blob: e96a41fe86d01a8f569abdc6703fba7deded6dc9 [file] [log] [blame]
//===-- NativeRegisterContextLinux_ppc64le.cpp ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implementation is related to the OpenPOWER ABI for Power Architecture
// 64-bit ELF V2 ABI
#if defined(__powerpc64__)
#include "NativeRegisterContextLinux_ppc64le.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Host/common/NativeProcessProtocol.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_ppc64le.h"
// System includes - They have to be included after framework includes because
// they define some macros which collide with variable names in other modules
#include <sys/socket.h>
#include <elf.h>
#include <asm/ptrace.h>
#define REG_CONTEXT_SIZE \
(GetGPRSize() + GetFPRSize() + sizeof(m_vmx_ppc64le) + sizeof(m_vsx_ppc64le))
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;
static const uint32_t g_gpr_regnums_ppc64le[] = {
gpr_r0_ppc64le, gpr_r1_ppc64le, gpr_r2_ppc64le, gpr_r3_ppc64le,
gpr_r4_ppc64le, gpr_r5_ppc64le, gpr_r6_ppc64le, gpr_r7_ppc64le,
gpr_r8_ppc64le, gpr_r9_ppc64le, gpr_r10_ppc64le, gpr_r11_ppc64le,
gpr_r12_ppc64le, gpr_r13_ppc64le, gpr_r14_ppc64le, gpr_r15_ppc64le,
gpr_r16_ppc64le, gpr_r17_ppc64le, gpr_r18_ppc64le, gpr_r19_ppc64le,
gpr_r20_ppc64le, gpr_r21_ppc64le, gpr_r22_ppc64le, gpr_r23_ppc64le,
gpr_r24_ppc64le, gpr_r25_ppc64le, gpr_r26_ppc64le, gpr_r27_ppc64le,
gpr_r28_ppc64le, gpr_r29_ppc64le, gpr_r30_ppc64le, gpr_r31_ppc64le,
gpr_pc_ppc64le, gpr_msr_ppc64le, gpr_origr3_ppc64le, gpr_ctr_ppc64le,
gpr_lr_ppc64le, gpr_xer_ppc64le, gpr_cr_ppc64le, gpr_softe_ppc64le,
gpr_trap_ppc64le,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static const uint32_t g_fpr_regnums_ppc64le[] = {
fpr_f0_ppc64le, fpr_f1_ppc64le, fpr_f2_ppc64le, fpr_f3_ppc64le,
fpr_f4_ppc64le, fpr_f5_ppc64le, fpr_f6_ppc64le, fpr_f7_ppc64le,
fpr_f8_ppc64le, fpr_f9_ppc64le, fpr_f10_ppc64le, fpr_f11_ppc64le,
fpr_f12_ppc64le, fpr_f13_ppc64le, fpr_f14_ppc64le, fpr_f15_ppc64le,
fpr_f16_ppc64le, fpr_f17_ppc64le, fpr_f18_ppc64le, fpr_f19_ppc64le,
fpr_f20_ppc64le, fpr_f21_ppc64le, fpr_f22_ppc64le, fpr_f23_ppc64le,
fpr_f24_ppc64le, fpr_f25_ppc64le, fpr_f26_ppc64le, fpr_f27_ppc64le,
fpr_f28_ppc64le, fpr_f29_ppc64le, fpr_f30_ppc64le, fpr_f31_ppc64le,
fpr_fpscr_ppc64le,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static const uint32_t g_vmx_regnums_ppc64le[] = {
vmx_vr0_ppc64le, vmx_vr1_ppc64le, vmx_vr2_ppc64le, vmx_vr3_ppc64le,
vmx_vr4_ppc64le, vmx_vr5_ppc64le, vmx_vr6_ppc64le, vmx_vr7_ppc64le,
vmx_vr8_ppc64le, vmx_vr9_ppc64le, vmx_vr10_ppc64le, vmx_vr11_ppc64le,
vmx_vr12_ppc64le, vmx_vr13_ppc64le, vmx_vr14_ppc64le, vmx_vr15_ppc64le,
vmx_vr16_ppc64le, vmx_vr17_ppc64le, vmx_vr18_ppc64le, vmx_vr19_ppc64le,
vmx_vr20_ppc64le, vmx_vr21_ppc64le, vmx_vr22_ppc64le, vmx_vr23_ppc64le,
vmx_vr24_ppc64le, vmx_vr25_ppc64le, vmx_vr26_ppc64le, vmx_vr27_ppc64le,
vmx_vr28_ppc64le, vmx_vr29_ppc64le, vmx_vr30_ppc64le, vmx_vr31_ppc64le,
vmx_vscr_ppc64le, vmx_vrsave_ppc64le,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static const uint32_t g_vsx_regnums_ppc64le[] = {
vsx_vs0_ppc64le, vsx_vs1_ppc64le, vsx_vs2_ppc64le, vsx_vs3_ppc64le,
vsx_vs4_ppc64le, vsx_vs5_ppc64le, vsx_vs6_ppc64le, vsx_vs7_ppc64le,
vsx_vs8_ppc64le, vsx_vs9_ppc64le, vsx_vs10_ppc64le, vsx_vs11_ppc64le,
vsx_vs12_ppc64le, vsx_vs13_ppc64le, vsx_vs14_ppc64le, vsx_vs15_ppc64le,
vsx_vs16_ppc64le, vsx_vs17_ppc64le, vsx_vs18_ppc64le, vsx_vs19_ppc64le,
vsx_vs20_ppc64le, vsx_vs21_ppc64le, vsx_vs22_ppc64le, vsx_vs23_ppc64le,
vsx_vs24_ppc64le, vsx_vs25_ppc64le, vsx_vs26_ppc64le, vsx_vs27_ppc64le,
vsx_vs28_ppc64le, vsx_vs29_ppc64le, vsx_vs30_ppc64le, vsx_vs31_ppc64le,
vsx_vs32_ppc64le, vsx_vs33_ppc64le, vsx_vs34_ppc64le, vsx_vs35_ppc64le,
vsx_vs36_ppc64le, vsx_vs37_ppc64le, vsx_vs38_ppc64le, vsx_vs39_ppc64le,
vsx_vs40_ppc64le, vsx_vs41_ppc64le, vsx_vs42_ppc64le, vsx_vs43_ppc64le,
vsx_vs44_ppc64le, vsx_vs45_ppc64le, vsx_vs46_ppc64le, vsx_vs47_ppc64le,
vsx_vs48_ppc64le, vsx_vs49_ppc64le, vsx_vs50_ppc64le, vsx_vs51_ppc64le,
vsx_vs52_ppc64le, vsx_vs53_ppc64le, vsx_vs54_ppc64le, vsx_vs55_ppc64le,
vsx_vs56_ppc64le, vsx_vs57_ppc64le, vsx_vs58_ppc64le, vsx_vs59_ppc64le,
vsx_vs60_ppc64le, vsx_vs61_ppc64le, vsx_vs62_ppc64le, vsx_vs63_ppc64le,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
// Number of register sets provided by this context.
static constexpr int k_num_register_sets = 4;
static const RegisterSet g_reg_sets_ppc64le[k_num_register_sets] = {
{"General Purpose Registers", "gpr", k_num_gpr_registers_ppc64le,
g_gpr_regnums_ppc64le},
{"Floating Point Registers", "fpr", k_num_fpr_registers_ppc64le,
g_fpr_regnums_ppc64le},
{"AltiVec/VMX Registers", "vmx", k_num_vmx_registers_ppc64le,
g_vmx_regnums_ppc64le},
{"VSX Registers", "vsx", k_num_vsx_registers_ppc64le,
g_vsx_regnums_ppc64le},
};
std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
const ArchSpec &target_arch, NativeThreadLinux &native_thread) {
switch (target_arch.GetMachine()) {
case llvm::Triple::ppc64le:
return std::make_unique<NativeRegisterContextLinux_ppc64le>(target_arch,
native_thread);
default:
llvm_unreachable("have no register context for architecture");
}
}
llvm::Expected<ArchSpec>
NativeRegisterContextLinux::DetermineArchitecture(lldb::tid_t tid) {
return HostInfo::GetArchitecture();
}
NativeRegisterContextLinux_ppc64le::NativeRegisterContextLinux_ppc64le(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
: NativeRegisterContextRegisterInfo(
native_thread, new RegisterInfoPOSIX_ppc64le(target_arch)),
NativeRegisterContextLinux(native_thread) {
if (target_arch.GetMachine() != llvm::Triple::ppc64le) {
llvm_unreachable("Unhandled target architecture.");
}
::memset(&m_gpr_ppc64le, 0, sizeof(m_gpr_ppc64le));
::memset(&m_fpr_ppc64le, 0, sizeof(m_fpr_ppc64le));
::memset(&m_vmx_ppc64le, 0, sizeof(m_vmx_ppc64le));
::memset(&m_vsx_ppc64le, 0, sizeof(m_vsx_ppc64le));
::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
}
uint32_t NativeRegisterContextLinux_ppc64le::GetRegisterSetCount() const {
return k_num_register_sets;
}
const RegisterSet *
NativeRegisterContextLinux_ppc64le::GetRegisterSet(uint32_t set_index) const {
if (set_index < k_num_register_sets)
return &g_reg_sets_ppc64le[set_index];
return nullptr;
}
uint32_t NativeRegisterContextLinux_ppc64le::GetUserRegisterCount() const {
uint32_t count = 0;
for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
count += g_reg_sets_ppc64le[set_index].num_registers;
return count;
}
Status NativeRegisterContextLinux_ppc64le::ReadRegister(
const RegisterInfo *reg_info, RegisterValue &reg_value) {
Status error;
if (!reg_info) {
error.SetErrorString("reg_info NULL");
return error;
}
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
if (IsFPR(reg)) {
error = ReadFPR();
if (error.Fail())
return error;
// Get pointer to m_fpr_ppc64le variable and set the data from it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr_ppc64le);
uint8_t *src = (uint8_t *)&m_fpr_ppc64le + fpr_offset;
reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
eByteOrderLittle, error);
} else if (IsVSX(reg)) {
uint32_t vsx_offset = CalculateVsxOffset(reg_info);
assert(vsx_offset < sizeof(m_vsx_ppc64le));
if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) {
error = ReadVSX();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
uint64_t value[2];
uint8_t *dst, *src;
dst = (uint8_t *)&value;
src = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2;
::memcpy(dst, src, 8);
dst += 8;
src = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2;
::memcpy(dst, src, 8);
reg_value.SetFromMemoryData(reg_info, &value, reg_info->byte_size,
eByteOrderLittle, error);
} else {
error = ReadVMX();
if (error.Fail())
return error;
// Get pointer to m_vmx_ppc64le variable and set the data from it.
uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2;
uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
eByteOrderLittle, error);
}
} else if (IsVMX(reg)) {
error = ReadVMX();
if (error.Fail())
return error;
// Get pointer to m_vmx_ppc64le variable and set the data from it.
uint32_t vmx_offset = CalculateVmxOffset(reg_info);
assert(vmx_offset < sizeof m_vmx_ppc64le);
uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
eByteOrderLittle, error);
} else if (IsGPR(reg)) {
error = ReadGPR();
if (error.Fail())
return error;
uint8_t *src = (uint8_t *) &m_gpr_ppc64le + reg_info->byte_offset;
reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
eByteOrderLittle, error);
} else {
return Status("failed - register wasn't recognized to be a GPR, FPR, VSX "
"or VMX, read strategy unknown");
}
return error;
}
Status NativeRegisterContextLinux_ppc64le::WriteRegister(
const RegisterInfo *reg_info, const RegisterValue &reg_value) {
Status error;
if (!reg_info)
return Status("reg_info NULL");
const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
if (reg_index == LLDB_INVALID_REGNUM)
return Status("no lldb regnum for %s", reg_info && reg_info->name
? reg_info->name
: "<unknown register>");
if (IsGPR(reg_index)) {
error = ReadGPR();
if (error.Fail())
return error;
uint8_t *dst = (uint8_t *)&m_gpr_ppc64le + reg_info->byte_offset;
::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
error = WriteGPR();
if (error.Fail())
return error;
return Status();
}
if (IsFPR(reg_index)) {
error = ReadFPR();
if (error.Fail())
return error;
// Get pointer to m_fpr_ppc64le variable and set the data to it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < GetFPRSize());
uint8_t *dst = (uint8_t *)&m_fpr_ppc64le + fpr_offset;
::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
error = WriteFPR();
if (error.Fail())
return error;
return Status();
}
if (IsVMX(reg_index)) {
error = ReadVMX();
if (error.Fail())
return error;
// Get pointer to m_vmx_ppc64le variable and set the data to it.
uint32_t vmx_offset = CalculateVmxOffset(reg_info);
assert(vmx_offset < sizeof(m_vmx_ppc64le));
uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
error = WriteVMX();
if (error.Fail())
return error;
return Status();
}
if (IsVSX(reg_index)) {
uint32_t vsx_offset = CalculateVsxOffset(reg_info);
assert(vsx_offset < sizeof(m_vsx_ppc64le));
if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) {
error = ReadVSX();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
uint64_t value[2];
::memcpy(value, reg_value.GetBytes(), 16);
uint8_t *dst, *src;
src = (uint8_t *)value;
dst = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2;
::memcpy(dst, src, 8);
src += 8;
dst = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2;
::memcpy(dst, src, 8);
WriteVSX();
WriteFPR();
} else {
error = ReadVMX();
if (error.Fail())
return error;
// Get pointer to m_vmx_ppc64le variable and set the data from it.
uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2;
uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
WriteVMX();
}
return Status();
}
return Status("failed - register wasn't recognized to be a GPR, FPR, VSX "
"or VMX, write strategy unknown");
}
Status NativeRegisterContextLinux_ppc64le::ReadAllRegisterValues(
lldb::WritableDataBufferSP &data_sp) {
Status error;
data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
error = ReadGPR();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
error = ReadVMX();
if (error.Fail())
return error;
error = ReadVSX();
if (error.Fail())
return error;
uint8_t *dst = data_sp->GetBytes();
::memcpy(dst, &m_gpr_ppc64le, GetGPRSize());
dst += GetGPRSize();
::memcpy(dst, &m_fpr_ppc64le, GetFPRSize());
dst += GetFPRSize();
::memcpy(dst, &m_vmx_ppc64le, sizeof(m_vmx_ppc64le));
dst += sizeof(m_vmx_ppc64le);
::memcpy(dst, &m_vsx_ppc64le, sizeof(m_vsx_ppc64le));
return error;
}
Status NativeRegisterContextLinux_ppc64le::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
Status error;
if (!data_sp) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_ppc64le::%s invalid data_sp provided",
__FUNCTION__);
return error;
}
if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_ppc64le::%s data_sp contained mismatched "
"data size, expected %" PRIu64 ", actual %" PRIu64,
__FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
return error;
}
const uint8_t *src = data_sp->GetBytes();
if (src == nullptr) {
error.SetErrorStringWithFormat("NativeRegisterContextLinux_ppc64le::%s "
"DataBuffer::GetBytes() returned a null "
"pointer",
__FUNCTION__);
return error;
}
::memcpy(&m_gpr_ppc64le, src, GetGPRSize());
error = WriteGPR();
if (error.Fail())
return error;
src += GetGPRSize();
::memcpy(&m_fpr_ppc64le, src, GetFPRSize());
error = WriteFPR();
if (error.Fail())
return error;
src += GetFPRSize();
::memcpy(&m_vmx_ppc64le, src, sizeof(m_vmx_ppc64le));
error = WriteVMX();
if (error.Fail())
return error;
src += sizeof(m_vmx_ppc64le);
::memcpy(&m_vsx_ppc64le, src, sizeof(m_vsx_ppc64le));
error = WriteVSX();
return error;
}
bool NativeRegisterContextLinux_ppc64le::IsGPR(unsigned reg) const {
return reg <= k_last_gpr_ppc64le; // GPR's come first.
}
bool NativeRegisterContextLinux_ppc64le::IsFPR(unsigned reg) const {
return (k_first_fpr_ppc64le <= reg && reg <= k_last_fpr_ppc64le);
}
uint32_t NativeRegisterContextLinux_ppc64le::CalculateFprOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset -
GetRegisterInfoAtIndex(k_first_fpr_ppc64le)->byte_offset;
}
uint32_t NativeRegisterContextLinux_ppc64le::CalculateVmxOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset -
GetRegisterInfoAtIndex(k_first_vmx_ppc64le)->byte_offset;
}
uint32_t NativeRegisterContextLinux_ppc64le::CalculateVsxOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset -
GetRegisterInfoAtIndex(k_first_vsx_ppc64le)->byte_offset;
}
Status NativeRegisterContextLinux_ppc64le::ReadVMX() {
int regset = NT_PPC_VMX;
return NativeProcessLinux::PtraceWrapper(PTRACE_GETVRREGS, m_thread.GetID(),
&regset, &m_vmx_ppc64le,
sizeof(m_vmx_ppc64le));
}
Status NativeRegisterContextLinux_ppc64le::WriteVMX() {
int regset = NT_PPC_VMX;
return NativeProcessLinux::PtraceWrapper(PTRACE_SETVRREGS, m_thread.GetID(),
&regset, &m_vmx_ppc64le,
sizeof(m_vmx_ppc64le));
}
Status NativeRegisterContextLinux_ppc64le::ReadVSX() {
int regset = NT_PPC_VSX;
return NativeProcessLinux::PtraceWrapper(PTRACE_GETVSRREGS, m_thread.GetID(),
&regset, &m_vsx_ppc64le,
sizeof(m_vsx_ppc64le));
}
Status NativeRegisterContextLinux_ppc64le::WriteVSX() {
int regset = NT_PPC_VSX;
return NativeProcessLinux::PtraceWrapper(PTRACE_SETVSRREGS, m_thread.GetID(),
&regset, &m_vsx_ppc64le,
sizeof(m_vsx_ppc64le));
}
bool NativeRegisterContextLinux_ppc64le::IsVMX(unsigned reg) {
return (reg >= k_first_vmx_ppc64le) && (reg <= k_last_vmx_ppc64le);
}
bool NativeRegisterContextLinux_ppc64le::IsVSX(unsigned reg) {
return (reg >= k_first_vsx_ppc64le) && (reg <= k_last_vsx_ppc64le);
}
uint32_t NativeRegisterContextLinux_ppc64le::NumSupportedHardwareWatchpoints() {
Log *log = GetLog(POSIXLog::Watchpoints);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
LLDB_LOG(log, "{0}", m_max_hwp_supported);
return m_max_hwp_supported;
}
uint32_t NativeRegisterContextLinux_ppc64le::SetHardwareWatchpoint(
lldb::addr_t addr, size_t size, uint32_t watch_flags) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
watch_flags);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, wp_index = 0;
lldb::addr_t real_addr = addr;
uint32_t rw_mode = 0;
// Check if we are setting watchpoint other than read/write/access Update
// watchpoint flag to match ppc64le write-read bit configuration.
switch (watch_flags) {
case eWatchpointKindWrite:
rw_mode = PPC_BREAKPOINT_TRIGGER_WRITE;
watch_flags = 2;
break;
case eWatchpointKindRead:
rw_mode = PPC_BREAKPOINT_TRIGGER_READ;
watch_flags = 1;
break;
case (eWatchpointKindRead | eWatchpointKindWrite):
rw_mode = PPC_BREAKPOINT_TRIGGER_RW;
break;
default:
return LLDB_INVALID_INDEX32;
}
// Check if size has a valid hardware watchpoint length.
if (size != 1 && size != 2 && size != 4 && size != 8)
return LLDB_INVALID_INDEX32;
// Check 8-byte alignment for hardware watchpoint target address. Below is a
// hack to recalculate address and size in order to make sure we can watch
// non 8-byte aligned addresses as well.
if (addr & 0x07) {
addr_t begin = llvm::alignDown(addr, 8);
addr_t end = llvm::alignTo(addr + size, 8);
size = llvm::PowerOf2Ceil(end - begin);
addr = addr & (~0x07);
}
// Setup control value
control_value = watch_flags << 3;
control_value |= ((1 << size) - 1) << 5;
control_value |= (2 << 1) | 1;
// Iterate over stored watchpoints and find a free wp_index
wp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if ((m_hwp_regs[i].control & 1) == 0) {
wp_index = i; // Mark last free slot
} else if (m_hwp_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
}
}
if (wp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update watchpoint in local cache
m_hwp_regs[wp_index].real_addr = real_addr;
m_hwp_regs[wp_index].address = addr;
m_hwp_regs[wp_index].control = control_value;
m_hwp_regs[wp_index].mode = rw_mode;
// PTRACE call to set corresponding watchpoint register.
error = WriteHardwareDebugRegs();
if (error.Fail()) {
m_hwp_regs[wp_index].address = 0;
m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros<uint32_t>(1);
return LLDB_INVALID_INDEX32;
}
return wp_index;
}
bool NativeRegisterContextLinux_ppc64le::ClearHardwareWatchpoint(
uint32_t wp_index) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "wp_index: {0}", wp_index);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (wp_index >= m_max_hwp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
uint32_t tempControl = m_hwp_regs[wp_index].control;
long *tempSlot = reinterpret_cast<long *>(m_hwp_regs[wp_index].slot);
// Update watchpoint in local cache
m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros<uint32_t>(1);
m_hwp_regs[wp_index].address = 0;
m_hwp_regs[wp_index].slot = 0;
m_hwp_regs[wp_index].mode = 0;
// Ptrace call to update hardware debug registers
error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_DELHWDEBUG,
m_thread.GetID(), 0, tempSlot);
if (error.Fail()) {
m_hwp_regs[wp_index].control = tempControl;
m_hwp_regs[wp_index].address = tempAddr;
m_hwp_regs[wp_index].slot = reinterpret_cast<long>(tempSlot);
return false;
}
return true;
}
uint32_t
NativeRegisterContextLinux_ppc64le::GetWatchpointSize(uint32_t wp_index) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "wp_index: {0}", wp_index);
unsigned control = (m_hwp_regs[wp_index].control >> 5) & 0xff;
if (llvm::isPowerOf2_32(control + 1)) {
return llvm::countPopulation(control);
}
return 0;
}
bool NativeRegisterContextLinux_ppc64le::WatchpointIsEnabled(
uint32_t wp_index) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "wp_index: {0}", wp_index);
return !!((m_hwp_regs[wp_index].control & 0x1) == 0x1);
}
Status NativeRegisterContextLinux_ppc64le::GetWatchpointHitIndex(
uint32_t &wp_index, lldb::addr_t trap_addr) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
uint32_t watch_size;
lldb::addr_t watch_addr;
for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
watch_size = GetWatchpointSize(wp_index);
watch_addr = m_hwp_regs[wp_index].address;
if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
trap_addr <= watch_addr + watch_size) {
m_hwp_regs[wp_index].hit_addr = trap_addr;
return Status();
}
}
wp_index = LLDB_INVALID_INDEX32;
return Status();
}
lldb::addr_t
NativeRegisterContextLinux_ppc64le::GetWatchpointAddress(uint32_t wp_index) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].real_addr;
else
return LLDB_INVALID_ADDRESS;
}
lldb::addr_t
NativeRegisterContextLinux_ppc64le::GetWatchpointHitAddress(uint32_t wp_index) {
Log *log = GetLog(POSIXLog::Watchpoints);
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].hit_addr;
return LLDB_INVALID_ADDRESS;
}
Status NativeRegisterContextLinux_ppc64le::ReadHardwareDebugInfo() {
if (!m_refresh_hwdebug_info) {
return Status();
}
::pid_t tid = m_thread.GetID();
struct ppc_debug_info hwdebug_info;
Status error;
error = NativeProcessLinux::PtraceWrapper(
PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info, sizeof(hwdebug_info));
if (error.Fail())
return error;
m_max_hwp_supported = hwdebug_info.num_data_bps;
m_max_hbp_supported = hwdebug_info.num_instruction_bps;
m_refresh_hwdebug_info = false;
return error;
}
Status NativeRegisterContextLinux_ppc64le::WriteHardwareDebugRegs() {
struct ppc_hw_breakpoint reg_state;
Status error;
long ret;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
reg_state.addr = m_hwp_regs[i].address;
reg_state.trigger_type = m_hwp_regs[i].mode;
reg_state.version = 1;
reg_state.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
reg_state.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
reg_state.addr2 = 0;
reg_state.condition_value = 0;
error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_SETHWDEBUG,
m_thread.GetID(), 0, &reg_state,
sizeof(reg_state), &ret);
if (error.Fail())
return error;
m_hwp_regs[i].slot = ret;
}
return error;
}
#endif // defined(__powerpc64__)