process = (Process *)baton; |
| process->AppendSTDOUT(static_cast<const char *>(src), src_len); |
| } |
| |
| class IOHandlerProcessSTDIO : public IOHandler { |
| public: |
| IOHandlerProcessSTDIO(Process *process, int write_fd) |
| : IOHandler(process->GetTarget().GetDebugger(), |
| IOHandler::Type::ProcessIO), |
| m_process(process), |
| m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), |
| m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { |
| m_pipe.CreateNew(false); |
| } |
| |
| ~IOHandlerProcessSTDIO() override = default; |
| |
| void SetIsRunning(bool running) { |
| std::lock_guard<std::mutex> guard(m_mutex); |
| SetIsDone(!running); |
| m_is_running = running; |
| } |
| |
| // Each IOHandler gets to run until it is done. It should read data from the |
| // "in" and place output into "out" and "err and return when done. |
| void Run() override { |
| if (!m_read_file.IsValid() || !m_write_file.IsValid() || |
| !m_pipe.CanRead() || !m_pipe.CanWrite()) { |
| SetIsDone(true); |
| return; |
| } |
| |
| SetIsDone(false); |
| const int read_fd = m_read_file.GetDescriptor(); |
| Terminal terminal(read_fd); |
| TerminalState terminal_state(terminal, false); |
| // FIXME: error handling? |
| llvm::consumeError(terminal.SetCanonical(false)); |
| llvm::consumeError(terminal.SetEcho(false)); |
| // FD_ZERO, FD_SET are not supported on windows |
| #ifndef _WIN32 |
| const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); |
| SetIsRunning(true); |
| while (true) { |
| { |
| std::lock_guard<std::mutex> guard(m_mutex); |
| if (GetIsDone()) |
| break; |
| } |
| |
| SelectHelper select_helper; |
| select_helper.FDSetRead(read_fd); |
| select_helper.FDSetRead(pipe_read_fd); |
| Status error = select_helper.Select(); |
| |
| if (error.Fail()) |
| break; |
| |
| char ch = 0; |
| size_t n; |
| if (select_helper.FDIsSetRead(read_fd)) { |
| n = 1; |
| if (m_read_file.Read(&ch, n).Success() && n == 1) { |
| if (m_write_file.Write(&ch, n).Fail() || n != 1) |
| break; |
| } else |
| break; |
| } |
| |
| if (select_helper.FDIsSetRead(pipe_read_fd)) { |
| size_t bytes_read; |
| // Consume the interrupt byte |
| Status error = m_pipe.Read(&ch, 1, bytes_read); |
| if (error.Success()) { |
| if (ch == 'q') |
| break; |
| if (ch == 'i') |
| if (StateIsRunningState(m_process->GetState())) |
| m_process->SendAsyncInterrupt(); |
| } |
| } |
| } |
| SetIsRunning(false); |
| #endif |
| } |
| |
| void Cancel() override { |
| std::lock_guard<std::mutex> guard(m_mutex); |
| SetIsDone(true); |
| // Only write to our pipe to cancel if we are in |
| // IOHandlerProcessSTDIO::Run(). We can end up with a python command that |
| // is being run from the command interpreter: |
| // |
| // (lldb) step_process_thousands_of_times |
| // |
| // In this case the command interpreter will be in the middle of handling |
| // the command and if the process pushes and pops the IOHandler thousands |
| // of times, we can end up writing to m_pipe without ever consuming the |
| // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up |
| // deadlocking when the pipe gets fed up and blocks until data is consumed. |
| if (m_is_running) { |
| char ch = 'q'; // Send 'q' for quit |
| size_t bytes_written = 0; |
| m_pipe.Write(&ch, 1, bytes_written); |
| } |
| } |
| |
| bool Interrupt() override { |
| // Do only things that are safe to do in an interrupt context (like in a |
| // SIGINT handler), like write 1 byte to a file descriptor. This will |
| // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte |
| // that was written to the pipe and then call |
| // m_process->SendAsyncInterrupt() from a much safer location in code. |
| if (m_active) { |
| char ch = 'i'; // Send 'i' for interrupt |
| size_t bytes_written = 0; |
| Status result = m_pipe.Write(&ch, 1, bytes_written); |
| return result.Success(); |
| } else { |
| // This IOHandler might be pushed on the stack, but not being run |
| // currently so do the right thing if we aren't actively watching for |
| // STDIN by sending the interrupt to the process. Otherwise the write to |
| // the pipe above would do nothing. This can happen when the command |
| // interpreter is running and gets a "expression ...". It will be on the |
| // IOHandler thread and sending the input is complete to the delegate |
| // which will cause the expression to run, which will push the process IO |
| // handler, but not run it. |
| |
| if (StateIsRunningState(m_process->GetState())) { |
| m_process->SendAsyncInterrupt(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void GotEOF() override {} |
| |
| protected: |
| Process *m_process; |
| NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB |
| NativeFile m_write_file; // Write to this file (usually the primary pty for |
| // getting io to debuggee) |
| Pipe m_pipe; |
| std::mutex m_mutex; |
| bool m_is_running = false; |
| }; |
| |
| void Process::SetSTDIOFileDescriptor(int fd) { |
| // First set up the Read Thread for reading/handling process I/O |
| m_stdio_communication.SetConnection( |
| std::make_unique<ConnectionFileDescriptor>(fd, true)); |
| if (m_stdio_communication.IsConnected()) { |
| m_stdio_communication.SetReadThreadBytesReceivedCallback( |
| STDIOReadThreadBytesReceived, this); |
| m_stdio_communication.StartReadThread(); |
| |
| // Now read thread is set up, set up input reader. |
| { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| if (!m_process_input_reader) |
| m_process_input_reader = |
| std::make_shared<IOHandlerProcessSTDIO>(this, fd); |
| } |
| } |
| } |
| |
| bool Process::ProcessIOHandlerIsActive() { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| IOHandlerSP io_handler_sp(m_process_input_reader); |
| if (io_handler_sp) |
| return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); |
| return false; |
| } |
| |
| bool Process::PushProcessIOHandler() { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| IOHandlerSP io_handler_sp(m_process_input_reader); |
| if (io_handler_sp) { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); |
| |
| io_handler_sp->SetIsDone(false); |
| // If we evaluate an utility function, then we don't cancel the current |
| // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the |
| // existing IOHandler that potentially provides the user interface (e.g. |
| // the IOHandler for Editline). |
| bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); |
| GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, |
| cancel_top_handler); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Process::PopProcessIOHandler() { |
| std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
| IOHandlerSP io_handler_sp(m_process_input_reader); |
| if (io_handler_sp) |
| return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); |
| return false; |
| } |
| |
| // The process needs to know about installed plug-ins |
| void Process::SettingsInitialize() { Thread::SettingsInitialize(); } |
| |
| void Process::SettingsTerminate() { Thread::SettingsTerminate(); } |
| |
| namespace { |
| // RestorePlanState is used to record the "is private", "is controlling" and |
| // "okay |
| // to discard" fields of the plan we are running, and reset it on Clean or on |
| // destruction. It will only reset the state once, so you can call Clean and |
| // then monkey with the state and it won't get reset on you again. |
| |
| class RestorePlanState { |
| public: |
| RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) |
| : m_thread_plan_sp(thread_plan_sp) { |
| if (m_thread_plan_sp) { |
| m_private = m_thread_plan_sp->GetPrivate(); |
| m_is_controlling = m_thread_plan_sp->IsControllingPlan(); |
| m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); |
| } |
| } |
| |
| ~RestorePlanState() { Clean(); } |
| |
| void Clean() { |
| if (!m_already_reset && m_thread_plan_sp) { |
| m_already_reset = true; |
| m_thread_plan_sp->SetPrivate(m_private); |
| m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); |
| m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); |
| } |
| } |
| |
| private: |
| lldb::ThreadPlanSP m_thread_plan_sp; |
| bool m_already_reset = false; |
| bool m_private = false; |
| bool m_is_controlling = false; |
| bool m_okay_to_discard = false; |
| }; |
| } // anonymous namespace |
| |
| static microseconds |
| GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { |
| const milliseconds default_one_thread_timeout(250); |
| |
| // If the overall wait is forever, then we don't need to worry about it. |
| if (!options.GetTimeout()) { |
| return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() |
| : default_one_thread_timeout; |
| } |
| |
| // If the one thread timeout is set, use it. |
| if (options.GetOneThreadTimeout()) |
| return *options.GetOneThreadTimeout(); |
| |
| // Otherwise use half the total timeout, bounded by the |
| // default_one_thread_timeout. |
| return std::min<microseconds>(default_one_thread_timeout, |
| *options.GetTimeout() / 2); |
| } |
| |
| static Timeout<std::micro> |
| GetExpressionTimeout(const EvaluateExpressionOptions &options, |
| bool before_first_timeout) { |
| // If we are going to run all threads the whole time, or if we are only going |
| // to run one thread, we can just return the overall timeout. |
| if (!options.GetStopOthers() || !options.GetTryAllThreads()) |
| return options.GetTimeout(); |
| |
| if (before_first_timeout) |
| return GetOneThreadExpressionTimeout(options); |
| |
| if (!options.GetTimeout()) |
| return std::nullopt; |
| else |
| return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); |
| } |
| |
| static std::optional<ExpressionResults> |
| HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, |
| RestorePlanState &restorer, const EventSP &event_sp, |
| EventSP &event_to_broadcast_sp, |
| const EvaluateExpressionOptions &options, |
| bool handle_interrupts) { |
| Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); |
| |
| ThreadSP thread_sp = thread_plan_sp->GetTarget() |
| .GetProcessSP() |
| ->GetThreadList() |
| .FindThreadByID(thread_id); |
| if (!thread_sp) { |
| LLDB_LOG(log, |
| "The thread on which we were running the " |
| "expression: tid = {0}, exited while " |
| "the expression was running.", |
| thread_id); |
| return eExpressionThreadVanished; |
| } |
| |
| ThreadPlanSP plan = thread_sp->GetCompletedPlan(); |
| if (plan == thread_plan_sp && plan->PlanSucceeded()) { |
| LLDB_LOG(log, "execution completed successfully"); |
| |
| // Restore the plan state so it will get reported as intended when we are |
| // done. |
| restorer.Clean(); |
| return eExpressionCompleted; |
| } |
| |
| StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
| if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && |
| stop_info_sp->ShouldNotify(event_sp.get())) { |
| LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); |
| if (!options.DoesIgnoreBreakpoints()) { |
| // Restore the plan state and then force Private to false. We are going |
| // to stop because of this plan so we need it to become a public plan or |
| // it won't report correctly when we continue to its termination later |
| // on. |
| restorer.Clean(); |
| thread_plan_sp->SetPrivate(false); |
| event_to_broadcast_sp = event_sp; |
| } |
| return eExpressionHitBreakpoint; |
| } |
| |
| if (!handle_interrupts && |
| Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) |
| return std::nullopt; |
| |
| LLDB_LOG(log, "thread plan did not successfully complete"); |
| if (!options.DoesUnwindOnError()) |
| event_to_broadcast_sp = event_sp; |
| return eExpressionInterrupted; |
| } |
| |
| ExpressionResults |
| Process::RunThreadPlan(ExecutionContext &exe_ctx, |
| lldb::ThreadPlanSP &thread_plan_sp, |
| const EvaluateExpressionOptions &options, |
| DiagnosticManager &diagnostic_manager) { |
| ExpressionResults return_value = eExpressionSetupError; |
| |
| std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); |
| |
| if (!thread_plan_sp) { |
| diagnostic_manager.PutString( |
| lldb::eSeverityError, "RunThreadPlan called with empty thread plan."); |
| return eExpressionSetupError; |
| } |
| |
| if (!thread_plan_sp->ValidatePlan(nullptr)) { |
| diagnostic_manager.PutString( |
| lldb::eSeverityError, |
| "RunThreadPlan called with an invalid thread plan."); |
| return eExpressionSetupError; |
| } |
| |
| if (exe_ctx.GetProcessPtr() != this) { |
| diagnostic_manager.PutString(lldb::eSeverityError, |
| "RunThreadPlan called on wrong process."); |
| return eExpressionSetupError; |
| } |
| |
| Thread *thread = exe_ctx.GetThreadPtr(); |
| if (thread == nullptr) { |
| diagnostic_manager.PutString(lldb::eSeverityError, |
| "RunThreadPlan called with invalid thread."); |
| return eExpressionSetupError; |
| } |
| |
| // Record the thread's id so we can tell when a thread we were using |
| // to run the expression exits during the expression evaluation. |
| lldb::tid_t expr_thread_id = thread->GetID(); |
| |
| // We need to change some of the thread plan attributes for the thread plan |
| // runner. This will restore them when we are done: |
| |
| RestorePlanState thread_plan_restorer(thread_plan_sp); |
| |
| // We rely on the thread plan we are running returning "PlanCompleted" if |
| // when it successfully completes. For that to be true the plan can't be |
| // private - since private plans suppress themselves in the GetCompletedPlan |
| // call. |
| |
| thread_plan_sp->SetPrivate(false); |
| |
| // The plans run with RunThreadPlan also need to be terminal controlling plans |
| // or when they are done we will end up asking the plan above us whether we |
| // should stop, which may give the wrong answer. |
| |
| thread_plan_sp->SetIsControllingPlan(true); |
| thread_plan_sp->SetOkayToDiscard(false); |
| |
| // If we are running some utility expression for LLDB, we now have to mark |
| // this in the ProcesModID of this process. This RAII takes care of marking |
| // and reverting the mark it once we are done running the expression. |
| UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); |
| |
| if (m_private_state.GetValue() != eStateStopped) { |
| diagnostic_manager.PutString( |
| lldb::eSeverityError, |
| "RunThreadPlan called while the private state was not stopped."); |
| return eExpressionSetupError; |
| } |
| |
| // Save the thread & frame from the exe_ctx for restoration after we run |
| const uint32_t thread_idx_id = thread->GetIndexID(); |
| StackFrameSP selected_frame_sp = |
| thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); |
| if (!selected_frame_sp) { |
| thread->SetSelectedFrame(nullptr); |
| selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); |
| if (!selected_frame_sp) { |
| diagnostic_manager.Printf( |
| lldb::eSeverityError, |
| "RunThreadPlan called without a selected frame on thread %d", |
| thread_idx_id); |
| return eExpressionSetupError; |
| } |
| } |
| |
| // Make sure the timeout values make sense. The one thread timeout needs to |
| // be smaller than the overall timeout. |
| if (options.GetOneThreadTimeout() && options.GetTimeout() && |
| *options.GetTimeout() < *options.GetOneThreadTimeout()) { |
| diagnostic_manager.PutString(lldb::eSeverityError, |
| "RunThreadPlan called with one thread " |
| "timeout greater than total timeout"); |
| return eExpressionSetupError; |
| } |
| |
| StackID ctx_frame_id = selected_frame_sp->GetStackID(); |
| |
| // N.B. Running the target may unset the currently selected thread and frame. |
| // We don't want to do that either, so we should arrange to reset them as |
| // well. |
| |
| lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); |
| |
| uint32_t selected_tid; |
| StackID selected_stack_id; |
| if (selected_thread_sp) { |
| selected_tid = selected_thread_sp->GetIndexID(); |
| selected_stack_id = |
| selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame) |
| ->GetStackID(); |
| } else { |
| selected_tid = LLDB_INVALID_THREAD_ID; |
| } |
| |
| HostThread backup_private_state_thread; |
| lldb::StateType old_state = eStateInvalid; |
| lldb::ThreadPlanSP stopper_base_plan_sp; |
| |
| Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); |
| if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { |
| // Yikes, we are running on the private state thread! So we can't wait for |
| // public events on this thread, since we are the thread that is generating |
| // public events. The simplest thing to do is to spin up a temporary thread |
| // to handle private state thread events while we are fielding public |
| // events here. |
| LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " |
| "another state thread to handle the events."); |
| |
| backup_private_state_thread = m_private_state_thread; |
| |
| // One other bit of business: we want to run just this thread plan and |
| // anything it pushes, and then stop, returning control here. But in the |
| // normal course of things, the plan above us on the stack would be given a |
| // shot at the stop event before deciding to stop, and we don't want that. |
| // So we insert a "stopper" base plan on the stack before the plan we want |
| // to run. Since base plans always stop and return control to the user, |
| // that will do just what we want. |
| stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); |
| thread->QueueThreadPlan(stopper_base_plan_sp, false); |
| // Have to make sure our public state is stopped, since otherwise the |
| // reporting logic below doesn't work correctly. |
| old_state = m_public_state.GetValue(); |
| m_public_state.SetValueNoLock(eStateStopped); |
| |
| // Now spin up the private state thread: |
| StartPrivateStateThread(true); |
| } |
| |
| thread->QueueThreadPlan( |
| thread_plan_sp, false); // This used to pass "true" does that make sense? |
| |
| if (options.GetDebug()) { |
| // In this case, we aren't actually going to run, we just want to stop |
| // right away. Flush this thread so we will refetch the stacks and show the |
| // correct backtrace. |
| // FIXME: To make this prettier we should invent some stop reason for this, |
| // but that |
| // is only cosmetic, and this functionality is only of use to lldb |
| // developers who can live with not pretty... |
| thread->Flush(); |
| return eExpressionStoppedForDebug; |
| } |
| |
| ListenerSP listener_sp( |
| Listener::MakeListener("lldb.process.listener.run-thread-plan")); |
| |
| lldb::EventSP event_to_broadcast_sp; |
| |
| { |
| // This process event hijacker Hijacks the Public events and its destructor |
| // makes sure that the process events get restored on exit to the function. |
| // |
| // If the event needs to propagate beyond the hijacker (e.g., the process |
| // exits during execution), then the event is put into |
| // event_to_broadcast_sp for rebroadcasting. |
| |
| ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); |
| |
| if (log) { |
| StreamString s; |
| thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 |
| " to run thread plan \"%s\".", |
| thread_idx_id, expr_thread_id, s.GetData()); |
| } |
| |
| bool got_event; |
| lldb::EventSP event_sp; |
| lldb::StateType stop_state = lldb::eStateInvalid; |
| |
| bool before_first_timeout = true; // This is set to false the first time |
| // that we have to halt the target. |
| bool do_resume = true; |
| bool handle_running_event = true; |
| |
| // This is just for accounting: |
| uint32_t num_resumes = 0; |
| |
| // If we are going to run all threads the whole time, or if we are only |
| // going to run one thread, then we don't need the first timeout. So we |
| // pretend we are after the first timeout already. |
| if (!options.GetStopOthers() || !options.GetTryAllThreads()) |
| before_first_timeout = false; |
| |
| LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", |
| options.GetStopOthers(), options.GetTryAllThreads(), |
| before_first_timeout); |
| |
| // This isn't going to work if there are unfetched events on the queue. Are |
| // there cases where we might want to run the remaining events here, and |
| // then try to call the function? That's probably being too tricky for our |
| // own good. |
| |
| Event *other_events = listener_sp->PeekAtNextEvent(); |
| if (other_events != nullptr) { |
| diagnostic_manager.PutString( |
| lldb::eSeverityError, |
| "RunThreadPlan called with pending events on the queue."); |
| return eExpressionSetupError; |
| } |
| |
| // We also need to make sure that the next event is delivered. We might be |
| // calling a function as part of a thread plan, in which case the last |
| // delivered event could be the running event, and we don't want event |
| // coalescing to cause us to lose OUR running event... |
| ForceNextEventDelivery(); |
| |
| // This while loop must exit out the bottom, there's cleanup that we need to do |
| // when we are done. So don't call return anywhere within it. |
| |
| #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT |
| // It's pretty much impossible to write test cases for things like: One |
| // thread timeout expires, I go to halt, but the process already stopped on |
| // the function call stop breakpoint. Turning on this define will make us |
| // not fetch the first event till after the halt. So if you run a quick |
| // function, it will have completed, and the completion event will be |
| // waiting, when you interrupt for halt. The expression evaluation should |
| // still succeed. |
| bool miss_first_event = true; |
| #endif |
| while (true) { |
| // We usually want to resume the process if we get to the top of the |
| // loop. The only exception is if we get two running events with no |
| // intervening stop, which can happen, we will just wait for then next |
| // stop event. |
| LLDB_LOGF(log, |
| "Top of while loop: do_resume: %i handle_running_event: %i " |
| "before_first_timeout: %i.", |
| do_resume, handle_running_event, before_first_timeout); |
| |
| if (do_resume || handle_running_event) { |
| // Do the initial resume and wait for the running event before going |
| // further. |
| |
| if (do_resume) { |
| num_resumes++; |
| Status resume_error = PrivateResume(); |
| if (!resume_error.Success()) { |
| diagnostic_manager.Printf( |
| lldb::eSeverityError, |
| "couldn't resume inferior the %d time: \"%s\".", num_resumes, |
| resume_error.AsCString()); |
| return_value = eExpressionSetupError; |
| break; |
| } |
| } |
| |
| got_event = |
| listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); |
| if (!got_event) { |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): didn't get any event after " |
| "resume %" PRIu32 ", exiting.", |
| num_resumes); |
| |
| diagnostic_manager.Printf(lldb::eSeverityError, |
| "didn't get any event after resume %" PRIu32 |
| ", exiting.", |
| num_resumes); |
| return_value = eExpressionSetupError; |
| break; |
| } |
| |
| stop_state = |
| Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| |
| if (stop_state != eStateRunning) { |
| bool restarted = false; |
| |
| if (stop_state == eStateStopped) { |
| restarted = Process::ProcessEventData::GetRestartedFromEvent( |
| event_sp.get()); |
| LLDB_LOGF( |
| log, |
| "Process::RunThreadPlan(): didn't get running event after " |
| "resume %d, got %s instead (restarted: %i, do_resume: %i, " |
| "handle_running_event: %i).", |
| num_resumes, StateAsCString(stop_state), restarted, do_resume, |
| handle_running_event); |
| } |
| |
| if (restarted) { |
| // This is probably an overabundance of caution, I don't think I |
| // should ever get a stopped & restarted event here. But if I do, |
| // the best thing is to Halt and then get out of here. |
| const bool clear_thread_plans = false; |
| const bool use_run_lock = false; |
| Halt(clear_thread_plans, use_run_lock); |
| } |
| |
| diagnostic_manager.Printf( |
| lldb::eSeverityError, |
| "didn't get running event after initial resume, got %s instead.", |
| StateAsCString(stop_state)); |
| return_value = eExpressionSetupError; |
| break; |
| } |
| |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): resuming succeeded."); |
| // We need to call the function synchronously, so spin waiting for it |
| // to return. If we get interrupted while executing, we're going to |
| // lose our context, and won't be able to gather the result at this |
| // point. We set the timeout AFTER the resume, since the resume takes |
| // some time and we don't want to charge that to the timeout. |
| } else { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): waiting for next event."); |
| } |
| |
| do_resume = true; |
| handle_running_event = true; |
| |
| // Now wait for the process to stop again: |
| event_sp.reset(); |
| |
| Timeout<std::micro> timeout = |
| GetExpressionTimeout(options, before_first_timeout); |
| if (log) { |
| if (timeout) { |
| auto now = system_clock::now(); |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): about to wait - now is %s - " |
| "endpoint is %s", |
| llvm::to_string(now).c_str(), |
| llvm::to_string(now + *timeout).c_str()); |
| } else { |
| LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); |
| } |
| } |
| |
| #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT |
| // See comment above... |
| if (miss_first_event) { |
| std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
| miss_first_event = false; |
| got_event = false; |
| } else |
| #endif |
| got_event = listener_sp->GetEvent(event_sp, timeout); |
| |
| if (got_event) { |
| if (event_sp) { |
| bool keep_going = false; |
| if (event_sp->GetType() == eBroadcastBitInterrupt) { |
| const bool clear_thread_plans = false; |
| const bool use_run_lock = false; |
| Halt(clear_thread_plans, use_run_lock); |
| return_value = eExpressionInterrupted; |
| diagnostic_manager.PutString(lldb::eSeverityInfo, |
| "execution halted by user interrupt."); |
| LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " |
| "eBroadcastBitInterrupted, exiting."); |
| break; |
| } else { |
| stop_state = |
| Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): in while loop, got event: %s.", |
| StateAsCString(stop_state)); |
| |
| switch (stop_state) { |
| case lldb::eStateStopped: { |
| if (Process::ProcessEventData::GetRestartedFromEvent( |
| event_sp.get())) { |
| // If we were restarted, we just need to go back up to fetch |
| // another event. |
| LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " |
| "restart, so we'll continue waiting."); |
| keep_going = true; |
| do_resume = false; |
| handle_running_event = true; |
| } else { |
| const bool handle_interrupts = true; |
| return_value = *HandleStoppedEvent( |
| expr_thread_id, thread_plan_sp, thread_plan_restorer, |
| event_sp, event_to_broadcast_sp, options, |
| handle_interrupts); |
| if (return_value == eExpressionThreadVanished) |
| keep_going = false; |
| } |
| } break; |
| |
| case lldb::eStateRunning: |
| // This shouldn't really happen, but sometimes we do get two |
| // running events without an intervening stop, and in that case |
| // we should just go back to waiting for the stop. |
| do_resume = false; |
| keep_going = true; |
| handle_running_event = false; |
| break; |
| |
| default: |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): execution stopped with " |
| "unexpected state: %s.", |
| StateAsCString(stop_state)); |
| |
| if (stop_state == eStateExited) |
| event_to_broadcast_sp = event_sp; |
| |
| diagnostic_manager.PutString( |
| lldb::eSeverityError, |
| "execution stopped with unexpected state."); |
| return_value = eExpressionInterrupted; |
| break; |
| } |
| } |
| |
| if (keep_going) |
| continue; |
| else |
| break; |
| } else { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): got_event was true, but " |
| "the event pointer was null. How odd..."); |
| return_value = eExpressionInterrupted; |
| break; |
| } |
| } else { |
| // If we didn't get an event that means we've timed out... We will |
| // interrupt the process here. Depending on what we were asked to do |
| // we will either exit, or try with all threads running for the same |
| // timeout. |
| |
| if (log) { |
| if (options.GetTryAllThreads()) { |
| if (before_first_timeout) { |
| LLDB_LOG(log, |
| "Running function with one thread timeout timed out."); |
| } else |
| LLDB_LOG(log, "Restarting function with all threads enabled and " |
| "timeout: {0} timed out, abandoning execution.", |
| timeout); |
| } else |
| LLDB_LOG(log, "Running function with timeout: {0} timed out, " |
| "abandoning execution.", |
| timeout); |
| } |
| |
| // It is possible that between the time we issued the Halt, and we get |
| // around to calling Halt the target could have stopped. That's fine, |
| // Halt will figure that out and send the appropriate Stopped event. |
| // BUT it is also possible that we stopped & restarted (e.g. hit a |
| // signal with "stop" set to false.) In |
| // that case, we'll get the stopped & restarted event, and we should go |
| // back to waiting for the Halt's stopped event. That's what this |
| // while loop does. |
| |
| bool back_to_top = true; |
| uint32_t try_halt_again = 0; |
| bool do_halt = true; |
| const uint32_t num_retries = 5; |
| while (try_halt_again < num_retries) { |
| Status halt_error; |
| if (do_halt) { |
| LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); |
| const bool clear_thread_plans = false; |
| const bool use_run_lock = false; |
| Halt(clear_thread_plans, use_run_lock); |
| } |
| if (halt_error.Success()) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): Halt succeeded."); |
| |
| got_event = |
| listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); |
| |
| if (got_event) { |
| stop_state = |
| Process::ProcessEventData::GetStateFromEvent(event_sp.get()); |
| if (log) { |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): Stopped with event: %s", |
| StateAsCString(stop_state)); |
| if (stop_state == lldb::eStateStopped && |
| Process::ProcessEventData::GetInterruptedFromEvent( |
| event_sp.get())) |
| log->PutCString(" Event was the Halt interruption event."); |
| } |
| |
| if (stop_state == lldb::eStateStopped) { |
| if (Process::ProcessEventData::GetRestartedFromEvent( |
| event_sp.get())) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): Went to halt " |
| "but got a restarted event, there must be " |
| "an un-restarted stopped event so try " |
| "again... " |
| "Exiting wait loop."); |
| try_halt_again++; |
| do_halt = false; |
| continue; |
| } |
| |
| // Between the time we initiated the Halt and the time we |
| // delivered it, the process could have already finished its |
| // job. Check that here: |
| const bool handle_interrupts = false; |
| if (auto result = HandleStoppedEvent( |
| expr_thread_id, thread_plan_sp, thread_plan_restorer, |
| event_sp, event_to_broadcast_sp, options, |
| handle_interrupts)) { |
| return_value = *result; |
| back_to_top = false; |
| break; |
| } |
| |
| if (!options.GetTryAllThreads()) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): try_all_threads " |
| "was false, we stopped so now we're " |
| "quitting."); |
| return_value = eExpressionInterrupted; |
| back_to_top = false; |
| break; |
| } |
| |
| if (before_first_timeout) { |
| // Set all the other threads to run, and return to the top of |
| // the loop, which will continue; |
| before_first_timeout = false; |
| thread_plan_sp->SetStopOthers(false); |
| if (log) |
| log->PutCString( |
| "Process::RunThreadPlan(): about to resume."); |
| |
| back_to_top = true; |
| break; |
| } else { |
| // Running all threads failed, so return Interrupted. |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): running all " |
| "threads timed out."); |
| return_value = eExpressionInterrupted; |
| back_to_top = false; |
| break; |
| } |
| } |
| } else { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): halt said it " |
| "succeeded, but I got no event. " |
| "I'm getting out of here passing Interrupted."); |
| return_value = eExpressionInterrupted; |
| back_to_top = false; |
| break; |
| } |
| } else { |
| try_halt_again++; |
| continue; |
| } |
| } |
| |
| if (!back_to_top || try_halt_again > num_retries) |
| break; |
| else |
| continue; |
| } |
| } // END WAIT LOOP |
| |
| // If we had to start up a temporary private state thread to run this |
| // thread plan, shut it down now. |
| if (backup_private_state_thread.IsJoinable()) { |
| StopPrivateStateThread(); |
| Status error; |
| m_private_state_thread = backup_private_state_thread; |
| if (stopper_base_plan_sp) { |
| thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); |
| } |
| if (old_state != eStateInvalid) |
| m_public_state.SetValueNoLock(old_state); |
| } |
| |
| // If our thread went away on us, we need to get out of here without |
| // doing any more work. We don't have to clean up the thread plan, that |
| // will have happened when the Thread was destroyed. |
| if (return_value == eExpressionThreadVanished) { |
| return return_value; |
| } |
| |
| if (return_value != eExpressionCompleted && log) { |
| // Print a backtrace into the log so we can figure out where we are: |
| StreamString s; |
| s.PutCString("Thread state after unsuccessful completion: \n"); |
| thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX, |
| /*show_hidden*/ true); |
| log->PutString(s.GetString()); |
| } |
| // Restore the thread state if we are going to discard the plan execution. |
| // There are three cases where this could happen: 1) The execution |
| // successfully completed 2) We hit a breakpoint, and ignore_breakpoints |
| // was true 3) We got some other error, and discard_on_error was true |
| bool should_unwind = (return_value == eExpressionInterrupted && |
| options.DoesUnwindOnError()) || |
| (return_value == eExpressionHitBreakpoint && |
| options.DoesIgnoreBreakpoints()); |
| |
| if (return_value == eExpressionCompleted || should_unwind) { |
| thread_plan_sp->RestoreThreadState(); |
| } |
| |
| // Now do some processing on the results of the run: |
| if (return_value == eExpressionInterrupted || |
| return_value == eExpressionHitBreakpoint) { |
| if (log) { |
| StreamString s; |
| if (event_sp) |
| event_sp->Dump(&s); |
| else { |
| log->PutCString("Process::RunThreadPlan(): Stop event that " |
| "interrupted us is NULL."); |
| } |
| |
| StreamString ts; |
| |
| const char *event_explanation = nullptr; |
| |
| do { |
| if (!event_sp) { |
| event_explanation = "<no event>"; |
| break; |
| } else if (event_sp->GetType() == eBroadcastBitInterrupt) { |
| event_explanation = "<user interrupt>"; |
| break; |
| } else { |
| const Process::ProcessEventData *event_data = |
| Process::ProcessEventData::GetEventDataFromEvent( |
| event_sp.get()); |
| |
| if (!event_data) { |
| event_explanation = "<no event data>"; |
| break; |
| } |
| |
| Process *process = event_data->GetProcessSP().get(); |
| |
| if (!process) { |
| event_explanation = "<no process>"; |
| break; |
| } |
| |
| ThreadList &thread_list = process->GetThreadList(); |
| |
| uint32_t num_threads = thread_list.GetSize(); |
| uint32_t thread_index; |
| |
| ts.Printf("<%u threads> ", num_threads); |
| |
| for (thread_index = 0; thread_index < num_threads; ++thread_index) { |
| Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); |
| |
| if (!thread) { |
| ts.Printf("<?> "); |
| continue; |
| } |
| |
| ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); |
| RegisterContext *register_context = |
| thread->GetRegisterContext().get(); |
| |
| if (register_context) |
| ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); |
| else |
| ts.Printf("[ip unknown] "); |
| |
| // Show the private stop info here, the public stop info will be |
| // from the last natural stop. |
| lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); |
| if (stop_info_sp) { |
| const char *stop_desc = stop_info_sp->GetDescription(); |
| if (stop_desc) |
| ts.PutCString(stop_desc); |
| } |
| ts.Printf(">"); |
| } |
| |
| event_explanation = ts.GetData(); |
| } |
| } while (false); |
| |
| if (event_explanation) |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan(): execution interrupted: %s %s", |
| s.GetData(), event_explanation); |
| else |
| LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", |
| s.GetData()); |
| } |
| |
| if (should_unwind) { |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan: ExecutionInterrupted - " |
| "discarding thread plans up to %p.", |
| static_cast<void *>(thread_plan_sp.get())); |
| thread->DiscardThreadPlansUpToPlan(thread_plan_sp); |
| } else { |
| LLDB_LOGF(log, |
| "Process::RunThreadPlan: ExecutionInterrupted - for " |
| "plan: %p not discarding.", |
| static_cast<void *>(thread_plan_sp.get())); |
| } |
| } else if (return_value == eExpressionSetupError) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): execution set up error."); |
| |
| if (options.DoesUnwindOnError()) { |
| thread->DiscardThreadPlansUpToPlan(thread_plan_sp); |
| } |
| } else { |
| if (thread->IsThreadPlanDone(thread_plan_sp.get())) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): thread plan is done"); |
| return_value = eExpressionCompleted; |
| } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { |
| if (log) |
| log->PutCString( |
| "Process::RunThreadPlan(): thread plan was discarded"); |
| return_value = eExpressionDiscarded; |
| } else { |
| if (log) |
| log->PutCString( |
| "Process::RunThreadPlan(): thread plan stopped in mid course"); |
| if (options.DoesUnwindOnError() && thread_plan_sp) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): discarding thread plan " |
| "'cause unwind_on_error is set."); |
| thread->DiscardThreadPlansUpToPlan(thread_plan_sp); |
| } |
| } |
| } |
| |
| // Thread we ran the function in may have gone away because we ran the |
| // target Check that it's still there, and if it is put it back in the |
| // context. Also restore the frame in the context if it is still present. |
| thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); |
| if (thread) { |
| exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); |
| } |
| |
| // Also restore the current process'es selected frame & thread, since this |
| // function calling may be done behind the user's back. |
| |
| if (selected_tid != LLDB_INVALID_THREAD_ID) { |
| if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && |
| selected_stack_id.IsValid()) { |
| // We were able to restore the selected thread, now restore the frame: |
| std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); |
| StackFrameSP old_frame_sp = |
| GetThreadList().GetSelectedThread()->GetFrameWithStackID( |
| selected_stack_id); |
| if (old_frame_sp) |
| GetThreadList().GetSelectedThread()->SetSelectedFrame( |
| old_frame_sp.get()); |
| } |
| } |
| } |
| |
| // If the process exited during the run of the thread plan, notify everyone. |
| |
| if (event_to_broadcast_sp) { |
| if (log) |
| log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); |
| BroadcastEvent(event_to_broadcast_sp); |
| } |
| |
| return return_value; |
| } |
| |
| void Process::GetStatus(Stream &strm) { |
| const StateType state = GetState(); |
| if (StateIsStoppedState(state, false)) { |
| if (state == eStateExited) { |
| int exit_status = GetExitStatus(); |
| const char *exit_description = GetExitDescription(); |
| strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", |
| GetID(), exit_status, exit_status, |
| exit_description ? exit_description : ""); |
| } else { |
| if (state == eStateConnected) |
| strm.Printf("Connected to remote target.\n"); |
| else |
| strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); |
| } |
| } else { |
| strm.Printf("Process %" PRIu64 " is running.\n", GetID()); |
| } |
| } |
| |
| size_t Process::GetThreadStatus(Stream &strm, |
| bool only_threads_with_stop_reason, |
| uint32_t start_frame, uint32_t num_frames, |
| uint32_t num_frames_with_source, |
| bool stop_format) { |
| size_t num_thread_infos_dumped = 0; |
| |
| // You can't hold the thread list lock while calling Thread::GetStatus. That |
| // very well might run code (e.g. if we need it to get return values or |
| // arguments.) For that to work the process has to be able to acquire it. |
| // So instead copy the thread ID's, and look them up one by one: |
| |
| uint32_t num_threads; |
| std::vector<lldb::tid_t> thread_id_array; |
| // Scope for thread list locker; |
| { |
| std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); |
| ThreadList &curr_thread_list = GetThreadList(); |
| num_threads = curr_thread_list.GetSize(); |
| uint32_t idx; |
| thread_id_array.resize(num_threads); |
| for (idx = 0; idx < num_threads; ++idx) |
| thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); |
| } |
| |
| for (uint32_t i = 0; i < num_threads; i++) { |
| ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); |
| if (thread_sp) { |
| if (only_threads_with_stop_reason) { |
| StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
| if (!stop_info_sp || !stop_info_sp->IsValid()) |
| continue; |
| } |
| thread_sp->GetStatus(strm, start_frame, num_frames, |
| num_frames_with_source, stop_format, |
| /*show_hidden*/ num_frames <= 1); |
| ++num_thread_infos_dumped; |
| } else { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 |
| " vanished while running Thread::GetStatus."); |
| } |
| } |
| return num_thread_infos_dumped; |
| } |
| |
| void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { |
| m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); |
| } |
| |
| bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { |
| return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), |
| region.GetByteSize()); |
| } |
| |
| void Process::AddPreResumeAction(PreResumeActionCallback callback, |
| void *baton) { |
| m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); |
| } |
| |
| bool Process::RunPreResumeActions() { |
| bool result = true; |
| while (!m_pre_resume_actions.empty()) { |
| struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); |
| m_pre_resume_actions.pop_back(); |
| bool this_result = action.callback(action.baton); |
| if (result) |
| result = this_result; |
| } |
| return result; |
| } |
| |
| void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } |
| |
| void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) |
| { |
| PreResumeCallbackAndBaton element(callback, baton); |
| auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); |
| if (found_iter != m_pre_resume_actions.end()) |
| { |
| m_pre_resume_actions.erase(found_iter); |
| } |
| } |
| |
| ProcessRunLock &Process::GetRunLock() { |
| if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) |
| return m_private_run_lock; |
| else |
| return m_public_run_lock; |
| } |
| |
| bool Process::CurrentThreadIsPrivateStateThread() |
| { |
| return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); |
| } |
| |
| |
| void Process::Flush() { |
| m_thread_list.Flush(); |
| m_extended_thread_list.Flush(); |
| m_extended_thread_stop_id = 0; |
| m_queue_list.Clear(); |
| m_queue_list_stop_id = 0; |
| } |
| |
| lldb::addr_t Process::GetCodeAddressMask() { |
| if (uint32_t num_bits_setting = GetVirtualAddressableBits()) |
| return AddressableBits::AddressableBitToMask(num_bits_setting); |
| |
| return m_code_address_mask; |
| } |
| |
| lldb::addr_t Process::GetDataAddressMask() { |
| if (uint32_t num_bits_setting = GetVirtualAddressableBits()) |
| return AddressableBits::AddressableBitToMask(num_bits_setting); |
| |
| return m_data_address_mask; |
| } |
| |
| lldb::addr_t Process::GetHighmemCodeAddressMask() { |
| if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) |
| return AddressableBits::AddressableBitToMask(num_bits_setting); |
| |
| if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) |
| return m_highmem_code_address_mask; |
| return GetCodeAddressMask(); |
| } |
| |
| lldb::addr_t Process::GetHighmemDataAddressMask() { |
| if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) |
| return AddressableBits::AddressableBitToMask(num_bits_setting); |
| |
| if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) |
| return m_highmem_data_address_mask; |
| return GetDataAddressMask(); |
| } |
| |
| void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { |
| LLDB_LOG(GetLog(LLDBLog::Process), |
| "Setting Process code address mask to {0:x}", code_address_mask); |
| m_code_address_mask = code_address_mask; |
| } |
| |
| void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { |
| LLDB_LOG(GetLog(LLDBLog::Process), |
| "Setting Process data address mask to {0:x}", data_address_mask); |
| m_data_address_mask = data_address_mask; |
| } |
| |
| void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { |
| LLDB_LOG(GetLog(LLDBLog::Process), |
| "Setting Process highmem code address mask to {0:x}", |
| code_address_mask); |
| m_highmem_code_address_mask = code_address_mask; |
| } |
| |
| void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { |
| LLDB_LOG(GetLog(LLDBLog::Process), |
| "Setting Process highmem data address mask to {0:x}", |
| data_address_mask); |
| m_highmem_data_address_mask = data_address_mask; |
| } |
| |
| addr_t Process::FixCodeAddress(addr_t addr) { |
| if (ABISP abi_sp = GetABI()) |
| addr = abi_sp->FixCodeAddress(addr); |
| return addr; |
| } |
| |
| addr_t Process::FixDataAddress(addr_t addr) { |
| if (ABISP abi_sp = GetABI()) |
| addr = abi_sp->FixDataAddress(addr); |
| return addr; |
| } |
| |
| addr_t Process::FixAnyAddress(addr_t addr) { |
| if (ABISP abi_sp = GetABI()) |
| addr = abi_sp->FixAnyAddress(addr); |
| return addr; |
| } |
| |
| void Process::DidExec() { |
| Log *log = GetLog(LLDBLog::Process); |
| LLDB_LOGF(log, "Process::%s()", __FUNCTION__); |
| |
| Target &target = GetTarget(); |
| target.CleanupProcess(); |
| target.ClearModules(false); |
| m_dynamic_checkers_up.reset(); |
| m_abi_sp.reset(); |
| m_system_runtime_up.reset(); |
| m_os_up.reset(); |
| m_dyld_up.reset(); |
| m_jit_loaders_up.reset(); |
| m_image_tokens.clear(); |
| // After an exec, the inferior is a new process and these memory regions are |
| // no longer allocated. |
| m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); |
| { |
| std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
| m_language_runtimes.clear(); |
| } |
| m_instrumentation_runtimes.clear(); |
| m_thread_list.DiscardThreadPlans(); |
| m_memory_cache.Clear(true); |
| DoDidExec(); |
| CompleteAttach(); |
| // Flush the process (threads and all stack frames) after running |
| // CompleteAttach() in case the dynamic loader loaded things in new |
| // locations. |
| Flush(); |
| |
| // After we figure out what was loaded/unloaded in CompleteAttach, we need to |
| // let the target know so it can do any cleanup it needs to. |
| target.DidExec(); |
| } |
| |
| addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { |
| if (address == nullptr) { |
| error = Status::FromErrorString("Invalid address argument"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| addr_t function_addr = LLDB_INVALID_ADDRESS; |
| |
| addr_t addr = address->GetLoadAddress(&GetTarget()); |
| std::map<addr_t, addr_t>::const_iterator iter = |
| m_resolved_indirect_addresses.find(addr); |
| if (iter != m_resolved_indirect_addresses.end()) { |
| function_addr = (*iter).second; |
| } else { |
| if (!CallVoidArgVoidPtrReturn(address, function_addr)) { |
| Symbol *symbol = address->CalculateSymbolContextSymbol(); |
| error = Status::FromErrorStringWithFormat( |
| "Unable to call resolver for indirect function %s", |
| symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); |
| function_addr = LLDB_INVALID_ADDRESS; |
| } else { |
| if (ABISP abi_sp = GetABI()) |
| function_addr = abi_sp->FixCodeAddress(function_addr); |
| m_resolved_indirect_addresses.insert( |
| std::pair<addr_t, addr_t>(addr, function_addr)); |
| } |
| } |
| return function_addr; |
| } |
| |
| void Process::ModulesDidLoad(ModuleList &module_list) { |
| // Inform the system runtime of the modified modules. |
| SystemRuntime *sys_runtime = GetSystemRuntime(); |
| if (sys_runtime) |
| sys_runtime->ModulesDidLoad(module_list); |
| |
| GetJITLoaders().ModulesDidLoad(module_list); |
| |
| // Give the instrumentation runtimes a chance to be created before informing |
| // them of the modified modules. |
| InstrumentationRuntime::ModulesDidLoad(module_list, this, |
| m_instrumentation_runtimes); |
| for (auto &runtime : m_instrumentation_runtimes) |
| runtime.second->ModulesDidLoad(module_list); |
| |
| // Give the language runtimes a chance to be created before informing them of |
| // the modified modules. |
| for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { |
| if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) |
| runtime->ModulesDidLoad(module_list); |
| } |
| |
| // If we don't have an operating system plug-in, try to load one since |
| // loading shared libraries might cause a new one to try and load |
| if (!m_os_up) |
| LoadOperatingSystemPlugin(false); |
| |
| // Inform the structured-data plugins of the modified modules. |
| for (auto &pair : m_structured_data_plugin_map) { |
| if (pair.second) |
| pair.second->ModulesDidLoad(*this, module_list); |
| } |
| } |
| |
| void Process::PrintWarningOptimization(const SymbolContext &sc) { |
| if (!GetWarningsOptimization()) |
| return; |
| if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) |
| return; |
| sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); |
| } |
| |
| void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { |
| if (!GetWarningsUnsupportedLanguage()) |
| return; |
| if (!sc.module_sp) |
| return; |
| LanguageType language = sc.GetLanguage(); |
| if (language == eLanguageTypeUnknown || |
| language == lldb::eLanguageTypeAssembly || |
| language == lldb::eLanguageTypeMipsAssembler) |
| return; |
| LanguageSet plugins = |
| PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); |
| if (plugins[language]) |
| return; |
| sc.module_sp->ReportWarningUnsupportedLanguage( |
| language, GetTarget().GetDebugger().GetID()); |
| } |
| |
| bool Process::GetProcessInfo(ProcessInstanceInfo &info) { |
| info.Clear(); |
| |
| PlatformSP platform_sp = GetTarget().GetPlatform(); |
| if (!platform_sp) |
| return false; |
| |
| return platform_sp->GetProcessInfo(GetID(), info); |
| } |
| |
| lldb_private::UUID Process::FindModuleUUID(const llvm::StringRef path) { |
| return lldb_private::UUID(); |
| } |
| |
| ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { |
| ThreadCollectionSP threads; |
| |
| const MemoryHistorySP &memory_history = |
| MemoryHistory::FindPlugin(shared_from_this()); |
| |
| if (!memory_history) { |
| return threads; |
| } |
| |
| threads = std::make_shared<ThreadCollection>( |
| memory_history->GetHistoryThreads(addr)); |
| |
| return threads; |
| } |
| |
| InstrumentationRuntimeSP |
| Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { |
| InstrumentationRuntimeCollection::iterator pos; |
| pos = m_instrumentation_runtimes.find(type); |
| if (pos == m_instrumentation_runtimes.end()) { |
| return InstrumentationRuntimeSP(); |
| } else |
| return (*pos).second; |
| } |
| |
| bool Process::GetModuleSpec(const FileSpec &module_file_spec, |
| const ArchSpec &arch, ModuleSpec &module_spec) { |
| module_spec.Clear(); |
| return false; |
| } |
| |
| size_t Process::AddImageToken(lldb::addr_t image_ptr) { |
| m_image_tokens.push_back(image_ptr); |
| return m_image_tokens.size() - 1; |
| } |
| |
| lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { |
| if (token < m_image_tokens.size()) |
| return m_image_tokens[token]; |
| return LLDB_INVALID_IMAGE_TOKEN; |
| } |
| |
| void Process::ResetImageToken(size_t token) { |
| if (token < m_image_tokens.size()) |
| m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; |
| } |
| |
| Address |
| Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, |
| AddressRange range_bounds) { |
| Target &target = GetTarget(); |
| DisassemblerSP disassembler_sp; |
| InstructionList *insn_list = nullptr; |
| |
| Address retval = default_stop_addr; |
| |
| if (!target.GetUseFastStepping()) |
| return retval; |
| if (!default_stop_addr.IsValid()) |
| return retval; |
| |
| const char *plugin_name = nullptr; |
| const char *flavor = nullptr; |
| const char *cpu = nullptr; |
| const char *features = nullptr; |
| disassembler_sp = Disassembler::DisassembleRange( |
| target.GetArchitecture(), plugin_name, flavor, cpu, features, GetTarget(), |
| range_bounds); |
| if (disassembler_sp) |
| insn_list = &disassembler_sp->GetInstructionList(); |
| |
| if (insn_list == nullptr) { |
| return retval; |
| } |
| |
| size_t insn_offset = |
| insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); |
| if (insn_offset == UINT32_MAX) { |
| return retval; |
| } |
| |
| uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( |
| insn_offset, false /* ignore_calls*/, nullptr); |
| if (branch_index == UINT32_MAX) { |
| return retval; |
| } |
| |
| if (branch_index > insn_offset) { |
| Address next_branch_insn_address = |
| insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); |
| if (next_branch_insn_address.IsValid() && |
| range_bounds.ContainsFileAddress(next_branch_insn_address)) { |
| retval = next_branch_insn_address; |
| } |
| } |
| |
| return retval; |
| } |
| |
| Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, |
| MemoryRegionInfo &range_info) { |
| if (const lldb::ABISP &abi = GetABI()) |
| load_addr = abi->FixAnyAddress(load_addr); |
| Status error = DoGetMemoryRegionInfo(load_addr, range_info); |
| // Reject a region that does not contain the requested address. |
| if (error.Success() && !range_info.GetRange().Contains(load_addr)) |
| error = Status::FromErrorString("Invalid memory region"); |
| |
| return error; |
| } |
| |
| Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { |
| Status error; |
| |
| lldb::addr_t range_end = 0; |
| const lldb::ABISP &abi = GetABI(); |
| |
| region_list.clear(); |
| do { |
| lldb_private::MemoryRegionInfo region_info; |
| error = GetMemoryRegionInfo(range_end, region_info); |
| // GetMemoryRegionInfo should only return an error if it is unimplemented. |
| if (error.Fail()) { |
| region_list.clear(); |
| break; |
| } |
| |
| // We only check the end address, not start and end, because we assume that |
| // the start will not have non-address bits until the first unmappable |
| // region. We will have exited the loop by that point because the previous |
| // region, the last mappable region, will have non-address bits in its end |
| // address. |
| range_end = region_info.GetRange().GetRangeEnd(); |
| if (region_info.GetMapped() == MemoryRegionInfo::eYes) { |
| region_list.push_back(std::move(region_info)); |
| } |
| } while ( |
| // For a process with no non-address bits, all address bits |
| // set means the end of memory. |
| range_end != LLDB_INVALID_ADDRESS && |
| // If we have non-address bits and some are set then the end |
| // is at or beyond the end of mappable memory. |
| !(abi && (abi->FixAnyAddress(range_end) != range_end))); |
| |
| return error; |
| } |
| |
| Status |
| Process::ConfigureStructuredData(llvm::StringRef type_name, |
| const StructuredData::ObjectSP &config_sp) { |
| // If you get this, the Process-derived class needs to implement a method to |
| // enable an already-reported asynchronous structured data feature. See |
| // ProcessGDBRemote for an example implementation over gdb-remote. |
| return Status::FromErrorString("unimplemented"); |
| } |
| |
| void Process::MapSupportedStructuredDataPlugins( |
| const StructuredData::Array &supported_type_names) { |
| Log *log = GetLog(LLDBLog::Process); |
| |
| // Bail out early if there are no type names to map. |
| if (supported_type_names.GetSize() == 0) { |
| LLDB_LOG(log, "no structured data types supported"); |
| return; |
| } |
| |
| // These StringRefs are backed by the input parameter. |
| std::set<llvm::StringRef> type_names; |
| |
| LLDB_LOG(log, |
| "the process supports the following async structured data types:"); |
| |
| supported_type_names.ForEach( |
| [&type_names, &log](StructuredData::Object *object) { |
| // There shouldn't be null objects in the array. |
| if (!object) |
| return false; |
| |
| // All type names should be strings. |
| const llvm::StringRef type_name = object->GetStringValue(); |
| if (type_name.empty()) |
| return false; |
| |
| type_names.insert(type_name); |
| LLDB_LOG(log, "- {0}", type_name); |
| return true; |
| }); |
| |
| // For each StructuredDataPlugin, if the plugin handles any of the types in |
| // the supported_type_names, map that type name to that plugin. Stop when |
| // we've consumed all the type names. |
| // FIXME: should we return an error if there are type names nobody |
| // supports? |
| for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { |
| auto create_instance = |
| PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( |
| plugin_index); |
| if (!create_instance) |
| break; |
| |
| // Create the plugin. |
| StructuredDataPluginSP plugin_sp = (*create_instance)(*this); |
| if (!plugin_sp) { |
| // This plugin doesn't think it can work with the process. Move on to the |
| // next. |
| continue; |
| } |
| |
| // For any of the remaining type names, map any that this plugin supports. |
| std::vector<llvm::StringRef> names_to_remove; |
| for (llvm::StringRef type_name : type_names) { |
| if (plugin_sp->SupportsStructuredDataType(type_name)) { |
| m_structured_data_plugin_map.insert( |
| std::make_pair(type_name, plugin_sp)); |
| names_to_remove.push_back(type_name); |
| LLDB_LOG(log, "using plugin {0} for type name {1}", |
| plugin_sp->GetPluginName(), type_name); |
| } |
| } |
| |
| // Remove the type names that were consumed by this plugin. |
| for (llvm::StringRef type_name : names_to_remove) |
| type_names.erase(type_name); |
| } |
| } |
| |
| bool Process::RouteAsyncStructuredData( |
| const StructuredData::ObjectSP object_sp) { |
| // Nothing to do if there's no data. |
| if (!object_sp) |
| return false; |
| |
| // The contract is this must be a dictionary, so we can look up the routing |
| // key via the top-level 'type' string value within the dictionary. |
| StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); |
| if (!dictionary) |
| return false; |
| |
| // Grab the async structured type name (i.e. the feature/plugin name). |
| llvm::StringRef type_name; |
| if (!dictionary->GetValueForKeyAsString("type", type_name)) |
| return false; |
| |
| // Check if there's a plugin registered for this type name. |
| auto find_it = m_structured_data_plugin_map.find(type_name); |
| if (find_it == m_structured_data_plugin_map.end()) { |
| // We don't have a mapping for this structured data type. |
| return false; |
| } |
| |
| // Route the structured data to the plugin. |
| find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); |
| return true; |
| } |
| |
| Status Process::UpdateAutomaticSignalFiltering() { |
| // Default implementation does nothign. |
| // No automatic signal filtering to speak of. |
| return Status(); |
| } |
| |
| UtilityFunction *Process::GetLoadImageUtilityFunction( |
| Platform *platform, |
| llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { |
| if (platform != GetTarget().GetPlatform().get()) |
| return nullptr; |
| llvm::call_once(m_dlopen_utility_func_flag_once, |
| [&] { m_dlopen_utility_func_up = factory(); }); |
| return m_dlopen_utility_func_up.get(); |
| } |
| |
| llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { |
| if (!IsLiveDebugSession()) |
| return llvm::createStringError(llvm::inconvertibleErrorCode(), |
| "Can't trace a non-live process."); |
| return llvm::make_error<UnimplementedError>(); |
| } |
| |
| bool Process::CallVoidArgVoidPtrReturn(const Address *address, |
| addr_t &returned_func, |
| bool trap_exceptions) { |
| Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); |
| if (thread == nullptr || address == nullptr) |
| return false; |
| |
| EvaluateExpressionOptions options; |
| options.SetStopOthers(true); |
| options.SetUnwindOnError(true); |
| options.SetIgnoreBreakpoints(true); |
| options.SetTryAllThreads(true); |
| options.SetDebug(false); |
| options.SetTimeout(GetUtilityExpressionTimeout()); |
| options.SetTrapExceptions(trap_exceptions); |
| |
| auto type_system_or_err = |
| GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); |
| if (!type_system_or_err) { |
| llvm::consumeError(type_system_or_err.takeError()); |
| return false; |
| } |
| auto ts = *type_system_or_err; |
| if (!ts) |
| return false; |
| CompilerType void_ptr_type = |
| ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); |
| lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( |
| *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); |
| if (call_plan_sp) { |
| DiagnosticManager diagnostics; |
| |
| StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); |
| if (frame) { |
| ExecutionContext exe_ctx; |
| frame->CalculateExecutionContext(exe_ctx); |
| ExpressionResults result = |
| RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); |
| if (result == eExpressionCompleted) { |
| returned_func = |
| call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( |
| LLDB_INVALID_ADDRESS); |
| |
| if (GetAddressByteSize() == 4) { |
| if (returned_func == UINT32_MAX) |
| return false; |
| } else if (GetAddressByteSize() == 8) { |
| if (returned_func == UINT64_MAX) |
| return false; |
| } |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { |
| Architecture *arch = GetTarget().GetArchitecturePlugin(); |
| const MemoryTagManager *tag_manager = |
| arch ? arch->GetMemoryTagManager() : nullptr; |
| if (!arch || !tag_manager) { |
| return llvm::createStringError( |
| llvm::inconvertibleErrorCode(), |
| "This architecture does not support memory tagging"); |
| } |
| |
| if (!SupportsMemoryTagging()) { |
| return llvm::createStringError(llvm::inconvertibleErrorCode(), |
| "Process does not support memory tagging"); |
| } |
| |
| return tag_manager; |
| } |
| |
| llvm::Expected<std::vector<lldb::addr_t>> |
| Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { |
| llvm::Expected<const MemoryTagManager *> tag_manager_or_err = |
| GetMemoryTagManager(); |
| if (!tag_manager_or_err) |
| return tag_manager_or_err.takeError(); |
| |
| const MemoryTagManager *tag_manager = *tag_manager_or_err; |
| llvm::Expected<std::vector<uint8_t>> tag_data = |
| DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); |
| if (!tag_data) |
| return tag_data.takeError(); |
| |
| return tag_manager->UnpackTagsData(*tag_data, |
| len / tag_manager->GetGranuleSize()); |
| } |
| |
| Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, |
| const std::vector<lldb::addr_t> &tags) { |
| llvm::Expected<const MemoryTagManager *> tag_manager_or_err = |
| GetMemoryTagManager(); |
| if (!tag_manager_or_err) |
| return Status::FromError(tag_manager_or_err.takeError()); |
| |
| const MemoryTagManager *tag_manager = *tag_manager_or_err; |
| llvm::Expected<std::vector<uint8_t>> packed_tags = |
| tag_manager->PackTags(tags); |
| if (!packed_tags) { |
| return Status::FromError(packed_tags.takeError()); |
| } |
| |
| return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), |
| *packed_tags); |
| } |
| |
| // Create a CoreFileMemoryRange from a MemoryRegionInfo |
| static CoreFileMemoryRange |
| CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { |
| const addr_t addr = region.GetRange().GetRangeBase(); |
| llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); |
| return {range, region.GetLLDBPermissions()}; |
| } |
| |
| // Add dirty pages to the core file ranges and return true if dirty pages |
| // were added. Return false if the dirty page information is not valid or in |
| // the region. |
| static bool AddDirtyPages(const MemoryRegionInfo ®ion, |
| CoreFileMemoryRanges &ranges) { |
| const auto &dirty_page_list = region.GetDirtyPageList(); |
| if (!dirty_page_list) |
| return false; |
| const uint32_t lldb_permissions = region.GetLLDBPermissions(); |
| const addr_t page_size = region.GetPageSize(); |
| if (page_size == 0) |
| return false; |
| llvm::AddressRange range(0, 0); |
| for (addr_t page_addr : *dirty_page_list) { |
| if (range.empty()) { |
| // No range yet, initialize the range with the current dirty page. |
| range = llvm::AddressRange(page_addr, page_addr + page_size); |
| } else { |
| if (range.end() == page_addr) { |
| // Combine consective ranges. |
| range = llvm::AddressRange(range.start(), page_addr + page_size); |
| } else { |
| // Add previous contiguous range and init the new range with the |
| // current dirty page. |
| ranges.Append(range.start(), range.size(), {range, lldb_permissions}); |
| range = llvm::AddressRange(page_addr, page_addr + page_size); |
| } |
| } |
| } |
| // The last range |
| if (!range.empty()) |
| ranges.Append(range.start(), range.size(), {range, lldb_permissions}); |
| return true; |
| } |
| |
| // Given a region, add the region to \a ranges. |
| // |
| // Only add the region if it isn't empty and if it has some permissions. |
| // If \a try_dirty_pages is true, then try to add only the dirty pages for a |
| // given region. If the region has dirty page information, only dirty pages |
| // will be added to \a ranges, else the entire range will be added to \a |
| // ranges. |
| static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, |
| CoreFileMemoryRanges &ranges) { |
| // Don't add empty ranges. |
| if (region.GetRange().GetByteSize() == 0) |
| return; |
| // Don't add ranges with no read permissions. |
| if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) |
| return; |
| if (try_dirty_pages && AddDirtyPages(region, ranges)) |
| return; |
| |
| ranges.Append(region.GetRange().GetRangeBase(), |
| region.GetRange().GetByteSize(), |
| CreateCoreFileMemoryRange(region)); |
| } |
| |
| static void SaveDynamicLoaderSections(Process &process, |
| const SaveCoreOptions &options, |
| CoreFileMemoryRanges &ranges, |
| std::set<addr_t> &stack_ends) { |
| DynamicLoader *dyld = process.GetDynamicLoader(); |
| if (!dyld) |
| return; |
| |
| std::vector<MemoryRegionInfo> dynamic_loader_mem_regions; |
| std::function<bool(const lldb_private::Thread &)> save_thread_predicate = |
| [&](const lldb_private::Thread &t) -> bool { |
| return options.ShouldThreadBeSaved(t.GetID()); |
| }; |
| dyld->CalculateDynamicSaveCoreRanges(process, dynamic_loader_mem_regions, |
| save_thread_predicate); |
| for (const auto ®ion : dynamic_loader_mem_regions) { |
| // The Dynamic Loader can give us regions that could include a truncated |
| // stack |
| if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) |
| AddRegion(region, true, ranges); |
| } |
| } |
| |
| static void SaveOffRegionsWithStackPointers(Process &process, |
| const SaveCoreOptions &core_options, |
| const MemoryRegionInfos ®ions, |
| CoreFileMemoryRanges &ranges, |
| std::set<addr_t> &stack_ends) { |
| const bool try_dirty_pages = true; |
| |
| // Before we take any dump, we want to save off the used portions of the |
| // stacks and mark those memory regions as saved. This prevents us from saving |
| // the unused portion of the stack below the stack pointer. Saving space on |
| // the dump. |
| for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { |
| if (!thread_sp) |
| continue; |
| StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0); |
| if (!frame_sp) |
| continue; |
| RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); |
| if (!reg_ctx_sp) |
| continue; |
| const addr_t sp = reg_ctx_sp->GetSP(); |
| const size_t red_zone = process.GetABI()->GetRedZoneSize(); |
| lldb_private::MemoryRegionInfo sp_region; |
| if (process.GetMemoryRegionInfo(sp, sp_region).Success()) { |
| const size_t stack_head = (sp - red_zone); |
| const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; |
| // Even if the SaveCoreOption doesn't want us to save the stack |
| // we still need to populate the stack_ends set so it doesn't get saved |
| // off in other calls |
| sp_region.GetRange().SetRangeBase(stack_head); |
| sp_region.GetRange().SetByteSize(stack_size); |
| const addr_t range_end = sp_region.GetRange().GetRangeEnd(); |
| stack_ends.insert(range_end); |
| // This will return true if the threadlist the user specified is empty, |
| // or contains the thread id from thread_sp. |
| if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { |
| AddRegion(sp_region, try_dirty_pages, ranges); |
| } |
| } |
| } |
| } |
| |
| // Save all memory regions that are not empty or have at least some permissions |
| // for a full core file style. |
| static void GetCoreFileSaveRangesFull(Process &process, |
| const MemoryRegionInfos ®ions, |
| CoreFileMemoryRanges &ranges, |
| std::set<addr_t> &stack_ends) { |
| |
| // Don't add only dirty pages, add full regions. |
| const bool try_dirty_pages = false; |
| for (const auto ®ion : regions) |
| if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) |
| AddRegion(region, try_dirty_pages, ranges); |
| } |
| |
| // Save only the dirty pages to the core file. Make sure the process has at |
| // least some dirty pages, as some OS versions don't support reporting what |
| // pages are dirty within an memory region. If no memory regions have dirty |
| // page information fall back to saving out all ranges with write permissions. |
| static void GetCoreFileSaveRangesDirtyOnly(Process &process, |
| const MemoryRegionInfos ®ions, |
| CoreFileMemoryRanges &ranges, |
| std::set<addr_t> &stack_ends) { |
| |
| // Iterate over the regions and find all dirty pages. |
| bool have_dirty_page_info = false; |
| for (const auto ®ion : regions) { |
| if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && |
| AddDirtyPages(region, ranges)) |
| have_dirty_page_info = true; |
| } |
| |
| if (!have_dirty_page_info) { |
| // We didn't find support for reporting dirty pages from the process |
| // plug-in so fall back to any region with write access permissions. |
| const bool try_dirty_pages = false; |
| for (const auto ®ion : regions) |
| if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && |
| region.GetWritable() == MemoryRegionInfo::eYes) |
| AddRegion(region, try_dirty_pages, ranges); |
| } |
| } |
| |
| // Save all thread stacks to the core file. Some OS versions support reporting |
| // when a memory region is stack related. We check on this information, but we |
| // also use the stack pointers of each thread and add those in case the OS |
| // doesn't support reporting stack memory. This function also attempts to only |
| // emit dirty pages from the stack if the memory regions support reporting |
| // dirty regions as this will make the core file smaller. If the process |
| // doesn't support dirty regions, then it will fall back to adding the full |
| // stack region. |
| static void GetCoreFileSaveRangesStackOnly(Process &process, |
| const MemoryRegionInfos ®ions, |
| CoreFileMemoryRanges &ranges, |
| std::set<addr_t> &stack_ends) { |
| const bool try_dirty_pages = true; |
| // Some platforms support annotating the region information that tell us that |
| // it comes from a thread stack. So look for those regions first. |
| |
| for (const auto ®ion : regions) { |
| // Save all the stack memory ranges not associated with a stack pointer. |
| if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && |
| region.IsStackMemory() == MemoryRegionInfo::eYes) |
| AddRegion(region, try_dirty_pages, ranges); |
| } |
| } |
| |
| static void GetUserSpecifiedCoreFileSaveRanges(Process &process, |
| const MemoryRegionInfos ®ions, |
| const SaveCoreOptions &options, |
| CoreFileMemoryRanges &ranges) { |
| const auto &option_ranges = options.GetCoreFileMemoryRanges(); |
| if (option_ranges.IsEmpty()) |
| return; |
| |
| for (const auto &range : regions) { |
| auto entry = option_ranges.FindEntryThatContains(range.GetRange()); |
| if (entry) { |
| ranges.Append(range.GetRange().GetRangeBase(), |
| range.GetRange().GetByteSize(), |
| CreateCoreFileMemoryRange(range)); |
| } |
| } |
| } |
| |
| Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options, |
| CoreFileMemoryRanges &ranges) { |
| lldb_private::MemoryRegionInfos regions; |
| Status err = GetMemoryRegions(regions); |
| SaveCoreStyle core_style = options.GetStyle(); |
| if (err.Fail()) |
| return err; |
| if (regions.empty()) |
| return Status::FromErrorString( |
| "failed to get any valid memory regions from the process"); |
| if (core_style == eSaveCoreUnspecified) |
| return Status::FromErrorString( |
| "callers must set the core_style to something other than " |
| "eSaveCoreUnspecified"); |
| |
| GetUserSpecifiedCoreFileSaveRanges(*this, regions, options, ranges); |
| |
| std::set<addr_t> stack_ends; |
| // For fully custom set ups, we don't want to even look at threads if there |
| // are no threads specified. |
| if (core_style != lldb::eSaveCoreCustomOnly || |
| options.HasSpecifiedThreads()) { |
| SaveOffRegionsWithStackPointers(*this, options, regions, ranges, |
| stack_ends); |
| // Save off the dynamic loader sections, so if we are on an architecture |
| // that supports Thread Locals, that we include those as well. |
| SaveDynamicLoaderSections(*this, options, ranges, stack_ends); |
| } |
| |
| switch (core_style) { |
| case eSaveCoreUnspecified: |
| case eSaveCoreCustomOnly: |
| break; |
| |
| case eSaveCoreFull: |
| GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends); |
| break; |
| |
| case eSaveCoreDirtyOnly: |
| GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends); |
| break; |
| |
| case eSaveCoreStackOnly: |
| GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends); |
| break; |
| } |
| |
| if (err.Fail()) |
| return err; |
| |
| if (ranges.IsEmpty()) |
| return Status::FromErrorStringWithFormat( |
| "no valid address ranges found for core style"); |
| |
| return ranges.FinalizeCoreFileSaveRanges(); |
| } |
| |
| std::vector<ThreadSP> |
| Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) { |
| std::vector<ThreadSP> thread_list; |
| for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) { |
| if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { |
| thread_list.push_back(thread_sp); |
| } |
| } |
| |
| return thread_list; |
| } |
| |
| void Process::SetAddressableBitMasks(AddressableBits bit_masks) { |
| uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); |
| uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); |
| |
| if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) |
| return; |
| |
| if (low_memory_addr_bits != 0) { |
| addr_t low_addr_mask = |
| AddressableBits::AddressableBitToMask(low_memory_addr_bits); |
| SetCodeAddressMask(low_addr_mask); |
| SetDataAddressMask(low_addr_mask); |
| } |
| |
| if (high_memory_addr_bits != 0) { |
| addr_t high_addr_mask = |
| AddressableBits::AddressableBitToMask(high_memory_addr_bits); |
| SetHighmemCodeAddressMask(high_addr_mask); |
| SetHighmemDataAddressMask(high_addr_mask); |
| } |
| } |