blob: 65f5b1a5f1b0a2ee555a5a8540b0aa5ea9b101ca [file] [log] [blame]
//===-- SymbolFileCTF.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolFileCTF.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Host/Config.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Symbol/TypeList.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/StreamBuffer.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "llvm/Support/MemoryBuffer.h"
#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
#include <memory>
#include <optional>
#if LLVM_ENABLE_ZLIB
#include <zlib.h>
#endif
using namespace llvm;
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(SymbolFileCTF)
char SymbolFileCTF::ID;
SymbolFileCTF::SymbolFileCTF(lldb::ObjectFileSP objfile_sp)
: SymbolFileCommon(std::move(objfile_sp)) {}
void SymbolFileCTF::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
}
void SymbolFileCTF::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
llvm::StringRef SymbolFileCTF::GetPluginDescriptionStatic() {
return "Compact C Type Format Symbol Reader";
}
SymbolFile *SymbolFileCTF::CreateInstance(ObjectFileSP objfile_sp) {
return new SymbolFileCTF(std::move(objfile_sp));
}
bool SymbolFileCTF::ParseHeader() {
if (m_header)
return true;
Log *log = GetLog(LLDBLog::Symbols);
ModuleSP module_sp(m_objfile_sp->GetModule());
const SectionList *section_list = module_sp->GetSectionList();
if (!section_list)
return false;
SectionSP section_sp(
section_list->FindSectionByType(lldb::eSectionTypeCTF, true));
if (!section_sp)
return false;
m_objfile_sp->ReadSectionData(section_sp.get(), m_data);
if (m_data.GetByteSize() == 0)
return false;
StreamString module_desc;
GetObjectFile()->GetModule()->GetDescription(module_desc.AsRawOstream(),
lldb::eDescriptionLevelBrief);
LLDB_LOG(log, "Parsing Compact C Type format for {0}", module_desc.GetData());
lldb::offset_t offset = 0;
// Parse CTF header.
constexpr size_t ctf_header_size = sizeof(ctf_header_t);
if (!m_data.ValidOffsetForDataOfSize(offset, ctf_header_size)) {
LLDB_LOG(log, "CTF parsing failed: insufficient data for CTF header");
return false;
}
m_header.emplace();
ctf_header_t &ctf_header = *m_header;
ctf_header.preamble.magic = m_data.GetU16(&offset);
ctf_header.preamble.version = m_data.GetU8(&offset);
ctf_header.preamble.flags = m_data.GetU8(&offset);
ctf_header.parlabel = m_data.GetU32(&offset);
ctf_header.parname = m_data.GetU32(&offset);
ctf_header.lbloff = m_data.GetU32(&offset);
ctf_header.objtoff = m_data.GetU32(&offset);
ctf_header.funcoff = m_data.GetU32(&offset);
ctf_header.typeoff = m_data.GetU32(&offset);
ctf_header.stroff = m_data.GetU32(&offset);
ctf_header.strlen = m_data.GetU32(&offset);
// Validate the preamble.
if (ctf_header.preamble.magic != g_ctf_magic) {
LLDB_LOG(log, "CTF parsing failed: invalid magic: {0:x}",
ctf_header.preamble.magic);
return false;
}
if (ctf_header.preamble.version != g_ctf_version) {
LLDB_LOG(log, "CTF parsing failed: unsupported version: {0}",
ctf_header.preamble.version);
return false;
}
LLDB_LOG(log, "Parsed valid CTF preamble: version {0}, flags {1:x}",
ctf_header.preamble.version, ctf_header.preamble.flags);
m_body_offset = offset;
if (ctf_header.preamble.flags & eFlagCompress) {
// The body has been compressed with zlib deflate. Header offsets point into
// the decompressed data.
#if LLVM_ENABLE_ZLIB
const std::size_t decompressed_size = ctf_header.stroff + ctf_header.strlen;
DataBufferSP decompressed_data =
std::make_shared<DataBufferHeap>(decompressed_size, 0x0);
z_stream zstr;
memset(&zstr, 0, sizeof(zstr));
zstr.next_in = (Bytef *)const_cast<uint8_t *>(m_data.GetDataStart() +
sizeof(ctf_header_t));
zstr.avail_in = m_data.BytesLeft(offset);
zstr.next_out =
(Bytef *)const_cast<uint8_t *>(decompressed_data->GetBytes());
zstr.avail_out = decompressed_size;
int rc = inflateInit(&zstr);
if (rc != Z_OK) {
LLDB_LOG(log, "CTF parsing failed: inflate initialization error: {0}",
zError(rc));
return false;
}
rc = inflate(&zstr, Z_FINISH);
if (rc != Z_STREAM_END) {
LLDB_LOG(log, "CTF parsing failed: inflate error: {0}", zError(rc));
return false;
}
rc = inflateEnd(&zstr);
if (rc != Z_OK) {
LLDB_LOG(log, "CTF parsing failed: inflate end error: {0}", zError(rc));
return false;
}
if (zstr.total_out != decompressed_size) {
LLDB_LOG(log,
"CTF parsing failed: decompressed size ({0}) doesn't match "
"expected size ([1})",
zstr.total_out, decompressed_size);
return false;
}
m_data = DataExtractor(decompressed_data, m_data.GetByteOrder(),
m_data.GetAddressByteSize());
m_body_offset = 0;
#else
LLDB_LOG(
log,
"CTF parsing failed: data is compressed but no zlib inflate support");
return false;
#endif
}
// Validate the header.
if (!m_data.ValidOffset(m_body_offset + ctf_header.lbloff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid label section offset in header: {0}",
ctf_header.lbloff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.objtoff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid object section offset in header: {0}",
ctf_header.objtoff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.funcoff)) {
LLDB_LOG(
log,
"CTF parsing failed: invalid function section offset in header: {0}",
ctf_header.funcoff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.typeoff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid type section offset in header: {0}",
ctf_header.typeoff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.stroff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid string section offset in header: {0}",
ctf_header.stroff);
return false;
}
const lldb::offset_t str_end_offset =
m_body_offset + ctf_header.stroff + ctf_header.strlen;
if (!m_data.ValidOffset(str_end_offset - 1)) {
LLDB_LOG(log,
"CTF parsing failed: invalid string section length in header: {0}",
ctf_header.strlen);
return false;
}
if (m_body_offset + ctf_header.stroff + ctf_header.parlabel >
str_end_offset) {
LLDB_LOG(log,
"CTF parsing failed: invalid parent label offset: {0} exceeds end "
"of string section ({1})",
ctf_header.parlabel, str_end_offset);
return false;
}
if (m_body_offset + ctf_header.stroff + ctf_header.parname > str_end_offset) {
LLDB_LOG(log,
"CTF parsing failed: invalid parent name offset: {0} exceeds end "
"of string section ({1})",
ctf_header.parname, str_end_offset);
return false;
}
LLDB_LOG(log,
"Parsed valid CTF header: lbloff = {0}, objtoff = {1}, funcoff = "
"{2}, typeoff = {3}, stroff = {4}, strlen = {5}",
ctf_header.lbloff, ctf_header.objtoff, ctf_header.funcoff,
ctf_header.typeoff, ctf_header.stroff, ctf_header.strlen);
return true;
}
void SymbolFileCTF::InitializeObject() {
Log *log = GetLog(LLDBLog::Symbols);
auto type_system_or_err = GetTypeSystemForLanguage(lldb::eLanguageTypeC);
if (auto err = type_system_or_err.takeError()) {
LLDB_LOG_ERROR(log, std::move(err), "Unable to get type system: {0}");
return;
}
auto ts = *type_system_or_err;
m_ast = llvm::dyn_cast_or_null<TypeSystemClang>(ts.get());
LazyBool optimized = eLazyBoolNo;
m_comp_unit_sp = std::make_shared<CompileUnit>(
m_objfile_sp->GetModule(), nullptr, "", 0, eLanguageTypeC, optimized);
ParseTypes(*m_comp_unit_sp);
}
llvm::StringRef SymbolFileCTF::ReadString(lldb::offset_t str_offset) const {
lldb::offset_t offset = m_body_offset + m_header->stroff + str_offset;
if (!m_data.ValidOffset(offset))
return "(invalid)";
const char *str = m_data.GetCStr(&offset);
if (str && !*str)
return "(anon)";
return llvm::StringRef(str);
}
/// Return the integer display representation encoded in the given data.
static uint32_t GetEncoding(uint32_t data) {
// Mask bits 24–31.
return ((data)&0xff000000) >> 24;
}
/// Return the integral width in bits encoded in the given data.
static uint32_t GetBits(uint32_t data) {
// Mask bits 0-15.
return (data)&0x0000ffff;
}
/// Return the type kind encoded in the given data.
uint32_t GetKind(uint32_t data) {
// Mask bits 26–31.
return ((data)&0xf800) >> 11;
}
/// Return the variable length encoded in the given data.
uint32_t GetVLen(uint32_t data) {
// Mask bits 0–24.
return (data)&0x3ff;
}
static uint32_t GetBytes(uint32_t bits) { return bits / sizeof(unsigned); }
static clang::TagTypeKind TranslateRecordKind(CTFType::Kind type) {
switch (type) {
case CTFType::Kind::eStruct:
return clang::TagTypeKind::Struct;
case CTFType::Kind::eUnion:
return clang::TagTypeKind::Union;
default:
lldbassert(false && "Invalid record kind!");
return clang::TagTypeKind::Struct;
}
}
llvm::Expected<TypeSP>
SymbolFileCTF::CreateInteger(const CTFInteger &ctf_integer) {
lldb::BasicType basic_type =
TypeSystemClang::GetBasicTypeEnumeration(ctf_integer.name);
if (basic_type == eBasicTypeInvalid)
return llvm::make_error<llvm::StringError>(
llvm::formatv("unsupported integer type: no corresponding basic clang "
"type for '{0}'",
ctf_integer.name),
llvm::inconvertibleErrorCode());
CompilerType compiler_type = m_ast->GetBasicType(basic_type);
if (basic_type != eBasicTypeVoid) {
// Make sure the type we got is an integer type.
bool compiler_type_is_signed = false;
if (!compiler_type.IsIntegerType(compiler_type_is_signed))
return llvm::make_error<llvm::StringError>(
llvm::formatv(
"Found compiler type for '{0}' but it's not an integer type: {1}",
ctf_integer.name,
compiler_type.GetDisplayTypeName().GetStringRef()),
llvm::inconvertibleErrorCode());
// Make sure the signing matches between the CTF and the compiler type.
const bool type_is_signed = (ctf_integer.encoding & IntEncoding::eSigned);
if (compiler_type_is_signed != type_is_signed)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Found integer compiler type for {0} but compiler type "
"is {1} and {0} is {2}",
ctf_integer.name,
compiler_type_is_signed ? "signed" : "unsigned",
type_is_signed ? "signed" : "unsigned"),
llvm::inconvertibleErrorCode());
}
Declaration decl;
return MakeType(ctf_integer.uid, ConstString(ctf_integer.name),
GetBytes(ctf_integer.bits), nullptr, LLDB_INVALID_UID,
lldb_private::Type::eEncodingIsUID, decl, compiler_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateModifier(const CTFModifier &ctf_modifier) {
Type *ref_type = ResolveTypeUID(ctf_modifier.type);
if (!ref_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find modified type: {0}", ctf_modifier.type),
llvm::inconvertibleErrorCode());
CompilerType compiler_type;
switch (ctf_modifier.kind) {
case CTFType::ePointer:
compiler_type = ref_type->GetFullCompilerType().GetPointerType();
break;
case CTFType::eConst:
compiler_type = ref_type->GetFullCompilerType().AddConstModifier();
break;
case CTFType::eVolatile:
compiler_type = ref_type->GetFullCompilerType().AddVolatileModifier();
break;
case CTFType::eRestrict:
compiler_type = ref_type->GetFullCompilerType().AddRestrictModifier();
break;
default:
return llvm::make_error<llvm::StringError>(
llvm::formatv("ParseModifier called with unsupported kind: {0}",
ctf_modifier.kind),
llvm::inconvertibleErrorCode());
}
Declaration decl;
return MakeType(ctf_modifier.uid, ConstString(), 0, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, compiler_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateTypedef(const CTFTypedef &ctf_typedef) {
Type *underlying_type = ResolveTypeUID(ctf_typedef.type);
if (!underlying_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find typedef underlying type: {0}",
ctf_typedef.type),
llvm::inconvertibleErrorCode());
CompilerType target_ast_type = underlying_type->GetFullCompilerType();
clang::DeclContext *decl_ctx = m_ast->GetTranslationUnitDecl();
CompilerType ast_typedef = target_ast_type.CreateTypedef(
ctf_typedef.name.data(), m_ast->CreateDeclContext(decl_ctx), 0);
Declaration decl;
return MakeType(ctf_typedef.uid, ConstString(ctf_typedef.name), 0, nullptr,
LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID, decl,
ast_typedef, lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateArray(const CTFArray &ctf_array) {
Type *element_type = ResolveTypeUID(ctf_array.type);
if (!element_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find array element type: {0}", ctf_array.type),
llvm::inconvertibleErrorCode());
std::optional<uint64_t> element_size = element_type->GetByteSize(nullptr);
if (!element_size)
return llvm::make_error<llvm::StringError>(
llvm::formatv("could not get element size of type: {0}",
ctf_array.type),
llvm::inconvertibleErrorCode());
uint64_t size = ctf_array.nelems * *element_size;
CompilerType compiler_type = m_ast->CreateArrayType(
element_type->GetFullCompilerType(), ctf_array.nelems,
/*is_gnu_vector*/ false);
Declaration decl;
return MakeType(ctf_array.uid, ConstString(), size, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, compiler_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateEnum(const CTFEnum &ctf_enum) {
Declaration decl;
CompilerType enum_type = m_ast->CreateEnumerationType(
ctf_enum.name, m_ast->GetTranslationUnitDecl(), OptionalClangModuleID(),
decl, m_ast->GetBasicType(eBasicTypeInt),
/*is_scoped=*/false);
for (const CTFEnum::Value &value : ctf_enum.values) {
Declaration value_decl;
m_ast->AddEnumerationValueToEnumerationType(
enum_type, value_decl, value.name.data(), value.value, ctf_enum.size);
}
TypeSystemClang::CompleteTagDeclarationDefinition(enum_type);
return MakeType(ctf_enum.uid, ConstString(), 0, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, enum_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateFunction(const CTFFunction &ctf_function) {
std::vector<CompilerType> arg_types;
for (uint32_t arg : ctf_function.args) {
if (Type *arg_type = ResolveTypeUID(arg))
arg_types.push_back(arg_type->GetFullCompilerType());
}
Type *ret_type = ResolveTypeUID(ctf_function.return_type);
if (!ret_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find function return type: {0}",
ctf_function.return_type),
llvm::inconvertibleErrorCode());
CompilerType func_type = m_ast->CreateFunctionType(
ret_type->GetFullCompilerType(), arg_types.data(), arg_types.size(),
ctf_function.variadic, 0, clang::CallingConv::CC_C);
Declaration decl;
return MakeType(ctf_function.uid, ConstString(ctf_function.name), 0, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl, func_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateRecord(const CTFRecord &ctf_record) {
const clang::TagTypeKind tag_kind = TranslateRecordKind(ctf_record.kind);
CompilerType record_type = m_ast->CreateRecordType(
nullptr, OptionalClangModuleID(), eAccessPublic, ctf_record.name.data(),
llvm::to_underlying(tag_kind), eLanguageTypeC);
m_compiler_types[record_type.GetOpaqueQualType()] = &ctf_record;
Declaration decl;
return MakeType(ctf_record.uid, ConstString(ctf_record.name), ctf_record.size,
nullptr, LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID,
decl, record_type, lldb_private::Type::ResolveState::Forward);
}
bool SymbolFileCTF::CompleteType(CompilerType &compiler_type) {
// Check if we have a CTF type for the given incomplete compiler type.
auto it = m_compiler_types.find(compiler_type.GetOpaqueQualType());
if (it == m_compiler_types.end())
return false;
const CTFType *ctf_type = it->second;
assert(ctf_type && "m_compiler_types should only contain valid CTF types");
// We only support resolving record types.
assert(llvm::isa<CTFRecord>(ctf_type));
// Cast to the appropriate CTF type.
const CTFRecord *ctf_record = static_cast<const CTFRecord *>(ctf_type);
// If any of the fields are incomplete, we cannot complete the type.
for (const CTFRecord::Field &field : ctf_record->fields) {
if (!ResolveTypeUID(field.type)) {
LLDB_LOG(GetLog(LLDBLog::Symbols),
"Cannot complete type {0} because field {1} is incomplete",
ctf_type->uid, field.type);
return false;
}
}
// Complete the record type.
m_ast->StartTagDeclarationDefinition(compiler_type);
for (const CTFRecord::Field &field : ctf_record->fields) {
Type *field_type = ResolveTypeUID(field.type);
assert(field_type && "field must be complete");
const uint32_t field_size = field_type->GetByteSize(nullptr).value_or(0);
TypeSystemClang::AddFieldToRecordType(compiler_type, field.name,
field_type->GetFullCompilerType(),
eAccessPublic, field_size);
}
m_ast->CompleteTagDeclarationDefinition(compiler_type);
// Now that the compiler type is complete, we don't need to remember it
// anymore and can remove the CTF record type.
m_compiler_types.erase(compiler_type.GetOpaqueQualType());
m_ctf_types.erase(ctf_type->uid);
return true;
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateForward(const CTFForward &ctf_forward) {
CompilerType forward_compiler_type = m_ast->CreateRecordType(
nullptr, OptionalClangModuleID(), eAccessPublic, ctf_forward.name,
llvm::to_underlying(clang::TagTypeKind::Struct), eLanguageTypeC);
Declaration decl;
return MakeType(ctf_forward.uid, ConstString(ctf_forward.name), 0, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl,
forward_compiler_type, Type::ResolveState::Forward);
}
llvm::Expected<TypeSP> SymbolFileCTF::CreateType(CTFType *ctf_type) {
if (!ctf_type)
return llvm::make_error<llvm::StringError>(
"cannot create type for unparsed type", llvm::inconvertibleErrorCode());
switch (ctf_type->kind) {
case CTFType::Kind::eInteger:
return CreateInteger(*static_cast<CTFInteger *>(ctf_type));
case CTFType::Kind::eConst:
case CTFType::Kind::ePointer:
case CTFType::Kind::eRestrict:
case CTFType::Kind::eVolatile:
return CreateModifier(*static_cast<CTFModifier *>(ctf_type));
case CTFType::Kind::eTypedef:
return CreateTypedef(*static_cast<CTFTypedef *>(ctf_type));
case CTFType::Kind::eArray:
return CreateArray(*static_cast<CTFArray *>(ctf_type));
case CTFType::Kind::eEnum:
return CreateEnum(*static_cast<CTFEnum *>(ctf_type));
case CTFType::Kind::eFunction:
return CreateFunction(*static_cast<CTFFunction *>(ctf_type));
case CTFType::Kind::eStruct:
case CTFType::Kind::eUnion:
return CreateRecord(*static_cast<CTFRecord *>(ctf_type));
case CTFType::Kind::eForward:
return CreateForward(*static_cast<CTFForward *>(ctf_type));
case CTFType::Kind::eUnknown:
case CTFType::Kind::eFloat:
case CTFType::Kind::eSlice:
return llvm::make_error<llvm::StringError>(
llvm::formatv("unsupported type (uid = {0}, name = {1}, kind = {2})",
ctf_type->uid, ctf_type->name, ctf_type->kind),
llvm::inconvertibleErrorCode());
}
llvm_unreachable("Unexpected CTF type kind");
}
llvm::Expected<std::unique_ptr<CTFType>>
SymbolFileCTF::ParseType(lldb::offset_t &offset, lldb::user_id_t uid) {
ctf_stype_t ctf_stype;
ctf_stype.name = m_data.GetU32(&offset);
ctf_stype.info = m_data.GetU32(&offset);
ctf_stype.size = m_data.GetU32(&offset);
llvm::StringRef name = ReadString(ctf_stype.name);
const uint32_t kind = GetKind(ctf_stype.info);
const uint32_t variable_length = GetVLen(ctf_stype.info);
const uint32_t type = ctf_stype.GetType();
const uint32_t size = ctf_stype.GetSize();
switch (kind) {
case TypeKind::eInteger: {
const uint32_t vdata = m_data.GetU32(&offset);
const uint32_t bits = GetBits(vdata);
const uint32_t encoding = GetEncoding(vdata);
return std::make_unique<CTFInteger>(uid, name, bits, encoding);
}
case TypeKind::eConst:
return std::make_unique<CTFConst>(uid, type);
case TypeKind::ePointer:
return std::make_unique<CTFPointer>(uid, type);
case TypeKind::eRestrict:
return std::make_unique<CTFRestrict>(uid, type);
case TypeKind::eVolatile:
return std::make_unique<CTFVolatile>(uid, type);
case TypeKind::eTypedef:
return std::make_unique<CTFTypedef>(uid, name, type);
case TypeKind::eArray: {
const uint32_t type = m_data.GetU32(&offset);
const uint32_t index = m_data.GetU32(&offset);
const uint32_t nelems = m_data.GetU32(&offset);
return std::make_unique<CTFArray>(uid, name, type, index, nelems);
}
case TypeKind::eEnum: {
std::vector<CTFEnum::Value> values;
for (uint32_t i = 0; i < variable_length; ++i) {
const uint32_t value_name = m_data.GetU32(&offset);
const uint32_t value = m_data.GetU32(&offset);
values.emplace_back(ReadString(value_name), value);
}
return std::make_unique<CTFEnum>(uid, name, variable_length, size, values);
}
case TypeKind::eFunction: {
std::vector<uint32_t> args;
bool variadic = false;
for (uint32_t i = 0; i < variable_length; ++i) {
const uint32_t arg_uid = m_data.GetU32(&offset);
// If the last argument is 0, this is a variadic function.
if (arg_uid == 0) {
variadic = true;
break;
}
args.push_back(arg_uid);
}
// If the number of arguments is odd, a single uint32_t of padding is
// inserted to maintain alignment.
if (variable_length % 2 == 1)
m_data.GetU32(&offset);
return std::make_unique<CTFFunction>(uid, name, variable_length, type, args,
variadic);
}
case TypeKind::eStruct:
case TypeKind::eUnion: {
std::vector<CTFRecord::Field> fields;
for (uint32_t i = 0; i < variable_length; ++i) {
const uint32_t field_name = m_data.GetU32(&offset);
const uint32_t type = m_data.GetU32(&offset);
uint64_t field_offset = 0;
if (size < g_ctf_field_threshold) {
field_offset = m_data.GetU16(&offset);
m_data.GetU16(&offset); // Padding
} else {
const uint32_t offset_hi = m_data.GetU32(&offset);
const uint32_t offset_lo = m_data.GetU32(&offset);
field_offset = (((uint64_t)offset_hi) << 32) | ((uint64_t)offset_lo);
}
fields.emplace_back(ReadString(field_name), type, field_offset);
}
return std::make_unique<CTFRecord>(static_cast<CTFType::Kind>(kind), uid,
name, variable_length, size, fields);
}
case TypeKind::eForward:
return std::make_unique<CTFForward>(uid, name);
case TypeKind::eUnknown:
return std::make_unique<CTFType>(static_cast<CTFType::Kind>(kind), uid,
name);
case TypeKind::eFloat:
case TypeKind::eSlice:
offset += (variable_length * sizeof(uint32_t));
break;
}
return llvm::make_error<llvm::StringError>(
llvm::formatv("unsupported type (name = {0}, kind = {1}, vlength = {2})",
name, kind, variable_length),
llvm::inconvertibleErrorCode());
}
size_t SymbolFileCTF::ParseTypes(CompileUnit &cu) {
if (!ParseHeader())
return 0;
if (!m_types.empty())
return 0;
if (!m_ast)
return 0;
Log *log = GetLog(LLDBLog::Symbols);
LLDB_LOG(log, "Parsing CTF types");
lldb::offset_t type_offset = m_body_offset + m_header->typeoff;
const lldb::offset_t type_offset_end = m_body_offset + m_header->stroff;
lldb::user_id_t type_uid = 1;
while (type_offset < type_offset_end) {
llvm::Expected<std::unique_ptr<CTFType>> type_or_error =
ParseType(type_offset, type_uid);
if (type_or_error) {
m_ctf_types[(*type_or_error)->uid] = std::move(*type_or_error);
} else {
LLDB_LOG_ERROR(log, type_or_error.takeError(),
"Failed to parse type {1} at offset {2}: {0}", type_uid,
type_offset);
}
type_uid++;
}
LLDB_LOG(log, "Parsed {0} CTF types", m_ctf_types.size());
for (lldb::user_id_t uid = 1; uid < type_uid; ++uid)
ResolveTypeUID(uid);
LLDB_LOG(log, "Created {0} CTF types", m_types.size());
return m_types.size();
}
size_t SymbolFileCTF::ParseFunctions(CompileUnit &cu) {
if (!ParseHeader())
return 0;
if (!m_functions.empty())
return 0;
if (!m_ast)
return 0;
Symtab *symtab = GetObjectFile()->GetModule()->GetSymtab();
if (!symtab)
return 0;
Log *log = GetLog(LLDBLog::Symbols);
LLDB_LOG(log, "Parsing CTF functions");
lldb::offset_t function_offset = m_body_offset + m_header->funcoff;
const lldb::offset_t function_offset_end = m_body_offset + m_header->typeoff;
uint32_t symbol_idx = 0;
Declaration decl;
while (function_offset < function_offset_end) {
const uint32_t info = m_data.GetU32(&function_offset);
const uint16_t kind = GetKind(info);
const uint16_t variable_length = GetVLen(info);
Symbol *symbol = symtab->FindSymbolWithType(
eSymbolTypeCode, Symtab::eDebugYes, Symtab::eVisibilityAny, symbol_idx);
// Skip padding.
if (kind == TypeKind::eUnknown && variable_length == 0)
continue;
// Skip unexpected kinds.
if (kind != TypeKind::eFunction)
continue;
const uint32_t ret_uid = m_data.GetU32(&function_offset);
const uint32_t num_args = variable_length;
std::vector<CompilerType> arg_types;
arg_types.reserve(num_args);
bool is_variadic = false;
for (uint32_t i = 0; i < variable_length; i++) {
const uint32_t arg_uid = m_data.GetU32(&function_offset);
// If the last argument is 0, this is a variadic function.
if (arg_uid == 0) {
is_variadic = true;
break;
}
Type *arg_type = ResolveTypeUID(arg_uid);
arg_types.push_back(arg_type->GetFullCompilerType());
}
if (symbol) {
Type *ret_type = ResolveTypeUID(ret_uid);
AddressRange func_range =
AddressRange(symbol->GetFileAddress(), symbol->GetByteSize(),
GetObjectFile()->GetModule()->GetSectionList());
// Create function type.
CompilerType func_type = m_ast->CreateFunctionType(
ret_type->GetFullCompilerType(), arg_types.data(), arg_types.size(),
is_variadic, 0, clang::CallingConv::CC_C);
lldb::user_id_t function_type_uid = m_types.size() + 1;
TypeSP type_sp =
MakeType(function_type_uid, symbol->GetName(), 0, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl, func_type,
lldb_private::Type::ResolveState::Full);
m_types[function_type_uid] = type_sp;
// Create function.
lldb::user_id_t func_uid = m_functions.size();
FunctionSP function_sp = std::make_shared<Function>(
&cu, func_uid, function_type_uid, symbol->GetMangled(), type_sp.get(),
func_range);
m_functions.emplace_back(function_sp);
cu.AddFunction(function_sp);
}
}
LLDB_LOG(log, "CTF parsed {0} functions", m_functions.size());
return m_functions.size();
}
static DWARFExpression CreateDWARFExpression(ModuleSP module_sp,
const Symbol &symbol) {
if (!module_sp)
return DWARFExpression();
const ArchSpec &architecture = module_sp->GetArchitecture();
ByteOrder byte_order = architecture.GetByteOrder();
uint32_t address_size = architecture.GetAddressByteSize();
uint32_t byte_size = architecture.GetDataByteSize();
StreamBuffer<32> stream(Stream::eBinary, address_size, byte_order);
stream.PutHex8(lldb_private::dwarf::DW_OP_addr);
stream.PutMaxHex64(symbol.GetFileAddress(), address_size, byte_order);
DataBufferSP buffer =
std::make_shared<DataBufferHeap>(stream.GetData(), stream.GetSize());
lldb_private::DataExtractor extractor(buffer, byte_order, address_size,
byte_size);
DWARFExpression result(extractor);
result.SetRegisterKind(eRegisterKindDWARF);
return result;
}
size_t SymbolFileCTF::ParseObjects(CompileUnit &comp_unit) {
if (!ParseHeader())
return 0;
if (!m_variables.empty())
return 0;
if (!m_ast)
return 0;
ModuleSP module_sp = GetObjectFile()->GetModule();
Symtab *symtab = module_sp->GetSymtab();
if (!symtab)
return 0;
Log *log = GetLog(LLDBLog::Symbols);
LLDB_LOG(log, "Parsing CTF objects");
lldb::offset_t object_offset = m_body_offset + m_header->objtoff;
const lldb::offset_t object_offset_end = m_body_offset + m_header->funcoff;
uint32_t symbol_idx = 0;
Declaration decl;
while (object_offset < object_offset_end) {
const uint32_t type_uid = m_data.GetU32(&object_offset);
if (Symbol *symbol =
symtab->FindSymbolWithType(eSymbolTypeData, Symtab::eDebugYes,
Symtab::eVisibilityAny, symbol_idx)) {
Variable::RangeList ranges;
ranges.Append(symbol->GetFileAddress(), symbol->GetByteSize());
auto type_sp = std::make_shared<SymbolFileType>(*this, type_uid);
DWARFExpressionList location(
module_sp, CreateDWARFExpression(module_sp, *symbol), nullptr);
lldb::user_id_t variable_type_uid = m_variables.size();
m_variables.emplace_back(std::make_shared<Variable>(
variable_type_uid, symbol->GetName().AsCString(),
symbol->GetName().AsCString(), type_sp, eValueTypeVariableGlobal,
m_comp_unit_sp.get(), ranges, &decl, location, symbol->IsExternal(),
/*artificial=*/false,
/*location_is_constant_data*/ false));
}
}
LLDB_LOG(log, "Parsed {0} CTF objects", m_variables.size());
return m_variables.size();
}
uint32_t SymbolFileCTF::CalculateAbilities() {
if (!m_objfile_sp)
return 0;
if (!ParseHeader())
return 0;
return VariableTypes | Functions | GlobalVariables;
}
uint32_t SymbolFileCTF::ResolveSymbolContext(const Address &so_addr,
SymbolContextItem resolve_scope,
SymbolContext &sc) {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
if (m_objfile_sp->GetSymtab() == nullptr)
return 0;
uint32_t resolved_flags = 0;
// Resolve symbols.
if (resolve_scope & eSymbolContextSymbol) {
sc.symbol = m_objfile_sp->GetSymtab()->FindSymbolContainingFileAddress(
so_addr.GetFileAddress());
if (sc.symbol)
resolved_flags |= eSymbolContextSymbol;
}
// Resolve functions.
if (resolve_scope & eSymbolContextFunction) {
for (FunctionSP function_sp : m_functions) {
if (function_sp->GetAddressRange().ContainsFileAddress(
so_addr.GetFileAddress())) {
sc.function = function_sp.get();
resolved_flags |= eSymbolContextFunction;
break;
}
}
}
// Resolve variables.
if (resolve_scope & eSymbolContextVariable) {
for (VariableSP variable_sp : m_variables) {
if (variable_sp->LocationIsValidForAddress(so_addr.GetFileAddress())) {
sc.variable = variable_sp.get();
break;
}
}
}
return resolved_flags;
}
CompUnitSP SymbolFileCTF::ParseCompileUnitAtIndex(uint32_t idx) {
if (idx == 0)
return m_comp_unit_sp;
return {};
}
size_t
SymbolFileCTF::ParseVariablesForContext(const lldb_private::SymbolContext &sc) {
return ParseObjects(*m_comp_unit_sp);
}
void SymbolFileCTF::AddSymbols(Symtab &symtab) {
// CTF does not encode symbols.
// We rely on the existing symbol table to map symbols to type.
}
lldb_private::Type *SymbolFileCTF::ResolveTypeUID(lldb::user_id_t type_uid) {
auto type_it = m_types.find(type_uid);
if (type_it != m_types.end())
return type_it->second.get();
auto ctf_type_it = m_ctf_types.find(type_uid);
if (ctf_type_it == m_ctf_types.end())
return nullptr;
CTFType *ctf_type = ctf_type_it->second.get();
assert(ctf_type && "m_ctf_types should only contain valid CTF types");
Log *log = GetLog(LLDBLog::Symbols);
llvm::Expected<TypeSP> type_or_error = CreateType(ctf_type);
if (!type_or_error) {
LLDB_LOG_ERROR(log, type_or_error.takeError(),
"Failed to create type for {1}: {0}", ctf_type->uid);
return {};
}
TypeSP type_sp = *type_or_error;
if (log) {
StreamString ss;
type_sp->Dump(&ss, true);
LLDB_LOGV(log, "Adding type {0}: {1}", type_sp->GetID(),
llvm::StringRef(ss.GetString()).rtrim());
}
m_types[type_uid] = type_sp;
// Except for record types which we'll need to complete later, we don't need
// the CTF type anymore.
if (!isa<CTFRecord>(ctf_type))
m_ctf_types.erase(type_uid);
return type_sp.get();
}
void SymbolFileCTF::FindTypes(const lldb_private::TypeQuery &match,
lldb_private::TypeResults &results) {
// Make sure we haven't already searched this SymbolFile before.
if (results.AlreadySearched(this))
return;
ConstString name = match.GetTypeBasename();
for (TypeSP type_sp : GetTypeList().Types()) {
if (type_sp && type_sp->GetName() == name) {
results.InsertUnique(type_sp);
if (results.Done(match))
return;
}
}
}
void SymbolFileCTF::FindTypesByRegex(
const lldb_private::RegularExpression &regex, uint32_t max_matches,
lldb_private::TypeMap &types) {
ParseTypes(*m_comp_unit_sp);
size_t matches = 0;
for (TypeSP type_sp : GetTypeList().Types()) {
if (matches == max_matches)
break;
if (type_sp && regex.Execute(type_sp->GetName()))
types.Insert(type_sp);
matches++;
}
}
void SymbolFileCTF::FindFunctions(
const lldb_private::Module::LookupInfo &lookup_info,
const lldb_private::CompilerDeclContext &parent_decl_ctx,
bool include_inlines, lldb_private::SymbolContextList &sc_list) {
ParseFunctions(*m_comp_unit_sp);
ConstString name = lookup_info.GetLookupName();
for (FunctionSP function_sp : m_functions) {
if (function_sp && function_sp->GetName() == name) {
lldb_private::SymbolContext sc;
sc.comp_unit = m_comp_unit_sp.get();
sc.function = function_sp.get();
sc_list.Append(sc);
}
}
}
void SymbolFileCTF::FindFunctions(const lldb_private::RegularExpression &regex,
bool include_inlines,
lldb_private::SymbolContextList &sc_list) {
for (FunctionSP function_sp : m_functions) {
if (function_sp && regex.Execute(function_sp->GetName())) {
lldb_private::SymbolContext sc;
sc.comp_unit = m_comp_unit_sp.get();
sc.function = function_sp.get();
sc_list.Append(sc);
}
}
}
void SymbolFileCTF::FindGlobalVariables(
lldb_private::ConstString name,
const lldb_private::CompilerDeclContext &parent_decl_ctx,
uint32_t max_matches, lldb_private::VariableList &variables) {
ParseObjects(*m_comp_unit_sp);
size_t matches = 0;
for (VariableSP variable_sp : m_variables) {
if (matches == max_matches)
break;
if (variable_sp && variable_sp->GetName() == name) {
variables.AddVariable(variable_sp);
matches++;
}
}
}
void SymbolFileCTF::FindGlobalVariables(
const lldb_private::RegularExpression &regex, uint32_t max_matches,
lldb_private::VariableList &variables) {
ParseObjects(*m_comp_unit_sp);
size_t matches = 0;
for (VariableSP variable_sp : m_variables) {
if (matches == max_matches)
break;
if (variable_sp && regex.Execute(variable_sp->GetName())) {
variables.AddVariable(variable_sp);
matches++;
}
}
}