blob: 569e3a0785fe00b0bebcede7e73ab0cb988c8e68 [file] [log] [blame]
//===-- RegisterInfoPOSIX_arm64.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include <cassert>
#include <cstddef>
#include <vector>
#include "lldb/lldb-defines.h"
#include "llvm/Support/Compiler.h"
#include "RegisterInfoPOSIX_arm64.h"
// Based on RegisterContextDarwin_arm64.cpp
#define GPR_OFFSET(idx) ((idx)*8)
#define GPR_OFFSET_NAME(reg) \
(LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::GPR, reg))
#define FPU_OFFSET(idx) ((idx)*16 + sizeof(RegisterInfoPOSIX_arm64::GPR))
#define FPU_OFFSET_NAME(reg) \
(LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::FPU, reg) + \
sizeof(RegisterInfoPOSIX_arm64::GPR))
// This information is based on AArch64 with SVE architecture reference manual.
// AArch64 with SVE has 32 Z and 16 P vector registers. There is also an FFR
// (First Fault) register and a VG (Vector Granule) pseudo register.
// SVE 16-byte quad word is the basic unit of expansion in vector length.
#define SVE_QUAD_WORD_BYTES 16
// Vector length is the multiplier which decides the no of quad words,
// (multiples of 128-bits or 16-bytes) present in a Z register. Vector length
// is decided during execution and can change at runtime. SVE AArch64 register
// infos have modes one for each valid value of vector length. A change in
// vector length requires register context to update sizes of SVE Z, P and FFR.
// Also register context needs to update byte offsets of all registers affected
// by the change in vector length.
#define SVE_REGS_DEFAULT_OFFSET_LINUX sizeof(RegisterInfoPOSIX_arm64::GPR)
#define SVE_OFFSET_VG SVE_REGS_DEFAULT_OFFSET_LINUX
#define EXC_OFFSET_NAME(reg) \
(LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::EXC, reg) + \
sizeof(RegisterInfoPOSIX_arm64::GPR) + \
sizeof(RegisterInfoPOSIX_arm64::FPU))
#define DBG_OFFSET_NAME(reg) \
(LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::DBG, reg) + \
sizeof(RegisterInfoPOSIX_arm64::GPR) + \
sizeof(RegisterInfoPOSIX_arm64::FPU) + \
sizeof(RegisterInfoPOSIX_arm64::EXC))
#define DEFINE_DBG(reg, i) \
#reg, NULL, \
sizeof(((RegisterInfoPOSIX_arm64::DBG *) NULL)->reg[i]), \
DBG_OFFSET_NAME(reg[i]), lldb::eEncodingUint, lldb::eFormatHex, \
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \
LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \
dbg_##reg##i }, \
NULL, NULL,
#define REG_CONTEXT_SIZE \
(sizeof(RegisterInfoPOSIX_arm64::GPR) + \
sizeof(RegisterInfoPOSIX_arm64::FPU) + \
sizeof(RegisterInfoPOSIX_arm64::EXC))
// Include RegisterInfos_arm64 to declare our g_register_infos_arm64 structure.
#define DECLARE_REGISTER_INFOS_ARM64_STRUCT
#include "RegisterInfos_arm64.h"
#include "RegisterInfos_arm64_sve.h"
#undef DECLARE_REGISTER_INFOS_ARM64_STRUCT
static lldb_private::RegisterInfo g_register_infos_pauth[] = {
DEFINE_EXTENSION_REG(data_mask), DEFINE_EXTENSION_REG(code_mask)};
static lldb_private::RegisterInfo g_register_infos_mte[] = {
DEFINE_EXTENSION_REG(mte_ctrl)};
// Number of register sets provided by this context.
enum {
k_num_gpr_registers = gpr_w28 - gpr_x0 + 1,
k_num_fpr_registers = fpu_fpcr - fpu_v0 + 1,
k_num_sve_registers = sve_ffr - sve_vg + 1,
k_num_mte_register = 1,
k_num_pauth_register = 2,
k_num_register_sets_default = 2,
k_num_register_sets = 3
};
// ARM64 general purpose registers.
static const uint32_t g_gpr_regnums_arm64[] = {
gpr_x0, gpr_x1, gpr_x2, gpr_x3,
gpr_x4, gpr_x5, gpr_x6, gpr_x7,
gpr_x8, gpr_x9, gpr_x10, gpr_x11,
gpr_x12, gpr_x13, gpr_x14, gpr_x15,
gpr_x16, gpr_x17, gpr_x18, gpr_x19,
gpr_x20, gpr_x21, gpr_x22, gpr_x23,
gpr_x24, gpr_x25, gpr_x26, gpr_x27,
gpr_x28, gpr_fp, gpr_lr, gpr_sp,
gpr_pc, gpr_cpsr, gpr_w0, gpr_w1,
gpr_w2, gpr_w3, gpr_w4, gpr_w5,
gpr_w6, gpr_w7, gpr_w8, gpr_w9,
gpr_w10, gpr_w11, gpr_w12, gpr_w13,
gpr_w14, gpr_w15, gpr_w16, gpr_w17,
gpr_w18, gpr_w19, gpr_w20, gpr_w21,
gpr_w22, gpr_w23, gpr_w24, gpr_w25,
gpr_w26, gpr_w27, gpr_w28, LLDB_INVALID_REGNUM};
static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) -
1) == k_num_gpr_registers,
"g_gpr_regnums_arm64 has wrong number of register infos");
// ARM64 floating point registers.
static const uint32_t g_fpu_regnums_arm64[] = {
fpu_v0, fpu_v1, fpu_v2,
fpu_v3, fpu_v4, fpu_v5,
fpu_v6, fpu_v7, fpu_v8,
fpu_v9, fpu_v10, fpu_v11,
fpu_v12, fpu_v13, fpu_v14,
fpu_v15, fpu_v16, fpu_v17,
fpu_v18, fpu_v19, fpu_v20,
fpu_v21, fpu_v22, fpu_v23,
fpu_v24, fpu_v25, fpu_v26,
fpu_v27, fpu_v28, fpu_v29,
fpu_v30, fpu_v31, fpu_s0,
fpu_s1, fpu_s2, fpu_s3,
fpu_s4, fpu_s5, fpu_s6,
fpu_s7, fpu_s8, fpu_s9,
fpu_s10, fpu_s11, fpu_s12,
fpu_s13, fpu_s14, fpu_s15,
fpu_s16, fpu_s17, fpu_s18,
fpu_s19, fpu_s20, fpu_s21,
fpu_s22, fpu_s23, fpu_s24,
fpu_s25, fpu_s26, fpu_s27,
fpu_s28, fpu_s29, fpu_s30,
fpu_s31, fpu_d0, fpu_d1,
fpu_d2, fpu_d3, fpu_d4,
fpu_d5, fpu_d6, fpu_d7,
fpu_d8, fpu_d9, fpu_d10,
fpu_d11, fpu_d12, fpu_d13,
fpu_d14, fpu_d15, fpu_d16,
fpu_d17, fpu_d18, fpu_d19,
fpu_d20, fpu_d21, fpu_d22,
fpu_d23, fpu_d24, fpu_d25,
fpu_d26, fpu_d27, fpu_d28,
fpu_d29, fpu_d30, fpu_d31,
fpu_fpsr, fpu_fpcr, LLDB_INVALID_REGNUM};
static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) -
1) == k_num_fpr_registers,
"g_fpu_regnums_arm64 has wrong number of register infos");
// ARM64 SVE registers.
static const uint32_t g_sve_regnums_arm64[] = {
sve_vg, sve_z0, sve_z1,
sve_z2, sve_z3, sve_z4,
sve_z5, sve_z6, sve_z7,
sve_z8, sve_z9, sve_z10,
sve_z11, sve_z12, sve_z13,
sve_z14, sve_z15, sve_z16,
sve_z17, sve_z18, sve_z19,
sve_z20, sve_z21, sve_z22,
sve_z23, sve_z24, sve_z25,
sve_z26, sve_z27, sve_z28,
sve_z29, sve_z30, sve_z31,
sve_p0, sve_p1, sve_p2,
sve_p3, sve_p4, sve_p5,
sve_p6, sve_p7, sve_p8,
sve_p9, sve_p10, sve_p11,
sve_p12, sve_p13, sve_p14,
sve_p15, sve_ffr, LLDB_INVALID_REGNUM};
static_assert(((sizeof g_sve_regnums_arm64 / sizeof g_sve_regnums_arm64[0]) -
1) == k_num_sve_registers,
"g_sve_regnums_arm64 has wrong number of register infos");
// Register sets for ARM64.
static const lldb_private::RegisterSet g_reg_sets_arm64[k_num_register_sets] = {
{"General Purpose Registers", "gpr", k_num_gpr_registers,
g_gpr_regnums_arm64},
{"Floating Point Registers", "fpu", k_num_fpr_registers,
g_fpu_regnums_arm64},
{"Scalable Vector Extension Registers", "sve", k_num_sve_registers,
g_sve_regnums_arm64}};
static const lldb_private::RegisterSet g_reg_set_pauth_arm64 = {
"Pointer Authentication Registers", "pauth", k_num_pauth_register, nullptr};
static const lldb_private::RegisterSet g_reg_set_mte_arm64 = {
"MTE Control Register", "mte", k_num_mte_register, nullptr};
RegisterInfoPOSIX_arm64::RegisterInfoPOSIX_arm64(
const lldb_private::ArchSpec &target_arch, lldb_private::Flags opt_regsets)
: lldb_private::RegisterInfoAndSetInterface(target_arch),
m_opt_regsets(opt_regsets) {
switch (target_arch.GetMachine()) {
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32: {
m_register_set_p = g_reg_sets_arm64;
m_register_set_count = k_num_register_sets_default;
m_per_regset_regnum_range[GPRegSet] = std::make_pair(gpr_x0, gpr_w28 + 1);
m_per_regset_regnum_range[FPRegSet] = std::make_pair(fpu_v0, fpu_fpcr + 1);
// Now configure register sets supported by current target. If we have a
// dynamic register set like MTE, Pointer Authentication regset then we need
// to create dynamic register infos and regset array. Push back all optional
// register infos and regset and calculate register offsets accordingly.
if (m_opt_regsets.AllSet(eRegsetMaskSVE)) {
m_register_info_p = g_register_infos_arm64_sve_le;
m_register_info_count = sve_ffr + 1;
m_per_regset_regnum_range[m_register_set_count++] =
std::make_pair(sve_vg, sve_ffr + 1);
} else {
m_register_info_p = g_register_infos_arm64_le;
m_register_info_count = fpu_fpcr + 1;
}
if (m_opt_regsets.AnySet(eRegsetMaskDynamic)) {
llvm::ArrayRef<lldb_private::RegisterInfo> reg_infos_ref =
llvm::makeArrayRef(m_register_info_p, m_register_info_count);
llvm::ArrayRef<lldb_private::RegisterSet> reg_sets_ref =
llvm::makeArrayRef(m_register_set_p, m_register_set_count);
llvm::copy(reg_infos_ref, std::back_inserter(m_dynamic_reg_infos));
llvm::copy(reg_sets_ref, std::back_inserter(m_dynamic_reg_sets));
if (m_opt_regsets.AllSet(eRegsetMaskPAuth))
AddRegSetPAuth();
if (m_opt_regsets.AllSet(eRegsetMaskMTE))
AddRegSetMTE();
m_register_info_count = m_dynamic_reg_infos.size();
m_register_info_p = m_dynamic_reg_infos.data();
m_register_set_p = m_dynamic_reg_sets.data();
m_register_set_count = m_dynamic_reg_sets.size();
}
break;
}
default:
assert(false && "Unhandled target architecture.");
}
}
uint32_t RegisterInfoPOSIX_arm64::GetRegisterCount() const {
return m_register_info_count;
}
size_t RegisterInfoPOSIX_arm64::GetGPRSizeStatic() {
return sizeof(struct RegisterInfoPOSIX_arm64::GPR);
}
size_t RegisterInfoPOSIX_arm64::GetFPRSize() const {
return sizeof(struct RegisterInfoPOSIX_arm64::FPU);
}
const lldb_private::RegisterInfo *
RegisterInfoPOSIX_arm64::GetRegisterInfo() const {
return m_register_info_p;
}
size_t RegisterInfoPOSIX_arm64::GetRegisterSetCount() const {
return m_register_set_count;
}
size_t RegisterInfoPOSIX_arm64::GetRegisterSetFromRegisterIndex(
uint32_t reg_index) const {
for (const auto &regset_range : m_per_regset_regnum_range) {
if (reg_index >= regset_range.second.first &&
reg_index < regset_range.second.second)
return regset_range.first;
}
return LLDB_INVALID_REGNUM;
}
const lldb_private::RegisterSet *
RegisterInfoPOSIX_arm64::GetRegisterSet(size_t set_index) const {
if (set_index < GetRegisterSetCount())
return &m_register_set_p[set_index];
return nullptr;
}
void RegisterInfoPOSIX_arm64::AddRegSetPAuth() {
uint32_t pa_regnum = m_dynamic_reg_infos.size();
for (uint32_t i = 0; i < k_num_pauth_register; i++) {
pauth_regnum_collection.push_back(pa_regnum + i);
m_dynamic_reg_infos.push_back(g_register_infos_pauth[i]);
m_dynamic_reg_infos[pa_regnum + i].byte_offset =
m_dynamic_reg_infos[pa_regnum + i - 1].byte_offset +
m_dynamic_reg_infos[pa_regnum + i - 1].byte_size;
m_dynamic_reg_infos[pa_regnum + i].kinds[lldb::eRegisterKindLLDB] =
pa_regnum + i;
}
m_per_regset_regnum_range[m_register_set_count] =
std::make_pair(pa_regnum, m_dynamic_reg_infos.size());
m_dynamic_reg_sets.push_back(g_reg_set_pauth_arm64);
m_dynamic_reg_sets.back().registers = pauth_regnum_collection.data();
}
void RegisterInfoPOSIX_arm64::AddRegSetMTE() {
uint32_t mte_regnum = m_dynamic_reg_infos.size();
m_mte_regnum_collection.push_back(mte_regnum);
m_dynamic_reg_infos.push_back(g_register_infos_mte[0]);
m_dynamic_reg_infos[mte_regnum].byte_offset =
m_dynamic_reg_infos[mte_regnum - 1].byte_offset +
m_dynamic_reg_infos[mte_regnum - 1].byte_size;
m_dynamic_reg_infos[mte_regnum].kinds[lldb::eRegisterKindLLDB] = mte_regnum;
m_per_regset_regnum_range[m_register_set_count] =
std::make_pair(mte_regnum, mte_regnum + 1);
m_dynamic_reg_sets.push_back(g_reg_set_mte_arm64);
m_dynamic_reg_sets.back().registers = m_mte_regnum_collection.data();
}
uint32_t RegisterInfoPOSIX_arm64::ConfigureVectorLength(uint32_t sve_vq) {
// sve_vq contains SVE Quad vector length in context of AArch64 SVE.
// SVE register infos if enabled cannot be disabled by selecting sve_vq = 0.
// Also if an invalid or previously set vector length is passed to this
// function then it will exit immediately with previously set vector length.
if (!VectorSizeIsValid(sve_vq) || m_vector_reg_vq == sve_vq)
return m_vector_reg_vq;
// We cannot enable AArch64 only mode if SVE was enabled.
if (sve_vq == eVectorQuadwordAArch64 &&
m_vector_reg_vq > eVectorQuadwordAArch64)
sve_vq = eVectorQuadwordAArch64SVE;
m_vector_reg_vq = sve_vq;
if (sve_vq == eVectorQuadwordAArch64)
return m_vector_reg_vq;
std::vector<lldb_private::RegisterInfo> &reg_info_ref =
m_per_vq_reg_infos[sve_vq];
if (reg_info_ref.empty()) {
reg_info_ref = llvm::makeArrayRef(m_register_info_p, m_register_info_count);
uint32_t offset = SVE_REGS_DEFAULT_OFFSET_LINUX;
reg_info_ref[fpu_fpsr].byte_offset = offset;
reg_info_ref[fpu_fpcr].byte_offset = offset + 4;
reg_info_ref[sve_vg].byte_offset = offset + 8;
offset += 16;
// Update Z registers size and offset
uint32_t s_reg_base = fpu_s0;
uint32_t d_reg_base = fpu_d0;
uint32_t v_reg_base = fpu_v0;
uint32_t z_reg_base = sve_z0;
for (uint32_t index = 0; index < 32; index++) {
reg_info_ref[s_reg_base + index].byte_offset = offset;
reg_info_ref[d_reg_base + index].byte_offset = offset;
reg_info_ref[v_reg_base + index].byte_offset = offset;
reg_info_ref[z_reg_base + index].byte_offset = offset;
reg_info_ref[z_reg_base + index].byte_size = sve_vq * SVE_QUAD_WORD_BYTES;
offset += reg_info_ref[z_reg_base + index].byte_size;
}
// Update P registers and FFR size and offset
for (uint32_t it = sve_p0; it <= sve_ffr; it++) {
reg_info_ref[it].byte_offset = offset;
reg_info_ref[it].byte_size = sve_vq * SVE_QUAD_WORD_BYTES / 8;
offset += reg_info_ref[it].byte_size;
}
for (uint32_t it = sve_ffr + 1; it < m_register_info_count; it++) {
reg_info_ref[it].byte_offset = offset;
offset += reg_info_ref[it].byte_size;
}
m_per_vq_reg_infos[sve_vq] = reg_info_ref;
}
m_register_info_p = m_per_vq_reg_infos[sve_vq].data();
return m_vector_reg_vq;
}
bool RegisterInfoPOSIX_arm64::IsSVEReg(unsigned reg) const {
if (m_vector_reg_vq > eVectorQuadwordAArch64)
return (sve_vg <= reg && reg <= sve_ffr);
else
return false;
}
bool RegisterInfoPOSIX_arm64::IsSVEZReg(unsigned reg) const {
return (sve_z0 <= reg && reg <= sve_z31);
}
bool RegisterInfoPOSIX_arm64::IsSVEPReg(unsigned reg) const {
return (sve_p0 <= reg && reg <= sve_p15);
}
bool RegisterInfoPOSIX_arm64::IsSVERegVG(unsigned reg) const {
return sve_vg == reg;
}
bool RegisterInfoPOSIX_arm64::IsPAuthReg(unsigned reg) const {
return llvm::is_contained(pauth_regnum_collection, reg);
}
bool RegisterInfoPOSIX_arm64::IsMTEReg(unsigned reg) const {
return llvm::is_contained(m_mte_regnum_collection, reg);
}
uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEZ0() const { return sve_z0; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEFFR() const { return sve_ffr; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPCR() const { return fpu_fpcr; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPSR() const { return fpu_fpsr; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEVG() const { return sve_vg; }
uint32_t RegisterInfoPOSIX_arm64::GetPAuthOffset() const {
return m_register_info_p[pauth_regnum_collection[0]].byte_offset;
}
uint32_t RegisterInfoPOSIX_arm64::GetMTEOffset() const {
return m_register_info_p[m_mte_regnum_collection[0]].byte_offset;
}