blob: 08f54b582e3f6b2aca9aed35a4ab2ed5c7a2ba44 [file] [log] [blame]
//===-- TraceIntelPTMultiCpuDecoder.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TraceIntelPTMultiCpuDecoder.h"
#include "TraceIntelPT.h"
#include "llvm/Support/Error.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::trace_intel_pt;
using namespace llvm;
TraceIntelPTMultiCpuDecoder::TraceIntelPTMultiCpuDecoder(
TraceIntelPTSP trace_sp)
: m_trace_wp(trace_sp) {
for (Process *proc : trace_sp->GetAllProcesses()) {
for (ThreadSP thread_sp : proc->GetThreadList().Threads()) {
m_tids.insert(thread_sp->GetID());
}
}
}
TraceIntelPTSP TraceIntelPTMultiCpuDecoder::GetTrace() {
return m_trace_wp.lock();
}
bool TraceIntelPTMultiCpuDecoder::TracesThread(lldb::tid_t tid) const {
return m_tids.count(tid);
}
Expected<Optional<uint64_t>> TraceIntelPTMultiCpuDecoder::FindLowestTSC() {
Optional<uint64_t> lowest_tsc;
TraceIntelPTSP trace_sp = GetTrace();
Error err = GetTrace()->OnAllCpusBinaryDataRead(
IntelPTDataKinds::kIptTrace,
[&](const DenseMap<cpu_id_t, ArrayRef<uint8_t>> &buffers) -> Error {
for (auto &cpu_id_to_buffer : buffers) {
Expected<Optional<uint64_t>> tsc =
FindLowestTSCInTrace(*trace_sp, cpu_id_to_buffer.second);
if (!tsc)
return tsc.takeError();
if (*tsc && (!lowest_tsc || *lowest_tsc > **tsc))
lowest_tsc = **tsc;
}
return Error::success();
});
if (err)
return std::move(err);
return lowest_tsc;
}
Expected<DecodedThreadSP> TraceIntelPTMultiCpuDecoder::Decode(Thread &thread) {
if (Error err = CorrelateContextSwitchesAndIntelPtTraces())
return std::move(err);
TraceIntelPTSP trace_sp = GetTrace();
return trace_sp
->GetThreadTimer(thread.GetID())
.TimeTask("Decoding instructions", [&]() -> Expected<DecodedThreadSP> {
auto it = m_decoded_threads.find(thread.GetID());
if (it != m_decoded_threads.end())
return it->second;
DecodedThreadSP decoded_thread_sp = std::make_shared<DecodedThread>(
thread.shared_from_this(), trace_sp->GetPerfZeroTscConversion());
Error err = trace_sp->OnAllCpusBinaryDataRead(
IntelPTDataKinds::kIptTrace,
[&](const DenseMap<cpu_id_t, ArrayRef<uint8_t>> &buffers) -> Error {
auto it =
m_continuous_executions_per_thread->find(thread.GetID());
if (it != m_continuous_executions_per_thread->end())
return DecodeSystemWideTraceForThread(
*decoded_thread_sp, *trace_sp, buffers, it->second);
return Error::success();
});
if (err)
return std::move(err);
m_decoded_threads.try_emplace(thread.GetID(), decoded_thread_sp);
return decoded_thread_sp;
});
}
static Expected<std::vector<IntelPTThreadSubtrace>>
GetIntelPTSubtracesForCpu(TraceIntelPT &trace, cpu_id_t cpu_id) {
std::vector<IntelPTThreadSubtrace> intel_pt_subtraces;
Error err = trace.OnCpuBinaryDataRead(
cpu_id, IntelPTDataKinds::kIptTrace,
[&](ArrayRef<uint8_t> data) -> Error {
Expected<std::vector<IntelPTThreadSubtrace>> split_trace =
SplitTraceInContinuousExecutions(trace, data);
if (!split_trace)
return split_trace.takeError();
intel_pt_subtraces = std::move(*split_trace);
return Error::success();
});
if (err)
return std::move(err);
return intel_pt_subtraces;
}
Expected<DenseMap<lldb::tid_t, std::vector<IntelPTThreadContinousExecution>>>
TraceIntelPTMultiCpuDecoder::DoCorrelateContextSwitchesAndIntelPtTraces() {
DenseMap<lldb::tid_t, std::vector<IntelPTThreadContinousExecution>>
continuous_executions_per_thread;
TraceIntelPTSP trace_sp = GetTrace();
Optional<LinuxPerfZeroTscConversion> conv_opt =
trace_sp->GetPerfZeroTscConversion();
if (!conv_opt)
return createStringError(
inconvertibleErrorCode(),
"TSC to nanoseconds conversion values were not found");
LinuxPerfZeroTscConversion tsc_conversion = *conv_opt;
for (cpu_id_t cpu_id : trace_sp->GetTracedCpus()) {
Expected<std::vector<IntelPTThreadSubtrace>> intel_pt_subtraces =
GetIntelPTSubtracesForCpu(*trace_sp, cpu_id);
if (!intel_pt_subtraces)
return intel_pt_subtraces.takeError();
m_total_psb_blocks += intel_pt_subtraces->size();
// We'll be iterating through the thread continuous executions and the intel
// pt subtraces sorted by time.
auto it = intel_pt_subtraces->begin();
auto on_new_thread_execution =
[&](const ThreadContinuousExecution &thread_execution) {
IntelPTThreadContinousExecution execution(thread_execution);
for (; it != intel_pt_subtraces->end() &&
it->tsc < thread_execution.GetEndTSC();
it++) {
if (it->tsc > thread_execution.GetStartTSC()) {
execution.intelpt_subtraces.push_back(*it);
} else {
m_unattributed_psb_blocks++;
}
}
continuous_executions_per_thread[thread_execution.tid].push_back(
execution);
};
Error err = trace_sp->OnCpuBinaryDataRead(
cpu_id, IntelPTDataKinds::kPerfContextSwitchTrace,
[&](ArrayRef<uint8_t> data) -> Error {
Expected<std::vector<ThreadContinuousExecution>> executions =
DecodePerfContextSwitchTrace(data, cpu_id, tsc_conversion);
if (!executions)
return executions.takeError();
for (const ThreadContinuousExecution &exec : *executions)
on_new_thread_execution(exec);
return Error::success();
});
if (err)
return std::move(err);
m_unattributed_psb_blocks += intel_pt_subtraces->end() - it;
}
// We now sort the executions of each thread to have them ready for
// instruction decoding
for (auto &tid_executions : continuous_executions_per_thread)
std::sort(tid_executions.second.begin(), tid_executions.second.end());
return continuous_executions_per_thread;
}
Error TraceIntelPTMultiCpuDecoder::CorrelateContextSwitchesAndIntelPtTraces() {
if (m_setup_error)
return createStringError(inconvertibleErrorCode(), m_setup_error->c_str());
if (m_continuous_executions_per_thread)
return Error::success();
Error err = GetTrace()->GetGlobalTimer().TimeTask(
"Context switch and Intel PT traces correlation", [&]() -> Error {
if (auto correlation = DoCorrelateContextSwitchesAndIntelPtTraces()) {
m_continuous_executions_per_thread.emplace(std::move(*correlation));
return Error::success();
} else {
return correlation.takeError();
}
});
if (err) {
m_setup_error = toString(std::move(err));
return createStringError(inconvertibleErrorCode(), m_setup_error->c_str());
}
return Error::success();
}
size_t TraceIntelPTMultiCpuDecoder::GetNumContinuousExecutionsForThread(
lldb::tid_t tid) const {
if (!m_continuous_executions_per_thread)
return 0;
auto it = m_continuous_executions_per_thread->find(tid);
if (it == m_continuous_executions_per_thread->end())
return 0;
return it->second.size();
}
size_t TraceIntelPTMultiCpuDecoder::GetTotalContinuousExecutionsCount() const {
if (!m_continuous_executions_per_thread)
return 0;
size_t count = 0;
for (const auto &kv : *m_continuous_executions_per_thread)
count += kv.second.size();
return count;
}
size_t
TraceIntelPTMultiCpuDecoder::GePSBBlocksCountForThread(lldb::tid_t tid) const {
if (!m_continuous_executions_per_thread)
return 0;
size_t count = 0;
auto it = m_continuous_executions_per_thread->find(tid);
if (it == m_continuous_executions_per_thread->end())
return 0;
for (const IntelPTThreadContinousExecution &execution : it->second)
count += execution.intelpt_subtraces.size();
return count;
}
size_t TraceIntelPTMultiCpuDecoder::GetUnattributedPSBBlocksCount() const {
return m_unattributed_psb_blocks;
}
size_t TraceIntelPTMultiCpuDecoder::GetTotalPSBBlocksCount() const {
return m_total_psb_blocks;
}