blob: 4323f83ea3e6f44f0e35ada3f1cba3ddf921d93d [file] [log] [blame]
//===-- ObjectFileMachO.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringRef.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Progress.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/LocateSymbolFile.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RangeMap.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "lldb/Utility/UUID.h"
#include "lldb/Host/SafeMachO.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "ObjectFileMachO.h"
#if defined(__APPLE__)
#include <TargetConditionals.h>
// GetLLDBSharedCacheUUID() needs to call dlsym()
#include <dlfcn.h>
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <lldb/Host/SafeMachO.h>
#endif
#ifndef __APPLE__
#include "Utility/UuidCompatibility.h"
#else
#include <uuid/uuid.h>
#endif
#include <bitset>
#include <memory>
// Unfortunately the signpost header pulls in the system MachO header, too.
#ifdef CPU_TYPE_ARM
#undef CPU_TYPE_ARM
#endif
#ifdef CPU_TYPE_ARM64
#undef CPU_TYPE_ARM64
#endif
#ifdef CPU_TYPE_ARM64_32
#undef CPU_TYPE_ARM64_32
#endif
#ifdef CPU_TYPE_I386
#undef CPU_TYPE_I386
#endif
#ifdef CPU_TYPE_X86_64
#undef CPU_TYPE_X86_64
#endif
#ifdef MH_DYLINKER
#undef MH_DYLINKER
#endif
#ifdef MH_OBJECT
#undef MH_OBJECT
#endif
#ifdef LC_VERSION_MIN_MACOSX
#undef LC_VERSION_MIN_MACOSX
#endif
#ifdef LC_VERSION_MIN_IPHONEOS
#undef LC_VERSION_MIN_IPHONEOS
#endif
#ifdef LC_VERSION_MIN_TVOS
#undef LC_VERSION_MIN_TVOS
#endif
#ifdef LC_VERSION_MIN_WATCHOS
#undef LC_VERSION_MIN_WATCHOS
#endif
#ifdef LC_BUILD_VERSION
#undef LC_BUILD_VERSION
#endif
#ifdef PLATFORM_MACOS
#undef PLATFORM_MACOS
#endif
#ifdef PLATFORM_MACCATALYST
#undef PLATFORM_MACCATALYST
#endif
#ifdef PLATFORM_IOS
#undef PLATFORM_IOS
#endif
#ifdef PLATFORM_IOSSIMULATOR
#undef PLATFORM_IOSSIMULATOR
#endif
#ifdef PLATFORM_TVOS
#undef PLATFORM_TVOS
#endif
#ifdef PLATFORM_TVOSSIMULATOR
#undef PLATFORM_TVOSSIMULATOR
#endif
#ifdef PLATFORM_WATCHOS
#undef PLATFORM_WATCHOS
#endif
#ifdef PLATFORM_WATCHOSSIMULATOR
#undef PLATFORM_WATCHOSSIMULATOR
#endif
#define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
using namespace lldb;
using namespace lldb_private;
using namespace llvm::MachO;
LLDB_PLUGIN_DEFINE(ObjectFileMachO)
// Some structure definitions needed for parsing the dyld shared cache files
// found on iOS devices.
struct lldb_copy_dyld_cache_header_v1 {
char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc.
uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
uint32_t mappingCount; // number of dyld_cache_mapping_info entries
uint32_t imagesOffset;
uint32_t imagesCount;
uint64_t dyldBaseAddress;
uint64_t codeSignatureOffset;
uint64_t codeSignatureSize;
uint64_t slideInfoOffset;
uint64_t slideInfoSize;
uint64_t localSymbolsOffset;
uint64_t localSymbolsSize;
uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
// and later
};
static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
const char *alt_name, size_t reg_byte_size,
Stream &data) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
if (reg_info == nullptr)
reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
if (reg_info) {
lldb_private::RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (reg_info->byte_size >= reg_byte_size)
data.Write(reg_value.GetBytes(), reg_byte_size);
else {
data.Write(reg_value.GetBytes(), reg_info->byte_size);
for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
data.PutChar(0);
}
return;
}
}
// Just write zeros if all else fails
for (size_t i = 0; i < reg_byte_size; ++i)
data.PutChar(0);
}
class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
public:
RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_x86_64(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
if (flavor == 0)
done = true;
else {
uint32_t i;
uint32_t count = data.GetU32(&offset);
switch (flavor) {
case GPRRegSet:
for (i = 0; i < count; ++i)
(&gpr.rax)[i] = data.GetU64(&offset);
SetError(GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
// SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU64(&offset);
SetError(EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the above flavors...
break;
default:
done = true;
break;
}
}
}
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
// // Write out the FPU registers
// const size_t fpu_byte_size = sizeof(FPU);
// size_t bytes_written = 0;
// data.PutHex32 (FPURegSet);
// data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
// bytes_written += data.PutHex32(0); // uint32_t pad[0]
// bytes_written += data.PutHex32(0); // uint32_t pad[1]
// bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
// data); // uint16_t fcw; // "fctrl"
// bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
// data); // uint16_t fsw; // "fstat"
// bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
// data); // uint8_t ftw; // "ftag"
// bytes_written += data.PutHex8 (0); // uint8_t pad1;
// bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
// data); // uint16_t fop; // "fop"
// bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
// data); // uint32_t ip; // "fioff"
// bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
// data); // uint16_t cs; // "fiseg"
// bytes_written += data.PutHex16 (0); // uint16_t pad2;
// bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
// data); // uint32_t dp; // "fooff"
// bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
// data); // uint16_t ds; // "foseg"
// bytes_written += data.PutHex16 (0); // uint16_t pad3;
// bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
// data); // uint32_t mxcsr;
// bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
// 4, data);// uint32_t mxcsrmask;
// bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
// sizeof(XMMReg), data);
//
// // Fill rest with zeros
// for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
// i)
// data.PutChar(0);
// Write out the EXC registers
data.PutHex32(EXCRegSet);
data.PutHex32(EXCWordCount);
PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
};
class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
public:
RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_i386(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
if (flavor == 0)
done = true;
else {
uint32_t i;
uint32_t count = data.GetU32(&offset);
switch (flavor) {
case GPRRegSet:
for (i = 0; i < count; ++i)
(&gpr.eax)[i] = data.GetU32(&offset);
SetError(GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
// SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU32(&offset);
SetError(EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the above flavors...
break;
default:
done = true;
break;
}
}
}
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
// Write out the EXC registers
data.PutHex32(EXCRegSet);
data.PutHex32(EXCWordCount);
PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
};
class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
public:
RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_arm(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
uint32_t count = data.GetU32(&offset);
lldb::offset_t next_thread_state = offset + (count * 4);
switch (flavor) {
case GPRAltRegSet:
case GPRRegSet:
// On ARM, the CPSR register is also included in the count but it is
// not included in gpr.r so loop until (count-1).
for (uint32_t i = 0; i < (count - 1); ++i) {
gpr.r[i] = data.GetU32(&offset);
}
// Save cpsr explicitly.
gpr.cpsr = data.GetU32(&offset);
SetError(GPRRegSet, Read, 0);
offset = next_thread_state;
break;
case FPURegSet: {
uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
const int fpu_reg_buf_size = sizeof(fpu.floats);
if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
fpu_reg_buf) == fpu_reg_buf_size) {
offset += fpu_reg_buf_size;
fpu.fpscr = data.GetU32(&offset);
SetError(FPURegSet, Read, 0);
} else {
done = true;
}
}
offset = next_thread_state;
break;
case EXCRegSet:
if (count == 3) {
exc.exception = data.GetU32(&offset);
exc.fsr = data.GetU32(&offset);
exc.far = data.GetU32(&offset);
SetError(EXCRegSet, Read, 0);
}
done = true;
offset = next_thread_state;
break;
// Unknown register set flavor, stop trying to parse.
default:
done = true;
}
}
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
// Write out the EXC registers
// data.PutHex32 (EXCRegSet);
// data.PutHex32 (EXCWordCount);
// WriteRegister (reg_ctx, "exception", NULL, 4, data);
// WriteRegister (reg_ctx, "fsr", NULL, 4, data);
// WriteRegister (reg_ctx, "far", NULL, 4, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
return -1;
}
};
class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
public:
RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_arm64(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
uint32_t count = data.GetU32(&offset);
lldb::offset_t next_thread_state = offset + (count * 4);
switch (flavor) {
case GPRRegSet:
// x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
// 32-bit register)
if (count >= (33 * 2) + 1) {
for (uint32_t i = 0; i < 29; ++i)
gpr.x[i] = data.GetU64(&offset);
gpr.fp = data.GetU64(&offset);
gpr.lr = data.GetU64(&offset);
gpr.sp = data.GetU64(&offset);
gpr.pc = data.GetU64(&offset);
gpr.cpsr = data.GetU32(&offset);
SetError(GPRRegSet, Read, 0);
}
offset = next_thread_state;
break;
case FPURegSet: {
uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
const int fpu_reg_buf_size = sizeof(fpu);
if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
fpu_reg_buf) == fpu_reg_buf_size) {
SetError(FPURegSet, Read, 0);
} else {
done = true;
}
}
offset = next_thread_state;
break;
case EXCRegSet:
if (count == 4) {
exc.far = data.GetU64(&offset);
exc.esr = data.GetU32(&offset);
exc.exception = data.GetU32(&offset);
SetError(EXCRegSet, Read, 0);
}
offset = next_thread_state;
break;
default:
done = true;
break;
}
}
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
data.PutHex32(0); // uint32_t pad at the end
// Write out the EXC registers
data.PutHex32(EXCRegSet);
data.PutHex32(EXCWordCount);
PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
return -1;
}
};
static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
switch (magic) {
case MH_MAGIC:
case MH_CIGAM:
return sizeof(struct llvm::MachO::mach_header);
case MH_MAGIC_64:
case MH_CIGAM_64:
return sizeof(struct llvm::MachO::mach_header_64);
break;
default:
break;
}
return 0;
}
#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
char ObjectFileMachO::ID;
void ObjectFileMachO::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
CreateMemoryInstance, GetModuleSpecifications, SaveCore);
}
void ObjectFileMachO::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
DataBufferSP data_sp,
lldb::offset_t data_offset,
const FileSpec *file,
lldb::offset_t file_offset,
lldb::offset_t length) {
if (!data_sp) {
data_sp = MapFileData(*file, length, file_offset);
if (!data_sp)
return nullptr;
data_offset = 0;
}
if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
return nullptr;
// Update the data to contain the entire file if it doesn't already
if (data_sp->GetByteSize() < length) {
data_sp = MapFileData(*file, length, file_offset);
if (!data_sp)
return nullptr;
data_offset = 0;
}
auto objfile_up = std::make_unique<ObjectFileMachO>(
module_sp, data_sp, data_offset, file, file_offset, length);
if (!objfile_up || !objfile_up->ParseHeader())
return nullptr;
return objfile_up.release();
}
ObjectFile *ObjectFileMachO::CreateMemoryInstance(
const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
const ProcessSP &process_sp, lldb::addr_t header_addr) {
if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
std::unique_ptr<ObjectFile> objfile_up(
new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
if (objfile_up.get() && objfile_up->ParseHeader())
return objfile_up.release();
}
return nullptr;
}
size_t ObjectFileMachO::GetModuleSpecifications(
const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
lldb::offset_t data_offset, lldb::offset_t file_offset,
lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
const size_t initial_count = specs.GetSize();
if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
DataExtractor data;
data.SetData(data_sp);
llvm::MachO::mach_header header;
if (ParseHeader(data, &data_offset, header)) {
size_t header_and_load_cmds =
header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
if (header_and_load_cmds >= data_sp->GetByteSize()) {
data_sp = MapFileData(file, header_and_load_cmds, file_offset);
data.SetData(data_sp);
data_offset = MachHeaderSizeFromMagic(header.magic);
}
if (data_sp) {
ModuleSpec base_spec;
base_spec.GetFileSpec() = file;
base_spec.SetObjectOffset(file_offset);
base_spec.SetObjectSize(length);
GetAllArchSpecs(header, data, data_offset, base_spec, specs);
}
}
}
return specs.GetSize() - initial_count;
}
ConstString ObjectFileMachO::GetSegmentNameTEXT() {
static ConstString g_segment_name_TEXT("__TEXT");
return g_segment_name_TEXT;
}
ConstString ObjectFileMachO::GetSegmentNameDATA() {
static ConstString g_segment_name_DATA("__DATA");
return g_segment_name_DATA;
}
ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
static ConstString g_segment_name("__DATA_DIRTY");
return g_segment_name;
}
ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
static ConstString g_segment_name("__DATA_CONST");
return g_segment_name;
}
ConstString ObjectFileMachO::GetSegmentNameOBJC() {
static ConstString g_segment_name_OBJC("__OBJC");
return g_segment_name_OBJC;
}
ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
static ConstString g_section_name_LINKEDIT("__LINKEDIT");
return g_section_name_LINKEDIT;
}
ConstString ObjectFileMachO::GetSegmentNameDWARF() {
static ConstString g_section_name("__DWARF");
return g_section_name;
}
ConstString ObjectFileMachO::GetSectionNameEHFrame() {
static ConstString g_section_name_eh_frame("__eh_frame");
return g_section_name_eh_frame;
}
bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
lldb::addr_t data_offset,
lldb::addr_t data_length) {
DataExtractor data;
data.SetData(data_sp, data_offset, data_length);
lldb::offset_t offset = 0;
uint32_t magic = data.GetU32(&offset);
return MachHeaderSizeFromMagic(magic) != 0;
}
ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
DataBufferSP data_sp,
lldb::offset_t data_offset,
const FileSpec *file,
lldb::offset_t file_offset,
lldb::offset_t length)
: ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
m_mach_segments(), m_mach_sections(), m_entry_point_address(),
m_thread_context_offsets(), m_thread_context_offsets_valid(false),
m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
::memset(&m_header, 0, sizeof(m_header));
::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
lldb::WritableDataBufferSP header_data_sp,
const lldb::ProcessSP &process_sp,
lldb::addr_t header_addr)
: ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
m_mach_segments(), m_mach_sections(), m_entry_point_address(),
m_thread_context_offsets(), m_thread_context_offsets_valid(false),
m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
::memset(&m_header, 0, sizeof(m_header));
::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
}
bool ObjectFileMachO::ParseHeader(DataExtractor &data,
lldb::offset_t *data_offset_ptr,
llvm::MachO::mach_header &header) {
data.SetByteOrder(endian::InlHostByteOrder());
// Leave magic in the original byte order
header.magic = data.GetU32(data_offset_ptr);
bool can_parse = false;
bool is_64_bit = false;
switch (header.magic) {
case MH_MAGIC:
data.SetByteOrder(endian::InlHostByteOrder());
data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_MAGIC_64:
data.SetByteOrder(endian::InlHostByteOrder());
data.SetAddressByteSize(8);
can_parse = true;
is_64_bit = true;
break;
case MH_CIGAM:
data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_CIGAM_64:
data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
data.SetAddressByteSize(8);
is_64_bit = true;
can_parse = true;
break;
default:
break;
}
if (can_parse) {
data.GetU32(data_offset_ptr, &header.cputype, 6);
if (is_64_bit)
*data_offset_ptr += 4;
return true;
} else {
memset(&header, 0, sizeof(header));
}
return false;
}
bool ObjectFileMachO::ParseHeader() {
ModuleSP module_sp(GetModule());
if (!module_sp)
return false;
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
bool can_parse = false;
lldb::offset_t offset = 0;
m_data.SetByteOrder(endian::InlHostByteOrder());
// Leave magic in the original byte order
m_header.magic = m_data.GetU32(&offset);
switch (m_header.magic) {
case MH_MAGIC:
m_data.SetByteOrder(endian::InlHostByteOrder());
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_MAGIC_64:
m_data.SetByteOrder(endian::InlHostByteOrder());
m_data.SetAddressByteSize(8);
can_parse = true;
break;
case MH_CIGAM:
m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_CIGAM_64:
m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
m_data.SetAddressByteSize(8);
can_parse = true;
break;
default:
break;
}
if (can_parse) {
m_data.GetU32(&offset, &m_header.cputype, 6);
ModuleSpecList all_specs;
ModuleSpec base_spec;
GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
base_spec, all_specs);
for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
ArchSpec mach_arch =
all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
// Check if the module has a required architecture
const ArchSpec &module_arch = module_sp->GetArchitecture();
if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
continue;
if (SetModulesArchitecture(mach_arch)) {
const size_t header_and_lc_size =
m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
if (m_data.GetByteSize() < header_and_lc_size) {
DataBufferSP data_sp;
ProcessSP process_sp(m_process_wp.lock());
if (process_sp) {
data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
} else {
// Read in all only the load command data from the file on disk
data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
if (data_sp->GetByteSize() != header_and_lc_size)
continue;
}
if (data_sp)
m_data.SetData(data_sp);
}
}
return true;
}
// None found.
return false;
} else {
memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
}
return false;
}
ByteOrder ObjectFileMachO::GetByteOrder() const {
return m_data.GetByteOrder();
}
bool ObjectFileMachO::IsExecutable() const {
return m_header.filetype == MH_EXECUTE;
}
bool ObjectFileMachO::IsDynamicLoader() const {
return m_header.filetype == MH_DYLINKER;
}
bool ObjectFileMachO::IsSharedCacheBinary() const {
return m_header.flags & MH_DYLIB_IN_CACHE;
}
uint32_t ObjectFileMachO::GetAddressByteSize() const {
return m_data.GetAddressByteSize();
}
AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
Symtab *symtab = GetSymtab();
if (!symtab)
return AddressClass::eUnknown;
Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
if (symbol) {
if (symbol->ValueIsAddress()) {
SectionSP section_sp(symbol->GetAddressRef().GetSection());
if (section_sp) {
const lldb::SectionType section_type = section_sp->GetType();
switch (section_type) {
case eSectionTypeInvalid:
return AddressClass::eUnknown;
case eSectionTypeCode:
if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
// For ARM we have a bit in the n_desc field of the symbol that
// tells us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return AddressClass::eCodeAlternateISA;
}
return AddressClass::eCode;
case eSectionTypeContainer:
return AddressClass::eUnknown;
case eSectionTypeData:
case eSectionTypeDataCString:
case eSectionTypeDataCStringPointers:
case eSectionTypeDataSymbolAddress:
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
case eSectionTypeDataPointers:
case eSectionTypeZeroFill:
case eSectionTypeDataObjCMessageRefs:
case eSectionTypeDataObjCCFStrings:
case eSectionTypeGoSymtab:
return AddressClass::eData;
case eSectionTypeDebug:
case eSectionTypeDWARFDebugAbbrev:
case eSectionTypeDWARFDebugAbbrevDwo:
case eSectionTypeDWARFDebugAddr:
case eSectionTypeDWARFDebugAranges:
case eSectionTypeDWARFDebugCuIndex:
case eSectionTypeDWARFDebugFrame:
case eSectionTypeDWARFDebugInfo:
case eSectionTypeDWARFDebugInfoDwo:
case eSectionTypeDWARFDebugLine:
case eSectionTypeDWARFDebugLineStr:
case eSectionTypeDWARFDebugLoc:
case eSectionTypeDWARFDebugLocDwo:
case eSectionTypeDWARFDebugLocLists:
case eSectionTypeDWARFDebugLocListsDwo:
case eSectionTypeDWARFDebugMacInfo:
case eSectionTypeDWARFDebugMacro:
case eSectionTypeDWARFDebugNames:
case eSectionTypeDWARFDebugPubNames:
case eSectionTypeDWARFDebugPubTypes:
case eSectionTypeDWARFDebugRanges:
case eSectionTypeDWARFDebugRngLists:
case eSectionTypeDWARFDebugRngListsDwo:
case eSectionTypeDWARFDebugStr:
case eSectionTypeDWARFDebugStrDwo:
case eSectionTypeDWARFDebugStrOffsets:
case eSectionTypeDWARFDebugStrOffsetsDwo:
case eSectionTypeDWARFDebugTuIndex:
case eSectionTypeDWARFDebugTypes:
case eSectionTypeDWARFDebugTypesDwo:
case eSectionTypeDWARFAppleNames:
case eSectionTypeDWARFAppleTypes:
case eSectionTypeDWARFAppleNamespaces:
case eSectionTypeDWARFAppleObjC:
case eSectionTypeDWARFGNUDebugAltLink:
return AddressClass::eDebug;
case eSectionTypeEHFrame:
case eSectionTypeARMexidx:
case eSectionTypeARMextab:
case eSectionTypeCompactUnwind:
return AddressClass::eRuntime;
case eSectionTypeAbsoluteAddress:
case eSectionTypeELFSymbolTable:
case eSectionTypeELFDynamicSymbols:
case eSectionTypeELFRelocationEntries:
case eSectionTypeELFDynamicLinkInfo:
case eSectionTypeOther:
return AddressClass::eUnknown;
}
}
}
const SymbolType symbol_type = symbol->GetType();
switch (symbol_type) {
case eSymbolTypeAny:
return AddressClass::eUnknown;
case eSymbolTypeAbsolute:
return AddressClass::eUnknown;
case eSymbolTypeCode:
case eSymbolTypeTrampoline:
case eSymbolTypeResolver:
if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
// For ARM we have a bit in the n_desc field of the symbol that tells
// us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return AddressClass::eCodeAlternateISA;
}
return AddressClass::eCode;
case eSymbolTypeData:
return AddressClass::eData;
case eSymbolTypeRuntime:
return AddressClass::eRuntime;
case eSymbolTypeException:
return AddressClass::eRuntime;
case eSymbolTypeSourceFile:
return AddressClass::eDebug;
case eSymbolTypeHeaderFile:
return AddressClass::eDebug;
case eSymbolTypeObjectFile:
return AddressClass::eDebug;
case eSymbolTypeCommonBlock:
return AddressClass::eDebug;
case eSymbolTypeBlock:
return AddressClass::eDebug;
case eSymbolTypeLocal:
return AddressClass::eData;
case eSymbolTypeParam:
return AddressClass::eData;
case eSymbolTypeVariable:
return AddressClass::eData;
case eSymbolTypeVariableType:
return AddressClass::eDebug;
case eSymbolTypeLineEntry:
return AddressClass::eDebug;
case eSymbolTypeLineHeader:
return AddressClass::eDebug;
case eSymbolTypeScopeBegin:
return AddressClass::eDebug;
case eSymbolTypeScopeEnd:
return AddressClass::eDebug;
case eSymbolTypeAdditional:
return AddressClass::eUnknown;
case eSymbolTypeCompiler:
return AddressClass::eDebug;
case eSymbolTypeInstrumentation:
return AddressClass::eDebug;
case eSymbolTypeUndefined:
return AddressClass::eUnknown;
case eSymbolTypeObjCClass:
return AddressClass::eRuntime;
case eSymbolTypeObjCMetaClass:
return AddressClass::eRuntime;
case eSymbolTypeObjCIVar:
return AddressClass::eRuntime;
case eSymbolTypeReExported:
return AddressClass::eRuntime;
}
}
return AddressClass::eUnknown;
}
bool ObjectFileMachO::IsStripped() {
if (m_dysymtab.cmd == 0) {
ModuleSP module_sp(GetModule());
if (module_sp) {
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
llvm::MachO::load_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == LC_DYSYMTAB) {
m_dysymtab.cmd = lc.cmd;
m_dysymtab.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
(sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
nullptr) {
// Clear m_dysymtab if we were unable to read all items from the
// load command
::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
}
}
offset = load_cmd_offset + lc.cmdsize;
}
}
}
if (m_dysymtab.cmd)
return m_dysymtab.nlocalsym <= 1;
return false;
}
ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
EncryptedFileRanges result;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
llvm::MachO::encryption_info_command encryption_cmd;
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
break;
// LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
// 3 fields we care about, so treat them the same.
if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
if (encryption_cmd.cryptid != 0) {
EncryptedFileRanges::Entry entry;
entry.SetRangeBase(encryption_cmd.cryptoff);
entry.SetByteSize(encryption_cmd.cryptsize);
result.Append(entry);
}
}
}
offset = load_cmd_offset + encryption_cmd.cmdsize;
}
return result;
}
void ObjectFileMachO::SanitizeSegmentCommand(
llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
if (m_length == 0 || seg_cmd.filesize == 0)
return;
if (IsSharedCacheBinary() && !IsInMemory()) {
// In shared cache images, the load commands are relative to the
// shared cache file, and not the specific image we are
// examining. Let's fix this up so that it looks like a normal
// image.
if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
m_text_address = seg_cmd.vmaddr;
if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
m_linkedit_original_offset = seg_cmd.fileoff;
seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
}
if (seg_cmd.fileoff > m_length) {
// We have a load command that says it extends past the end of the file.
// This is likely a corrupt file. We don't have any way to return an error
// condition here (this method was likely invoked from something like
// ObjectFile::GetSectionList()), so we just null out the section contents,
// and dump a message to stdout. The most common case here is core file
// debugging with a truncated file.
const char *lc_segment_name =
seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
GetModule()->ReportWarning(
"load command %u %s has a fileoff (0x%" PRIx64
") that extends beyond the end of the file (0x%" PRIx64
"), ignoring this section",
cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
seg_cmd.fileoff = 0;
seg_cmd.filesize = 0;
}
if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
// We have a load command that says it extends past the end of the file.
// This is likely a corrupt file. We don't have any way to return an error
// condition here (this method was likely invoked from something like
// ObjectFile::GetSectionList()), so we just null out the section contents,
// and dump a message to stdout. The most common case here is core file
// debugging with a truncated file.
const char *lc_segment_name =
seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
GetModule()->ReportWarning(
"load command %u %s has a fileoff + filesize (0x%" PRIx64
") that extends beyond the end of the file (0x%" PRIx64
"), the segment will be truncated to match",
cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
// Truncate the length
seg_cmd.filesize = m_length - seg_cmd.fileoff;
}
}
static uint32_t
GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
uint32_t result = 0;
if (seg_cmd.initprot & VM_PROT_READ)
result |= ePermissionsReadable;
if (seg_cmd.initprot & VM_PROT_WRITE)
result |= ePermissionsWritable;
if (seg_cmd.initprot & VM_PROT_EXECUTE)
result |= ePermissionsExecutable;
return result;
}
static lldb::SectionType GetSectionType(uint32_t flags,
ConstString section_name) {
if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
return eSectionTypeCode;
uint32_t mach_sect_type = flags & SECTION_TYPE;
static ConstString g_sect_name_objc_data("__objc_data");
static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
static ConstString g_sect_name_objc_const("__objc_const");
static ConstString g_sect_name_objc_classlist("__objc_classlist");
static ConstString g_sect_name_cfstring("__cfstring");
static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
static ConstString g_sect_name_dwarf_debug_info("__debug_info");
static ConstString g_sect_name_dwarf_debug_line("__debug_line");
static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
static ConstString g_sect_name_dwarf_debug_names("__debug_names");
static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
static ConstString g_sect_name_dwarf_debug_str("__debug_str");
static ConstString g_sect_name_dwarf_debug_types("__debug_types");
static ConstString g_sect_name_dwarf_apple_names("__apple_names");
static ConstString g_sect_name_dwarf_apple_types("__apple_types");
static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
static ConstString g_sect_name_eh_frame("__eh_frame");
static ConstString g_sect_name_compact_unwind("__unwind_info");
static ConstString g_sect_name_text("__text");
static ConstString g_sect_name_data("__data");
static ConstString g_sect_name_go_symtab("__gosymtab");
if (section_name == g_sect_name_dwarf_debug_abbrev)
return eSectionTypeDWARFDebugAbbrev;
if (section_name == g_sect_name_dwarf_debug_aranges)
return eSectionTypeDWARFDebugAranges;
if (section_name == g_sect_name_dwarf_debug_frame)
return eSectionTypeDWARFDebugFrame;
if (section_name == g_sect_name_dwarf_debug_info)
return eSectionTypeDWARFDebugInfo;
if (section_name == g_sect_name_dwarf_debug_line)
return eSectionTypeDWARFDebugLine;
if (section_name == g_sect_name_dwarf_debug_loc)
return eSectionTypeDWARFDebugLoc;
if (section_name == g_sect_name_dwarf_debug_loclists)
return eSectionTypeDWARFDebugLocLists;
if (section_name == g_sect_name_dwarf_debug_macinfo)
return eSectionTypeDWARFDebugMacInfo;
if (section_name == g_sect_name_dwarf_debug_names)
return eSectionTypeDWARFDebugNames;
if (section_name == g_sect_name_dwarf_debug_pubnames)
return eSectionTypeDWARFDebugPubNames;
if (section_name == g_sect_name_dwarf_debug_pubtypes)
return eSectionTypeDWARFDebugPubTypes;
if (section_name == g_sect_name_dwarf_debug_ranges)
return eSectionTypeDWARFDebugRanges;
if (section_name == g_sect_name_dwarf_debug_str)
return eSectionTypeDWARFDebugStr;
if (section_name == g_sect_name_dwarf_debug_types)
return eSectionTypeDWARFDebugTypes;
if (section_name == g_sect_name_dwarf_apple_names)
return eSectionTypeDWARFAppleNames;
if (section_name == g_sect_name_dwarf_apple_types)
return eSectionTypeDWARFAppleTypes;
if (section_name == g_sect_name_dwarf_apple_namespaces)
return eSectionTypeDWARFAppleNamespaces;
if (section_name == g_sect_name_dwarf_apple_objc)
return eSectionTypeDWARFAppleObjC;
if (section_name == g_sect_name_objc_selrefs)
return eSectionTypeDataCStringPointers;
if (section_name == g_sect_name_objc_msgrefs)
return eSectionTypeDataObjCMessageRefs;
if (section_name == g_sect_name_eh_frame)
return eSectionTypeEHFrame;
if (section_name == g_sect_name_compact_unwind)
return eSectionTypeCompactUnwind;
if (section_name == g_sect_name_cfstring)
return eSectionTypeDataObjCCFStrings;
if (section_name == g_sect_name_go_symtab)
return eSectionTypeGoSymtab;
if (section_name == g_sect_name_objc_data ||
section_name == g_sect_name_objc_classrefs ||
section_name == g_sect_name_objc_superrefs ||
section_name == g_sect_name_objc_const ||
section_name == g_sect_name_objc_classlist) {
return eSectionTypeDataPointers;
}
switch (mach_sect_type) {
// TODO: categorize sections by other flags for regular sections
case S_REGULAR:
if (section_name == g_sect_name_text)
return eSectionTypeCode;
if (section_name == g_sect_name_data)
return eSectionTypeData;
return eSectionTypeOther;
case S_ZEROFILL:
return eSectionTypeZeroFill;
case S_CSTRING_LITERALS: // section with only literal C strings
return eSectionTypeDataCString;
case S_4BYTE_LITERALS: // section with only 4 byte literals
return eSectionTypeData4;
case S_8BYTE_LITERALS: // section with only 8 byte literals
return eSectionTypeData8;
case S_LITERAL_POINTERS: // section with only pointers to literals
return eSectionTypeDataPointers;
case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
return eSectionTypeDataPointers;
case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
return eSectionTypeDataPointers;
case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
// the reserved2 field
return eSectionTypeCode;
case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
// initialization
return eSectionTypeDataPointers;
case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
// termination
return eSectionTypeDataPointers;
case S_COALESCED:
return eSectionTypeOther;
case S_GB_ZEROFILL:
return eSectionTypeZeroFill;
case S_INTERPOSING: // section with only pairs of function pointers for
// interposing
return eSectionTypeCode;
case S_16BYTE_LITERALS: // section with only 16 byte literals
return eSectionTypeData16;
case S_DTRACE_DOF:
return eSectionTypeDebug;
case S_LAZY_DYLIB_SYMBOL_POINTERS:
return eSectionTypeDataPointers;
default:
return eSectionTypeOther;
}
}
struct ObjectFileMachO::SegmentParsingContext {
const EncryptedFileRanges EncryptedRanges;
lldb_private::SectionList &UnifiedList;
uint32_t NextSegmentIdx = 0;
uint32_t NextSectionIdx = 0;
bool FileAddressesChanged = false;
SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
lldb_private::SectionList &UnifiedList)
: EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
};
void ObjectFileMachO::ProcessSegmentCommand(
const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
uint32_t cmd_idx, SegmentParsingContext &context) {
llvm::MachO::segment_command_64 load_cmd;
memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
return;
ModuleSP module_sp = GetModule();
const bool is_core = GetType() == eTypeCoreFile;
const bool is_dsym = (m_header.filetype == MH_DSYM);
bool add_section = true;
bool add_to_unified = true;
ConstString const_segname(
load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
SectionSP unified_section_sp(
context.UnifiedList.FindSectionByName(const_segname));
if (is_dsym && unified_section_sp) {
if (const_segname == GetSegmentNameLINKEDIT()) {
// We need to keep the __LINKEDIT segment private to this object file
// only
add_to_unified = false;
} else {
// This is the dSYM file and this section has already been created by the
// object file, no need to create it.
add_section = false;
}
}
load_cmd.vmaddr = m_data.GetAddress(&offset);
load_cmd.vmsize = m_data.GetAddress(&offset);
load_cmd.fileoff = m_data.GetAddress(&offset);
load_cmd.filesize = m_data.GetAddress(&offset);
if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
return;
SanitizeSegmentCommand(load_cmd, cmd_idx);
const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
const bool segment_is_encrypted =
(load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
// Keep a list of mach segments around in case we need to get at data that
// isn't stored in the abstracted Sections.
m_mach_segments.push_back(load_cmd);
// Use a segment ID of the segment index shifted left by 8 so they never
// conflict with any of the sections.
SectionSP segment_sp;
if (add_section && (const_segname || is_core)) {
segment_sp = std::make_shared<Section>(
module_sp, // Module to which this section belongs
this, // Object file to which this sections belongs
++context.NextSegmentIdx
<< 8, // Section ID is the 1 based segment index
// shifted right by 8 bits as not to collide with any of the 256
// section IDs that are possible
const_segname, // Name of this section
eSectionTypeContainer, // This section is a container of other
// sections.
load_cmd.vmaddr, // File VM address == addresses as they are
// found in the object file
load_cmd.vmsize, // VM size in bytes of this section
load_cmd.fileoff, // Offset to the data for this section in
// the file
load_cmd.filesize, // Size in bytes of this section as found
// in the file
0, // Segments have no alignment information
load_cmd.flags); // Flags for this section
segment_sp->SetIsEncrypted(segment_is_encrypted);
m_sections_up->AddSection(segment_sp);
segment_sp->SetPermissions(segment_permissions);
if (add_to_unified)
context.UnifiedList.AddSection(segment_sp);
} else if (unified_section_sp) {
// If this is a dSYM and the file addresses in the dSYM differ from the
// file addresses in the ObjectFile, we must use the file base address for
// the Section from the dSYM for the DWARF to resolve correctly.
// This only happens with binaries in the shared cache in practice;
// normally a mismatch like this would give a binary & dSYM that do not
// match UUIDs. When a binary is included in the shared cache, its
// segments are rearranged to optimize the shared cache, so its file
// addresses will differ from what the ObjectFile had originally,
// and what the dSYM has.
if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
Log *log = GetLog(LLDBLog::Symbols);
if (log) {
log->Printf(
"Installing dSYM's %s segment file address over ObjectFile's "
"so symbol table/debug info resolves correctly for %s",
const_segname.AsCString(),
module_sp->GetFileSpec().GetFilename().AsCString());
}
// Make sure we've parsed the symbol table from the ObjectFile before
// we go around changing its Sections.
module_sp->GetObjectFile()->GetSymtab();
// eh_frame would present the same problems but we parse that on a per-
// function basis as-needed so it's more difficult to remove its use of
// the Sections. Realistically, the environments where this code path
// will be taken will not have eh_frame sections.
unified_section_sp->SetFileAddress(load_cmd.vmaddr);
// Notify the module that the section addresses have been changed once
// we're done so any file-address caches can be updated.
context.FileAddressesChanged = true;
}
m_sections_up->AddSection(unified_section_sp);
}
llvm::MachO::section_64 sect64;
::memset(&sect64, 0, sizeof(sect64));
// Push a section into our mach sections for the section at index zero
// (NO_SECT) if we don't have any mach sections yet...
if (m_mach_sections.empty())
m_mach_sections.push_back(sect64);
uint32_t segment_sect_idx;
const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
++segment_sect_idx) {
if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
sizeof(sect64.sectname)) == nullptr)
break;
if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
sizeof(sect64.segname)) == nullptr)
break;
sect64.addr = m_data.GetAddress(&offset);
sect64.size = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
break;
if (IsSharedCacheBinary() && !IsInMemory()) {
sect64.offset = sect64.addr - m_text_address;
}
// Keep a list of mach sections around in case we need to get at data that
// isn't stored in the abstracted Sections.
m_mach_sections.push_back(sect64);
if (add_section) {
ConstString section_name(
sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
if (!const_segname) {
// We have a segment with no name so we need to conjure up segments
// that correspond to the section's segname if there isn't already such
// a section. If there is such a section, we resize the section so that
// it spans all sections. We also mark these sections as fake so
// address matches don't hit if they land in the gaps between the child
// sections.
const_segname.SetTrimmedCStringWithLength(sect64.segname,
sizeof(sect64.segname));
segment_sp = context.UnifiedList.FindSectionByName(const_segname);
if (segment_sp.get()) {
Section *segment = segment_sp.get();
// Grow the section size as needed.
const lldb::addr_t sect64_min_addr = sect64.addr;
const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
const lldb::addr_t curr_seg_max_addr =
curr_seg_min_addr + curr_seg_byte_size;
if (sect64_min_addr >= curr_seg_min_addr) {
const lldb::addr_t new_seg_byte_size =
sect64_max_addr - curr_seg_min_addr;
// Only grow the section size if needed
if (new_seg_byte_size > curr_seg_byte_size)
segment->SetByteSize(new_seg_byte_size);
} else {
// We need to change the base address of the segment and adjust the
// child section offsets for all existing children.
const lldb::addr_t slide_amount =
sect64_min_addr - curr_seg_min_addr;
segment->Slide(slide_amount, false);
segment->GetChildren().Slide(-slide_amount, false);
segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
}
// Grow the section size as needed.
if (sect64.offset) {
const lldb::addr_t segment_min_file_offset =
segment->GetFileOffset();
const lldb::addr_t segment_max_file_offset =
segment_min_file_offset + segment->GetFileSize();
const lldb::addr_t section_min_file_offset = sect64.offset;
const lldb::addr_t section_max_file_offset =
section_min_file_offset + sect64.size;
const lldb::addr_t new_file_offset =
std::min(section_min_file_offset, segment_min_file_offset);
const lldb::addr_t new_file_size =
std::max(section_max_file_offset, segment_max_file_offset) -
new_file_offset;
segment->SetFileOffset(new_file_offset);
segment->SetFileSize(new_file_size);
}
} else {
// Create a fake section for the section's named segment
segment_sp = std::make_shared<Section>(
segment_sp, // Parent section
module_sp, // Module to which this section belongs
this, // Object file to which this section belongs
++context.NextSegmentIdx
<< 8, // Section ID is the 1 based segment index
// shifted right by 8 bits as not to
// collide with any of the 256 section IDs
// that are possible
const_segname, // Name of this section
eSectionTypeContainer, // This section is a container of
// other sections.
sect64.addr, // File VM address == addresses as they are
// found in the object file
sect64.size, // VM size in bytes of this section
sect64.offset, // Offset to the data for this section in
// the file
sect64.offset ? sect64.size : 0, // Size in bytes of
// this section as
// found in the file
sect64.align,
load_cmd.flags); // Flags for this section
segment_sp->SetIsFake(true);
segment_sp->SetPermissions(segment_permissions);
m_sections_up->AddSection(segment_sp);
if (add_to_unified)
context.UnifiedList.AddSection(segment_sp);
segment_sp->SetIsEncrypted(segment_is_encrypted);
}
}
assert(segment_sp.get());
lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
SectionSP section_sp(new Section(
segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
sect64.flags));
// Set the section to be encrypted to match the segment
bool section_is_encrypted = false;
if (!segment_is_encrypted && load_cmd.filesize != 0)
section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
sect64.offset) != nullptr;
section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
section_sp->SetPermissions(segment_permissions);
segment_sp->GetChildren().AddSection(section_sp);
if (segment_sp->IsFake()) {
segment_sp.reset();
const_segname.Clear();
}
}
}
if (segment_sp && is_dsym) {
if (first_segment_sectID <= context.NextSectionIdx) {
lldb::user_id_t sect_uid;
for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
++sect_uid) {
SectionSP curr_section_sp(
segment_sp->GetChildren().FindSectionByID(sect_uid));
SectionSP next_section_sp;
if (sect_uid + 1 <= context.NextSectionIdx)
next_section_sp =
segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
if (curr_section_sp.get()) {
if (curr_section_sp->GetByteSize() == 0) {
if (next_section_sp.get() != nullptr)
curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
curr_section_sp->GetFileAddress());
else
curr_section_sp->SetByteSize(load_cmd.vmsize);
}
}
}
}
}
}
void ObjectFileMachO::ProcessDysymtabCommand(
const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
m_dysymtab.cmd = load_cmd.cmd;
m_dysymtab.cmdsize = load_cmd.cmdsize;
m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
(sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
}
void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
if (m_sections_up)
return;
m_sections_up = std::make_unique<SectionList>();
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
// bool dump_sections = false;
ModuleSP module_sp(GetModule());
offset = MachHeaderSizeFromMagic(m_header.magic);
SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
llvm::MachO::load_command load_cmd;
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
ProcessSegmentCommand(load_cmd, offset, i, context);
else if (load_cmd.cmd == LC_DYSYMTAB)
ProcessDysymtabCommand(load_cmd, offset);
offset = load_cmd_offset + load_cmd.cmdsize;
}
if (context.FileAddressesChanged && module_sp)
module_sp->SectionFileAddressesChanged();
}
class MachSymtabSectionInfo {
public:
MachSymtabSectionInfo(SectionList *section_list)
: m_section_list(section_list), m_section_infos() {
// Get the number of sections down to a depth of 1 to include all segments
// and their sections, but no other sections that may be added for debug
// map or
m_section_infos.resize(section_list->GetNumSections(1));
}
SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
if (n_sect == 0)
return SectionSP();
if (n_sect < m_section_infos.size()) {
if (!m_section_infos[n_sect].section_sp) {
SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
m_section_infos[n_sect].section_sp = section_sp;
if (section_sp) {
m_section_infos[n_sect].vm_range.SetBaseAddress(
section_sp->GetFileAddress());
m_section_infos[n_sect].vm_range.SetByteSize(
section_sp->GetByteSize());
} else {
std::string filename = "<unknown>";
SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
if (first_section_sp)
filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
Debugger::ReportError(
llvm::formatv("unable to find section {0} for a symbol in "
"{1}, corrupt file?",
n_sect, filename));
}
}
if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
// Symbol is in section.
return m_section_infos[n_sect].section_sp;
} else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
m_section_infos[n_sect].vm_range.GetBaseAddress() ==
file_addr) {
// Symbol is in section with zero size, but has the same start address
// as the section. This can happen with linker symbols (symbols that
// start with the letter 'l' or 'L'.
return m_section_infos[n_sect].section_sp;
}
}
return m_section_list->FindSectionContainingFileAddress(file_addr);
}
protected:
struct SectionInfo {
SectionInfo() : vm_range(), section_sp() {}
VMRange vm_range;
SectionSP section_sp;
};
SectionList *m_section_list;
std::vector<SectionInfo> m_section_infos;
};
#define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
struct TrieEntry {
void Dump() const {
printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
static_cast<unsigned long long>(address),
static_cast<unsigned long long>(flags),
static_cast<unsigned long long>(other), name.GetCString());
if (import_name)
printf(" -> \"%s\"\n", import_name.GetCString());
else
printf("\n");
}
ConstString name;
uint64_t address = LLDB_INVALID_ADDRESS;
uint64_t flags =
0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
// TRIE_SYMBOL_IS_THUMB
uint64_t other = 0;
ConstString import_name;
};
struct TrieEntryWithOffset {
lldb::offset_t nodeOffset;
TrieEntry entry;
TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
void Dump(uint32_t idx) const {
printf("[%3u] 0x%16.16llx: ", idx,
static_cast<unsigned long long>(nodeOffset));
entry.Dump();
}
bool operator<(const TrieEntryWithOffset &other) const {
return (nodeOffset < other.nodeOffset);
}
};
static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
const bool is_arm, addr_t text_seg_base_addr,
std::vector<llvm::StringRef> &nameSlices,
std::set<lldb::addr_t> &resolver_addresses,
std::vector<TrieEntryWithOffset> &reexports,
std::vector<TrieEntryWithOffset> &ext_symbols) {
if (!data.ValidOffset(offset))
return true;
// Terminal node -- end of a branch, possibly add this to
// the symbol table or resolver table.
const uint64_t terminalSize = data.GetULEB128(&offset);
lldb::offset_t children_offset = offset + terminalSize;
if (terminalSize != 0) {
TrieEntryWithOffset e(offset);
e.entry.flags = data.GetULEB128(&offset);
const char *import_name = nullptr;
if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
e.entry.address = 0;
e.entry.other = data.GetULEB128(&offset); // dylib ordinal
import_name = data.GetCStr(&offset);
} else {
e.entry.address = data.GetULEB128(&offset);
if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
e.entry.address += text_seg_base_addr;
if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
e.entry.other = data.GetULEB128(&offset);
uint64_t resolver_addr = e.entry.other;
if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
resolver_addr += text_seg_base_addr;
if (is_arm)
resolver_addr &= THUMB_ADDRESS_BIT_MASK;
resolver_addresses.insert(resolver_addr);
} else
e.entry.other = 0;
}
bool add_this_entry = false;
if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
import_name && import_name[0]) {
// add symbols that are reexport symbols with a valid import name.
add_this_entry = true;
} else if (e.entry.flags == 0 &&
(import_name == nullptr || import_name[0] == '\0')) {
// add externally visible symbols, in case the nlist record has
// been stripped/omitted.
add_this_entry = true;
}
if (add_this_entry) {
std::string name;
if (!nameSlices.empty()) {
for (auto name_slice : nameSlices)
name.append(name_slice.data(), name_slice.size());
}
if (name.size() > 1) {
// Skip the leading '_'
e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
}
if (import_name) {
// Skip the leading '_'
e.entry.import_name.SetCString(import_name + 1);
}
if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
reexports.push_back(e);
} else {
if (is_arm && (e.entry.address & 1)) {
e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
e.entry.address &= THUMB_ADDRESS_BIT_MASK;
}
ext_symbols.push_back(e);
}
}
}
const uint8_t childrenCount = data.GetU8(&children_offset);
for (uint8_t i = 0; i < childrenCount; ++i) {
const char *cstr = data.GetCStr(&children_offset);
if (cstr)
nameSlices.push_back(llvm::StringRef(cstr));
else
return false; // Corrupt data
lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
if (childNodeOffset) {
if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
nameSlices, resolver_addresses, reexports,
ext_symbols)) {
return false;
}
}
nameSlices.pop_back();
}
return true;
}
static SymbolType GetSymbolType(const char *&symbol_name,
bool &demangled_is_synthesized,
const SectionSP &text_section_sp,
const SectionSP &data_section_sp,
const SectionSP &data_dirty_section_sp,
const SectionSP &data_const_section_sp,
const SectionSP &symbol_section) {
SymbolType type = eSymbolTypeInvalid;
const char *symbol_sect_name = symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant(text_section_sp.get())) {
if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
S_ATTR_SELF_MODIFYING_CODE |
S_ATTR_SOME_INSTRUCTIONS))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
} else if (symbol_section->IsDescendant(data_section_sp.get()) ||
symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
symbol_section->IsDescendant(data_const_section_sp.get())) {
if (symbol_sect_name &&
::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
type = eSymbolTypeRuntime;
if (symbol_name) {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith("OBJC_")) {
static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_metaclass(
"OBJC_METACLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
symbol_name = symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__gcc_except_tab") ==
symbol_sect_name) {
type = eSymbolTypeException;
} else {
type = eSymbolTypeData;
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
type = eSymbolTypeTrampoline;
}
return type;
}
// Read the UUID out of a dyld_shared_cache file on-disk.
UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
const ByteOrder byte_order,
const uint32_t addr_byte_size) {
UUID dsc_uuid;
DataBufferSP DscData = MapFileData(
dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
if (!DscData)
return dsc_uuid;
DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
char version_str[7];
lldb::offset_t offset = 0;
memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
version_str[6] = '\0';
if (strcmp(version_str, "dyld_v") == 0) {
offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
dsc_uuid = UUID::fromOptionalData(
dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
}
Log *log = GetLog(LLDBLog::Symbols);
if (log && dsc_uuid.IsValid()) {
LLDB_LOGF(log, "Shared cache %s has UUID %s",
dyld_shared_cache.GetPath().c_str(),
dsc_uuid.GetAsString().c_str());
}
return dsc_uuid;
}
static llvm::Optional<struct nlist_64>
ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
size_t nlist_byte_size) {
struct nlist_64 nlist;
if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
return {};
nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
return nlist;
}
enum { DebugSymbols = true, NonDebugSymbols = false };
void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
ModuleSP module_sp(GetModule());
if (!module_sp)
return;
const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
const char *file_name = file.GetFilename().AsCString("<Unknown>");
LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
Progress progress(llvm::formatv("Parsing symbol table for {0}", file_name));
llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
// The data element of type bool indicates that this entry is thumb
// code.
typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
// Record the address of every function/data that we add to the symtab.
// We add symbols to the table in the order of most information (nlist
// records) to least (function starts), and avoid duplicating symbols
// via this set.
llvm::DenseSet<addr_t> symbols_added;
// We are using a llvm::DenseSet for "symbols_added" so we must be sure we
// do not add the tombstone or empty keys to the set.
auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
// Don't add the tombstone or empty keys.
if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
return;
symbols_added.insert(file_addr);
};
FunctionStarts function_starts;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
FileSpecList dylib_files;
Log *log = GetLog(LLDBLog::Symbols);
llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
UUID image_uuid;
for (i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
// Read in the load command and load command size
llvm::MachO::load_command lc;
if (m_data.GetU32(&offset, &lc, 2) == nullptr)
break;
// Watch for the symbol table load command
switch (lc.cmd) {
case LC_SYMTAB:
symtab_load_command.cmd = lc.cmd;
symtab_load_command.cmdsize = lc.cmdsize;
// Read in the rest of the symtab load command
if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
nullptr) // fill in symoff, nsyms, stroff, strsize fields
return;
break;
case LC_DYLD_INFO:
case LC_DYLD_INFO_ONLY:
if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
dyld_info.cmd = lc.cmd;
dyld_info.cmdsize = lc.cmdsize;
} else {
memset(&dyld_info, 0, sizeof(dyld_info));
}
break;
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:
case LC_REEXPORT_DYLIB:
case LC_LOADFVMLIB:
case LC_LOAD_UPWARD_DYLIB: {
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
if (path) {
FileSpec file_spec(path);
// Strip the path if there is @rpath, @executable, etc so we just use
// the basename
if (path[0] == '@')
file_spec.GetDirectory().Clear();
if (lc.cmd == LC_REEXPORT_DYLIB) {
m_reexported_dylibs.AppendIfUnique(file_spec);
}
dylib_files.Append(file_spec);
}
} break;
case LC_DYLD_EXPORTS_TRIE:
exports_trie_load_command.cmd = lc.cmd;
exports_trie_load_command.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
nullptr) // fill in offset and size fields
memset(&exports_trie_load_command, 0,
sizeof(exports_trie_load_command));
break;
case LC_FUNCTION_STARTS:
function_starts_load_command.cmd = lc.cmd;
function_starts_load_command.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
nullptr) // fill in data offset and size fields
memset(&function_starts_load_command, 0,
sizeof(function_starts_load_command));
break;
case LC_UUID: {
const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
if (uuid_bytes)
image_uuid = UUID::fromOptionalData(uuid_bytes, 16);
break;
}
default:
break;
}
offset = cmd_offset + lc.cmdsize;
}
if (!symtab_load_command.cmd)
return;
SectionList *section_list = GetSectionList();
if (section_list == nullptr)
return;
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
const ByteOrder byte_order = m_data.GetByteOrder();
bool bit_width_32 = addr_byte_size == 4;
const size_t nlist_byte_size =
bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
addr_byte_size);
DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
const addr_t nlist_data_byte_size =
symtab_load_command.nsyms * nlist_byte_size;
const addr_t strtab_data_byte_size = symtab_load_command.strsize;
addr_t strtab_addr = LLDB_INVALID_ADDRESS;
ProcessSP process_sp(m_process_wp.lock());
Process *process = process_sp.get();
uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
bool is_shared_cache_image = IsSharedCacheBinary();
bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
SectionSP linkedit_section_sp(
section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
!is_local_shared_cache_image) {
Target &target = process->GetTarget();
memory_module_load_level = target.GetMemoryModuleLoadLevel();
// Reading mach file from memory in a process or core file...
if (linkedit_section_sp) {
addr_t linkedit_load_addr =
linkedit_section_sp->GetLoadBaseAddress(&target);
if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
// We might be trying to access the symbol table before the
// __LINKEDIT's load address has been set in the target. We can't
// fail to read the symbol table, so calculate the right address
// manually
linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
}
const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
const addr_t symoff_addr = linkedit_load_addr +
symtab_load_command.symoff -
linkedit_file_offset;
strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
linkedit_file_offset;
// Always load dyld - the dynamic linker - from memory if we didn't
// find a binary anywhere else. lldb will not register
// dylib/framework/bundle loads/unloads if we don't have the dyld
// symbols, we force dyld to load from memory despite the user's
// target.memory-module-load-level setting.
if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
m_header.filetype == llvm::MachO::MH_DYLINKER) {
DataBufferSP nlist_data_sp(
ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
if (nlist_data_sp)
nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
if (dysymtab.nindirectsyms != 0) {
const addr_t indirect_syms_addr = linkedit_load_addr +
dysymtab.indirectsymoff -
linkedit_file_offset;
DataBufferSP indirect_syms_data_sp(ReadMemory(
process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
if (indirect_syms_data_sp)
indirect_symbol_index_data.SetData(
indirect_syms_data_sp, 0,
indirect_syms_data_sp->GetByteSize());
// If this binary is outside the shared cache,
// cache the string table.
// Binaries in the shared cache all share a giant string table,
// and we can't share the string tables across multiple
// ObjectFileMachO's, so we'd end up re-reading this mega-strtab
// for every binary in the shared cache - it would be a big perf
// problem. For binaries outside the shared cache, it's faster to
// read the entire strtab at once instead of piece-by-piece as we
// process the nlist records.
if (!is_shared_cache_image) {
DataBufferSP strtab_data_sp(
ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
if (strtab_data_sp) {
strtab_data.SetData(strtab_data_sp, 0,
strtab_data_sp->GetByteSize());
}
}
}
if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
if (function_starts_load_command.cmd) {
const addr_t func_start_addr =
linkedit_load_addr + function_starts_load_command.dataoff -
linkedit_file_offset;
DataBufferSP func_start_data_sp(
ReadMemory(process_sp, func_start_addr,
function_starts_load_command.datasize));
if (func_start_data_sp)
function_starts_data.SetData(func_start_data_sp, 0,
func_start_data_sp->GetByteSize());
}
}
}
}
} else {
if (is_local_shared_cache_image) {
// The load commands in shared cache images are relative to the
// beginning of the shared cache, not the library image. The
// data we get handed when creating the ObjectFileMachO starts
// at the beginning of a specific library and spans to the end
// of the cache to be able to reach the shared LINKEDIT
// segments. We need to convert the load command offsets to be
// relative to the beginning of our specific image.
lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
lldb::offset_t linkedit_slide =
linkedit_offset - m_linkedit_original_offset;
symtab_load_command.symoff += linkedit_slide;
symtab_load_command.stroff += linkedit_slide;
dyld_info.export_off += linkedit_slide;
dysymtab.indirectsymoff += linkedit_slide;
function_starts_load_command.dataoff += linkedit_slide;
exports_trie_load_command.dataoff += linkedit_slide;
}
nlist_data.SetData(m_data, symtab_load_command.symoff,
nlist_data_byte_size);
strtab_data.SetData(m_data, symtab_load_command.stroff,
strtab_data_byte_size);
// We shouldn't have exports data from both the LC_DYLD_INFO command
// AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
lldbassert(!((dyld_info.export_size > 0)
&& (exports_trie_load_command.datasize > 0)));
if (dyld_info.export_size > 0) {
dyld_trie_data.SetData(m_data, dyld_info.export_off,
dyld_info.export_size);
} else if (exports_trie_load_command.datasize > 0) {
dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
exports_trie_load_command.datasize);
}
if (dysymtab.nindirectsyms != 0) {
indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
dysymtab.nindirectsyms * 4);
}
if (function_starts_load_command.cmd) {
function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
function_starts_load_command.datasize);
}
}
const bool have_strtab_data = strtab_data.GetByteSize() > 0;
ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
ConstString g_segment_name_DATA = GetSegmentNameDATA();
ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
SectionSP text_section_sp(
section_list->FindSectionByName(g_segment_name_TEXT));
SectionSP data_section_sp(
section_list->FindSectionByName(g_segment_name_DATA));
SectionSP data_dirty_section_sp(
section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
SectionSP data_const_section_sp(
section_list->FindSectionByName(g_segment_name_DATA_CONST));
SectionSP objc_section_sp(
section_list->FindSectionByName(g_segment_name_OBJC));
SectionSP eh_frame_section_sp;
if (text_section_sp.get())
eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
g_section_name_eh_frame);
else
eh_frame_section_sp =
section_list->FindSectionByName(g_section_name_eh_frame);
const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
// lldb works best if it knows the start address of all functions in a
// module. Linker symbols or debug info are normally the best source of
// information for start addr / size but they may be stripped in a released
// binary. Two additional sources of information exist in Mach-O binaries:
// LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
// function's start address in the
// binary, relative to the text section.
// eh_frame - the eh_frame FDEs have the start addr & size of
// each function
// LC_FUNCTION_STARTS is the fastest source to read in, and is present on
// all modern binaries.
// Binaries built to run on older releases may need to use eh_frame
// information.
if (text_section_sp && function_starts_data.GetByteSize()) {
FunctionStarts::Entry function_start_entry;
function_start_entry.data = false;
lldb::offset_t function_start_offset = 0;
function_start_entry.addr = text_section_sp->GetFileAddress();
uint64_t delta;
while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
0) {
// Now append the current entry
function_start_entry.addr += delta;
if (is_arm) {
if (function_start_entry.addr & 1) {
function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
function_start_entry.data = true;
} else if (always_thumb) {
function_start_entry.data = true;
}
}
function_starts.Append(function_start_entry);
}
} else {
// If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
// load command claiming an eh_frame but it doesn't actually have the
// eh_frame content. And if we have a dSYM, we don't need to do any of
// this fill-in-the-missing-symbols works anyway - the debug info should
// give us all the functions in the module.
if (text_section_sp.get() && eh_frame_section_sp.get() &&
m_type != eTypeDebugInfo) {
DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
DWARFCallFrameInfo::EH);
DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
eh_frame.GetFunctionAddressAndSizeVector(functions);
addr_t text_base_addr = text_section_sp->GetFileAddress();
size_t count = functions.GetSize();
for (size_t i = 0; i < count; ++i) {
const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
functions.GetEntryAtIndex(i);
if (func) {
FunctionStarts::Entry function_start_entry;
function_start_entry.addr = func->base - text_base_addr;
if (is_arm) {
if (function_start_entry.addr & 1) {
function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
function_start_entry.data = true;
} else if (always_thumb) {
function_start_entry.data = true;
}
}
function_starts.Append(function_start_entry);
}
}
}
}
const size_t function_starts_count = function_starts.GetSize();
// For user process binaries (executables, dylibs, frameworks, bundles), if
// we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
// going to assume the binary has been stripped. Don't allow assembly
// language instruction emulation because we don't know proper function
// start boundaries.
//
// For all other types of binaries (kernels, stand-alone bare board
// binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
// sections - we should not make any assumptions about them based on that.
if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
m_allow_assembly_emulation_unwind_plans = false;
Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
if (unwind_or_symbol_log)
module_sp->LogMessage(
unwind_or_symbol_log,
"no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
}
const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
? eh_frame_section_sp->GetID()
: static_cast<user_id_t>(NO_SECT);
uint32_t N_SO_index = UINT32_MAX;
MachSymtabSectionInfo section_info(section_list);
std::vector<uint32_t> N_FUN_indexes;
std::vector<uint32_t> N_NSYM_indexes;
std::vector<uint32_t> N_INCL_indexes;
std::vector<uint32_t> N_BRAC_indexes;
std::vector<uint32_t> N_COMM_indexes;
typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
// Any symbols that get merged into another will get an entry in this map
// so we know
NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
uint32_t nlist_idx = 0;
Symbol *symbol_ptr = nullptr;
uint32_t sym_idx = 0;
Symbol *sym = nullptr;
size_t num_syms = 0;
std::string memory_symbol_name;
uint32_t unmapped_local_symbols_found = 0;
std::vector<TrieEntryWithOffset> reexport_trie_entries;
std::vector<TrieEntryWithOffset> external_sym_trie_entries;
std::set<lldb::addr_t> resolver_addresses;
if (dyld_trie_data.GetByteSize() > 0) {
ConstString text_segment_name("__TEXT");
SectionSP text_segment_sp =
GetSectionList()->FindSectionByName(text_segment_name);
lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
if (text_segment_sp)
text_segment_file_addr = text_segment_sp->GetFileAddress();
std::vector<llvm::StringRef> nameSlices;
ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
nameSlices, resolver_addresses, reexport_trie_entries,
external_sym_trie_entries);
}
typedef std::set<ConstString> IndirectSymbols;
IndirectSymbols indirect_symbol_names;
#if TARGET_OS_IPHONE
// Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
// optimized by moving LOCAL symbols out of the memory mapped portion of
// the DSC. The symbol information has all been retained, but it isn't
// available in the normal nlist data. However, there *are* duplicate
// entries of *some*
// LOCAL symbols in the normal nlist data. To handle this situation
// correctly, we must first attempt
// to parse any DSC unmapped symbol information. If we find any, we set a
// flag that tells the normal nlist parser to ignore all LOCAL symbols.
if (IsSharedCacheBinary()) {
// Before we can start mapping the DSC, we need to make certain the
// target process is actually using the cache we can find.
// Next we need to determine the correct path for the dyld shared cache.
ArchSpec header_arch = GetArchitecture();
UUID dsc_uuid;
UUID process_shared_cache_uuid;
addr_t process_shared_cache_base_addr;
if (process) {
GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
process_shared_cache_uuid);
}
__block bool found_image = false;
__block void *nlist_buffer = nullptr;
__block unsigned nlist_count = 0;
__block char *string_table = nullptr;
__block vm_offset_t vm_nlist_memory = 0;
__block mach_msg_type_number_t vm_nlist_bytes_read = 0;
__block vm_offset_t vm_string_memory = 0;
__block mach_msg_type_number_t vm_string_bytes_read = 0;
auto _ = llvm::make_scope_exit(^{
if (vm_nlist_memory)
vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
if (vm_string_memory)
vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
});
typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
UndefinedNameToDescMap undefined_name_to_desc;
SymbolIndexToName reexport_shlib_needs_fixup;
dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
uuid_t cache_uuid;
dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
if (found_image)
return;
if (process_shared_cache_uuid.IsValid() &&
process_shared_cache_uuid != UUID::fromOptionalData(&cache_uuid, 16))
return;
dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
uuid_t dsc_image_uuid;
if (found_image)
return;
dyld_image_copy_uuid(image, &dsc_image_uuid);
if (image_uuid != UUID::fromOptionalData(dsc_image_uuid, 16))
return;
found_image = true;
// Compute the size of the string table. We need to ask dyld for a
// new SPI to avoid this step.
dyld_image_local_nlist_content_4Symbolication(
image, ^(const void *nlistStart, uint64_t nlistCount,
const char *stringTable) {
if (!nlistStart || !nlistCount)
return;
// The buffers passed here are valid only inside the block.
// Use vm_read to make a cheap copy of them available for our
// processing later.
kern_return_t ret =
vm_read(mach_task_self(), (vm_address_t)nlistStart,
nlist_byte_size * nlistCount, &vm_nlist_memory,
&vm_nlist_bytes_read);
if (ret != KERN_SUCCESS)
return;
assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
// We don't know the size of the string table. It's cheaper
// to map the whol VM region than to determine the size by
// parsing all teh nlist entries.
vm_address_t string_address = (vm_address_t)stringTable;
vm_size_t region_size;
mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
vm_region_basic_info_data_t info;
memory_object_name_t object;
ret = vm_region_64(mach_task_self(), &string_address,
&region_size, VM_REGION_BASIC_INFO_64,
(vm_region_info_t)&info, &info_count, &object);
if (ret != KERN_SUCCESS)
return;
ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
region_size -
((vm_address_t)stringTable - string_address),
&vm_string_memory, &vm_string_bytes_read);
if (ret != KERN_SUCCESS)
return;
nlist_buffer = (void *)vm_nlist_memory;
string_table = (char *)vm_string_memory;
nlist_count = nlistCount;
});
});
});
if (nlist_buffer) {
DataExtractor dsc_local_symbols_data(nlist_buffer,
nlist_count * nlist_byte_size,
byte_order, addr_byte_size);
unmapped_local_symbols_found = nlist_count;
// The normal nlist code cannot correctly size the Symbols
// array, we need to allocate it here.
sym = symtab.Resize(
symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
unmapped_local_symbols_found - m_dysymtab.nlocalsym);
num_syms = symtab.GetNumSymbols();
lldb::offset_t nlist_data_offset = 0;
for (uint32_t nlist_index = 0;
nlist_index < nlist_count;
nlist_index++) {
/////////////////////////////
{
llvm::Optional<struct nlist_64> nlist_maybe =
ParseNList(dsc_local_symbols_data, nlist_data_offset,
nlist_byte_size);
if (!nlist_maybe)
break;
struct nlist_64 nlist = *nlist_maybe;
SymbolType type = eSymbolTypeInvalid;
const char *symbol_name = string_table + nlist.n_strx;
if (symbol_name == NULL) {
// No symbol should be NULL, even the symbols with no
// string values should have an offset zero which
// points to an empty C-string
Debugger::ReportError(llvm::formatv(
"DSC unmapped local symbol[{0}] has invalid "
"string table offset {1:x} in {2}, ignoring symbol",
nlist_index, nlist.n_strx,
module_sp->GetFileSpec().GetPath());
continue;
}
if (symbol_name[0] == '\0')
symbol_name = NULL;
const char *symbol_name_non_abi_mangled = NULL;
SectionSP symbol_section;
uint32_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & N_STAB) != 0);
bool demangled_is_synthesized = false;
bool is_gsym = false;
bool set_value = true;
assert(sym_idx < num_syms);
sym[sym_idx].SetDebug(is_debug);
if (is_debug) {
switch (nlist.n_type) {
case N_GSYM:
// global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug
// symbol for all the ObjC data. They
// have the same address, but we want to ensure that
// we always find only the real symbol, 'cause we
// don't currently correctly attribute the
// GSYM one to the ObjCClass/Ivar/MetaClass
// symbol type. This is a temporary hack to make
// sure the ObjectiveC symbols get treated correctly.
// To do this right, we should coalesce all the GSYM
// & global symbols that have the same address.
is_gsym = true;
sym[sym_idx].SetExternal(true);
if (symbol_name && symbol_name[0] == '_' &&
symbol_name[1] == 'O') {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith(
g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
} else {
if (nlist.n_value != 0)
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case N_FNAME:
// procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_FUN:
// procedure: name,,n_sect,linenumber,address
if (symbol_name) {
type = eSymbolTypeCode;
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
// We use the current number of symbols in the
// symbol table in lieu of using nlist_idx in case
// we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
} else {
type = eSymbolTypeCompiler;
if (!N_FUN_indexes.empty()) {
// Copy the size of the function into the
// original
// STAB entry so we don't have
// to hunt for it later
symtab.SymbolAtIndex(N_FUN_indexes.back())
->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as
// it contains the size which we already placed
// with the original symbol, so don't add it if
// we want a minimal symbol table
add_nlist = false;
}
}
break;
case N_STSYM:
// static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
if (symbol_name && symbol_name[0]) {
type = ObjectFile::GetSymbolTypeFromName(
symbol_name + 1, eSymbolTypeData);
}
break;
case N_LCSYM:
// .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case N_BNSYM:
// We use the current number of symbols in the symbol
// table in lieu of using nlist_idx in case we ever
// start trimming entries out Skip these if we want
// minimal symbol tables
add_nlist = false;
break;
case N_ENSYM:
// Set the size of the N_BNSYM to the terminating
// index of this N_ENSYM so that we can always skip
// the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
// Skip these if we want minimal symbol tables
add_nlist = false;
break;
case N_OPT:
// emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case N_RSYM:
// register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case N_SLINE:
// src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case N_SSYM:
// structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case N_SO:
// source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL) {
add_nlist = false;
if (N_SO_index != UINT32_MAX) {
// Set the size of the N_SO to the terminating
// index of this N_SO so that we can always skip
// the entire N_SO if we need to navigate more
// quickly at the source level when parsing STABS
symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx);
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
} else {
// We use the current number of symbols in the
// symbol table in lieu of using nlist_idx in case
// we ever start trimming entries out
const bool N_SO_has_full_path = symbol_name[0] == '/';
if (N_SO_has_full_path) {
if ((N_SO_index == sym_idx - 1) &&
((sym_idx - 1) < num_syms)) {
// We have two consecutive N_SO entries where
// the first contains a directory and the
// second contains a full path.
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(symbol_name), false);
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
add_nlist = false;
} else {
// This is the first entry in a N_SO that
// contains a directory or
// a full path to the source file
N_SO_index = sym_idx;
}
} else if ((N_SO_index == sym_idx - 1) &&
((sym_idx - 1) < num_syms)) {
// This is usually the second N_SO entry that
// contains just the filename, so here we combine
// it with the first one if we are minimizing the
// symbol table
const char *so_path = sym[sym_idx - 1]
.GetMangled()
.GetDemangledName()
.AsCString();
if (so_path && so_path[0]) {
std::string full_so_path(so_path);
const size_t double_slash_pos =
full_so_path.find("//");
if (double_slash_pos != std::string::npos) {
// The linker has been generating bad N_SO
// entries with doubled up paths
// in the format "%s%s" where the first
// string in the DW_AT_comp_dir, and the
// second is the directory for the source
// file so you end up with a path that looks
// like "/tmp/src//tmp/src/"
FileSpec so_dir(so_path);
if (!FileSystem::Instance().Exists(so_dir)) {
so_dir.SetFile(
&full_so_path[double_slash_pos + 1],
FileSpec::Style::native);
if (FileSystem::Instance().Exists(so_dir)) {
// Trim off the incorrect path
full_so_path.erase(0, double_slash_pos + 1);
}
}
}
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(full_so_path.c_str()), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
} else {
// This could be a relative path to a N_SO
N_SO_index = sym_idx;
}
}
break;
case N_OSO:
// object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case N_LSYM:
// local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
// INCL scopes
case N_BINCL:
// include file beginning: name,,NO_SECT,0,sum We use
// the current number of symbols in the symbol table
// in lieu of using nlist_idx in case we ever start
// trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_EINCL:
// include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating
// index of this N_EINCL so that we can always skip
// the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
if (!N_INCL_indexes.empty()) {
symbol_ptr =
symtab.SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_SOL:
// #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
add_nlist = false;
break;
case N_PARAMS:
// compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_VERSION:
// compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_OLEVEL:
// compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_PSYM:
// parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case N_ENTRY:
// alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
type = eSymbolTypeLineEntry;
break;
// Left and Right Braces
case N_LBRAC:
// left bracket: 0,,NO_SECT,nesting level,address We
// use the current number of symbols in the symbol
// table in lieu of using nlist_idx in case we ever
// start trimming entries out
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_RBRAC:
// right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating
// index of this N_RBRAC so that we can always skip
// the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
if (!N_BRAC_indexes.empty()) {
symbol_ptr =
symtab.SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_EXCL:
// deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
// COMM scopes
case N_BCOMM:
// begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol
// table in lieu of using nlist_idx in case we ever
// start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case N_ECOML:
// end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
// Fall through
case N_ECOMM:
// end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating
// index of this N_ECOMM/N_ECOML so that we can
// always skip the entire symbol if we need to
// navigate more quickly at the source level when
// parsing STABS
if (!N_COMM_indexes.empty()) {
symbol_ptr =
symtab.SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_LENG:
// second stab entry with length information
type = eSymbolTypeAdditional;
break;
default:
break;
}
} else {
// uint8_t n_pext = N_PEXT & nlist.n_type;
uint8_t n_type = N_TYPE & nlist.n_type;
sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
switch (n_type) {
case N_INDR: {
const char *reexport_name_cstr =
strtab_data.PeekCStr(nlist.n_value);
if (reexport_name_cstr && reexport_name_cstr[0]) {
type = eSymbolTypeReExported;
ConstString reexport_name(
reexport_name_cstr +
((reexport_name_cstr[0] == '_') ? 1 : 0));
sym[sym_idx].SetReExportedSymbolName(reexport_name);
set_value = false;
reexport_shlib_needs_fixup[sym_idx] = reexport_name;
indirect_symbol_names.insert(ConstString(
symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
} else
type = eSymbolTypeUndefined;
} break;
case N_UNDF:
if (symbol_name && symbol_name[0]) {
ConstString undefined_name(
symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
undefined_name_to_desc[undefined_name] = nlist.n_desc;
}
// Fall through
case N_PBUD:
type = eSymbolTypeUndefined;
break;
case N_ABS:
type = eSymbolTypeAbsolute;
break;
case N_SECT: {
symbol_section = section_info.GetSection(nlist.n_sect,
nlist.n_value);
if (symbol_section == NULL) {
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect) {
type = eSymbolTypeException;
} else {
uint32_t section_type =
symbol_section->Get() & SECTION_TYPE;
switch (section_type) {
case S_CSTRING_LITERALS:
type = eSymbolTypeData;
break; // section with only literal C strings
case S_4BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 4 byte literals
case S_8BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 8 byte literals
case S_LITERAL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only pointers to literals
case S_NON_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only non-lazy symbol
// pointers
case S_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only lazy symbol pointers
case S_SYMBOL_STUBS:
type = eSymbolTypeTrampoline;
break; // section with only symbol stubs, byte
// size of stub in the reserved2 field
case S_MOD_INIT_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for
// initialization
case S_MOD_TERM_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for
// termination
case S_INTERPOSING:
type = eSymbolTypeTrampoline;
break; // section with only pairs of function
// pointers for interposing
case S_16BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 16 byte literals
case S_DTRACE_DOF:
type = eSymbolTypeInstrumentation;
break;
case S_LAZY_DYLIB_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break;
default:
switch (symbol_section->GetType()) {
case lldb::eSectionTypeCode:
type = eSymbolTypeCode;
break;
case eSectionTypeData:
case eSectionTypeDataCString: // Inlined C string
// data
case eSectionTypeDataCStringPointers: // Pointers
// to C
// string
// data
case eSectionTypeDataSymbolAddress: // Address of
// a symbol in
// the symbol
// table
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
type = eSymbolTypeData;
break;
default:
break;
}
break;
}
if (type == eSymbolTypeInvalid) {
const char *symbol_sect_name =
symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant(
text_section_sp.get())) {
if (symbol_section->IsClear(
S_ATTR_PURE_INSTRUCTIONS |
S_ATTR_SELF_MODIFYING_CODE |
S_ATTR_SOME_INSTRUCTIONS))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
} else if (symbol_section->IsDescendant(
data_section_sp.get()) ||
symbol_section->IsDescendant(
data_dirty_section_sp.get()) ||
symbol_section->IsDescendant(
data_const_section_sp.get())) {
if (symbol_sect_name &&
::strstr(symbol_sect_name, "__objc") ==
symbol_sect_name) {
type = eSymbolTypeRuntime;
if (symbol_name) {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith("_OBJC_")) {
llvm::StringRef
g_objc_v2_prefix_class(
"_OBJC_CLASS_$_");
llvm::StringRef
g_objc_v2_prefix_metaclass(
"_OBJC_METACLASS_$_");
llvm::StringRef
g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(
g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled =
symbol_name + 1;
symbol_name =
symbol_name +
g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (
symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled =
symbol_name + 1;
symbol_name =
symbol_name +
g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled =
symbol_name + 1;
symbol_name =
symbol_name +
g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name,
"__gcc_except_tab") ==
symbol_sect_name) {
type = eSymbolTypeException;
} else {
type = eSymbolTypeData;
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__IMPORT") ==
symbol_sect_name) {
type = eSymbolTypeTrampoline;
} else if (symbol_section->IsDescendant(
objc_section_sp.get())) {
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.') {
llvm::StringRef symbol_name_ref(symbol_name);
llvm::StringRef
g_objc_v1_prefix_class(".objc_class_name_");
if (symbol_name_ref.startswith(
g_objc_v1_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name +
g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
}
}
}
}
} break;
}
}
if (add_nlist) {
uint64_t symbol_value = nlist.n_value;
if (symbol_name_non_abi_mangled) {
sym[sym_idx].GetMangled().SetMangledName(
ConstString(symbol_name_non_abi_mangled));
sym[sym_idx].GetMangled().SetDemangledName(
ConstString(symbol_name));
} else {
bool symbol_name_is_mangled = false;
if (symbol_name && symbol_name[0] == '_') {
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name) {
ConstString const_symbol_name(symbol_name);
sym[sym_idx].GetMangled().SetValue(
const_symbol_name, symbol_name_is_mangled);
if (is_gsym && is_debug) {
const char *gsym_name =
sym[sym_idx]
.GetMangled()
.GetName(Mangled::ePreferMangled)
.GetCString();
if (gsym_name)
N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
}
}
}
if (symbol_section) {
const addr_t section_file_addr =
symbol_section->GetFileAddress();
if (symbol_byte_size == 0 &&
function_starts_count > 0) {
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses,
// else get the closest since the symbol might be a
// thumb symbol which has an address with bit zero
// set
FunctionStarts::Entry *func_start_entry =
function_starts.FindEntry(symbol_lookup_file_addr,
!is_arm);
if (is_arm && func_start_entry) {
// Verify that the function start address is the
// symbol address (ARM) or the symbol address + 1
// (thumb)
if (func_start_entry->addr !=
symbol_lookup_file_addr &&
func_start_entry->addr !=
(symbol_lookup_file_addr + 1)) {
// Not the right entry, NULL it out...
func_start_entry = NULL;
}
}
if (func_start_entry) {
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm) {
if (symbol_file_addr & 1)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
}
const FunctionStarts::Entry *next_func_start_entry =
function_starts.FindNextEntry(func_start_entry);
const addr_t section_end_file_addr =
section_file_addr +
symbol_section->GetByteSize();
if (next_func_start_entry) {
addr_t next_symbol_file_addr =
next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when
// we calculate the size from the current and
// next address
if (is_arm)
next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
symbol_byte_size = std::min<lldb::addr_t>(
next_symbol_file_addr - symbol_file_addr,
section_end_file_addr - symbol_file_addr);
} else {
symbol_byte_size =
section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
if (is_debug == false) {
if (type == eSymbolTypeCode) {
// See if we can find a N_FUN entry for any code
// symbols. If we do find a match, and the name
// matches, then we can merge the two into just the
// function symbol to avoid duplicate entries in
// the symbol table
auto range =
N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
if (range.first != range.second) {
bool found_it = false;
for (auto pos = range.first; pos != range.second;
++pos) {
if (sym[sym_idx].GetMangled().GetName(
Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker
// symbol, so put these flags
// into the N_FUN flags to avoid duplicate
// symbols in the symbol table
sym[pos->second].SetExternal(
sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
sym[pos->second].SetType(eSymbolTypeResolver);
sym[sym_idx].Clear();
found_it = true;
break;
}
}
if (found_it)
continue;
} else {
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
type = eSymbolTypeResolver;
}
} else if (type == eSymbolTypeData ||
type == eSymbolTypeObjCClass ||
type == eSymbolTypeObjCMetaClass ||
type == eSymbolTypeObjCIVar) {
// See if we can find a N_STSYM entry for any data
// symbols. If we do find a match, and the name
// matches, then we can merge the two into just the
// Static symbol to avoid duplicate entries in the
// symbol table
auto range = N_STSYM_addr_to_sym_idx.equal_range(
nlist.n_value);
if (range.first != range.second) {
bool found_it = false;
for (auto pos = range.first; pos != range.second;
++pos) {
if (sym[sym_idx].GetMangled().GetName(
Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker
// symbol, so put these flags
// into the N_STSYM flags to avoid duplicate
// symbols in the symbol table
sym[pos->second].SetExternal(
sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
sym[sym_idx].Clear();
found_it = true;
break;
}
}
if (found_it)
continue;
} else {
const char *gsym_name =
sym[sym_idx]
.GetMangled()
.GetName(Mangled::ePreferMangled)
.GetCString();
if (gsym_name) {
// Combine N_GSYM stab entries with the non
// stab symbol
ConstNameToSymbolIndexMap::const_iterator pos =
N_GSYM_name_to_sym_idx.find(gsym_name);
if (pos != N_GSYM_name_to_sym_idx.end()) {
const uint32_t GSYM_sym_idx = pos->second;
m_nlist_idx_to_sym_idx[nlist_idx] =
GSYM_sym_idx;
// Copy the address, because often the N_GSYM
// address has an invalid address of zero
// when the global is a common symbol
sym[GSYM_sym_idx].GetAddressRef().SetSection(
symbol_section);
sym[GSYM_sym_idx].GetAddressRef().SetOffset(
symbol_value);
add_symbol_addr(sym[GSYM_sym_idx]
.GetAddress()
.GetFileAddress());
// We just need the flags from the linker
// symbol, so put these flags
// into the N_GSYM flags to avoid duplicate
// symbols in the symbol table
sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
}
sym[sym_idx].SetID(nlist_idx);
sym[sym_idx].SetType(type);
if (set_value) {
sym[sym_idx].GetAddressRef().SetSection(symbol_section);
sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
add_symbol_addr(
sym[sym_idx].GetAddress().GetFileAddress());
}
sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
++sym_idx;
} else {
sym[sym_idx].Clear();
}
}
/////////////////////////////
}
}
for (const auto &pos : reexport_shlib_needs_fixup) {
const auto undef_pos = undefined_name_to_desc.find(pos.second);
if (undef_pos != undefined_name_to_desc.end()) {
const uint8_t dylib_ordinal =
llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
sym[pos.first].SetReExportedSymbolSharedLibrary(
dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
}
}
}
#endif
lldb::offset_t nlist_data_offset = 0;
if (nlist_data.GetByteSize() > 0) {
// If the sym array was not created while parsing the DSC unmapped
// symbols, create it now.
if (sym == nullptr) {
sym =
symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
num_syms = symtab.GetNumSymbols();
}
if (unmapped_local_symbols_found) {
assert(m_dysymtab.ilocalsym == 0);
nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
nlist_idx = m_dysymtab.nlocalsym;
} else {
nlist_idx = 0;
}
typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
UndefinedNameToDescMap undefined_name_to_desc;
SymbolIndexToName reexport_shlib_needs_fixup;
// Symtab parsing is a huge mess. Everything is entangled and the code
// requires access to a ridiculous amount of variables. LLDB depends
// heavily on the proper merging of symbols and to get that right we need
// to make sure we have parsed all the debug symbols first. Therefore we
// invoke the lambda twice, once to parse only the debug symbols and then
// once more to parse the remaining symbols.
auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
bool debug_only) {
const bool is_debug = ((nlist.n_type & N_STAB) != 0);
if (is_debug != debug_only)
return true;
const char *symbol_name_non_abi_mangled = nullptr;
const char *symbol_name = nullptr;
if (have_strtab_data) {
symbol_name = strtab_data.PeekCStr(nlist.n_strx);
if (symbol_name == nullptr) {
// No symbol should be NULL, even the symbols with no string values
// should have an offset zero which points to an empty C-string
Debugger::ReportError(llvm::formatv(
"symbol[{0}] has invalid string table offset {1:x} in {2}, "
"ignoring symbol",
nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath()));
return true;
}
if (symbol_name[0] == '\0')
symbol_name = nullptr;
} else {
const addr_t str_addr = strtab_addr + nlist.n_strx;
Status str_error;
if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
str_error))
symbol_name = memory_symbol_name.c_str();
}
SymbolType type = eSymbolTypeInvalid;
SectionSP symbol_section;
lldb::addr_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_gsym = false;
bool demangled_is_synthesized = false;
bool set_value = true;
assert(sym_idx < num_syms);
sym[sym_idx].SetDebug(is_debug);
if (is_debug) {
switch (nlist.n_type) {
case N_GSYM:
// global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug symbol for all
// the ObjC data. They
// have the same address, but we want to ensure that we always find
// only the real symbol, 'cause we don't currently correctly
// attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
// type. This is a temporary hack to make sure the ObjectiveC
// symbols get treated correctly. To do this right, we should
// coalesce all the GSYM & global symbols that have the same
// address.
is_gsym = true;
sym[sym_idx].SetExternal(true);
if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
} else {
if (nlist.n_value != 0)
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case N_FNAME:
// procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_FUN:
// procedure: name,,n_sect,linenumber,address
if (symbol_name) {
type = eSymbolTypeCode;
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
// We use the current number of symbols in the symbol table in
// lieu of using nlist_idx in case we ever start trimming entries
// out
N_FUN_indexes.push_back(sym_idx);
} else {
type = eSymbolTypeCompiler;
if (!N_FUN_indexes.empty()) {
// Copy the size of the function into the original STAB entry
// so we don't have to hunt for it later
symtab.SymbolAtIndex(N_FUN_indexes.back())
->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains
// the size which we already placed with the original symbol,
// so don't add it if we want a minimal symbol table
add_nlist = false;
}
}
break;
case N_STSYM:
// static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
if (symbol_name && symbol_name[0]) {
type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
eSymbolTypeData);
}
break;
case N_LCSYM:
// .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case N_BNSYM:
// We use the current number of symbols in the symbol table in lieu
// of using nlist_idx in case we ever start trimming entries out
// Skip these if we want minimal symbol tables
add_nlist = false;
break;
case N_ENSYM:
// Set the size of the N_BNSYM to the terminating index of this
// N_ENSYM so that we can always skip the entire symbol if we need
// to navigate more quickly at the source level when parsing STABS
// Skip these if we want minimal symbol tables
add_nlist = false;
break;
case N_OPT:
// emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case N_RSYM:
// register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case N_SLINE:
// src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case N_SSYM:
// structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case N_SO:
// source file name
type = eSymbolTypeSourceFile;
if (symbol_name == nullptr) {
add_nlist = false;
if (N_SO_index != UINT32_MAX) {
// Set the size of the N_SO to the terminating index of this
// N_SO so that we can always skip the entire N_SO if we need
// to navigate more quickly at the source level when parsing
// STABS
symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx);
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
} else {
// We use the current number of symbols in the symbol table in
// lieu of using nlist_idx in case we ever start trimming entries
// out
const bool N_SO_has_full_path = symbol_name[0] == '/';
if (N_SO_has_full_path) {
if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
// We have two consecutive N_SO entries where the first
// contains a directory and the second contains a full path.
sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
false);
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
add_nlist = false;
} else {
// This is the first entry in a N_SO that contains a
// directory or a full path to the source file
N_SO_index = sym_idx;
}
} else if ((N_SO_index == sym_idx - 1) &&
((sym_idx - 1) < num_syms)) {
// This is usually the second N_SO entry that contains just the
// filename, so here we combine it with the first one if we are
// minimizing the symbol table
const char *so_path =
sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
if (so_path && so_path[0]) {
std::string full_so_path(so_path);
const size_t double_slash_pos = full_so_path.find("//");
if (double_slash_pos != std::string::npos) {
// The linker has been generating bad N_SO entries with
// doubled up paths in the format "%s%s" where the first
// string in the DW_AT_comp_dir, and the second is the
// directory for the source file so you end up with a path
// that looks like "/tmp/src//tmp/src/"
FileSpec so_dir(so_path);
if (!FileSystem::Instance().Exists(so_dir)) {
so_dir.SetFile(&full_so_path[double_slash_pos + 1],
FileSpec::Style::native);
if (FileSystem::Instance().Exists(so_dir)) {
// Trim off the incorrect path
full_so_path.erase(0, double_slash_pos + 1);
}
}
}
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(full_so_path.c_str()), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
} else {
// This could be a relative path to a N_SO
N_SO_index = sym_idx;
}
}
break;
case N_OSO:
// object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case N_LSYM:
// local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
// INCL scopes
case N_BINCL:
// include file beginning: name,,NO_SECT,0,sum We use the current
// number of symbols in the symbol table in lieu of using nlist_idx
// in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_EINCL:
// include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this
// N_EINCL so that we can always skip the entire symbol if we need
// to navigate more quickly at the source level when parsing STABS
if (!N_INCL_indexes.empty()) {
symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_SOL:
// #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
add_nlist = false;
break;
case N_PARAMS:
// compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_VERSION:
// compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_OLEVEL:
// compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_PSYM:
// parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case N_ENTRY:
// alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
// Left and Right Braces
case N_LBRAC:
// left bracket: 0,,NO_SECT,nesting level,address We use the
// current number of symbols in the symbol table in lieu of using
// nlist_idx in case we ever start trimming entries out
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_RBRAC:
// right bracket: 0,,NO_SECT,nesting level,address Set the size of
// the N_LBRAC to the terminating index of this N_RBRAC so that we
// can always skip the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
if (!N_BRAC_indexes.empty()) {
symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_EXCL:
// deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
// COMM scopes
case N_BCOMM:
// begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu
// of using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case N_ECOML:
// end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
LLVM_FALLTHROUGH;
case N_ECOMM:
// end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this
// N_ECOMM/N_ECOML so that we can always skip the entire symbol if
// we need to navigate more quickly at the source level when
// parsing STABS
if (!N_COMM_indexes.empty()) {
symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_LENG:
// second stab entry with length information
type = eSymbolTypeAdditional;
break;
default:
break;
}
} else {
uint8_t n_type = N_TYPE & nlist.n_type;
sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
switch (n_type) {
case N_INDR: {
const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
if (reexport_name_cstr && reexport_name_cstr[0]) {
type = eSymbolTypeReExported;
ConstString reexport_name(reexport_name_cstr +
((reexport_name_cstr[0] == '_') ? 1 : 0));
sym[sym_idx].SetReExportedSymbolName(reexport_name);
set_value = false;
reexport_shlib_needs_fixup[sym_idx] = reexport_name;
indirect_symbol_names.insert(
ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
} else
type = eSymbolTypeUndefined;
} break;
case N_UNDF:
if (symbol_name && symbol_name[0]) {
ConstString undefined_name(symbol_name +
((symbol_name[0] == '_') ? 1 : 0));
undefined_name_to_desc[undefined_name] = nlist.n_desc;
}
LLVM_FALLTHROUGH;
case N_PBUD:
type = eSymbolTypeUndefined;
break;
case N_ABS:
type = eSymbolTypeAbsolute;
break;
case N_SECT: {
symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
if (!symbol_section) {
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect) {
type = eSymbolTypeException;
} else {
uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
switch (section_type) {
case S_CSTRING_LITERALS:
type = eSymbolTypeData;
break; // section with only literal C strings
case S_4BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 4 byte literals
case S_8BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 8 byte literals
case S_LITERAL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only pointers to literals
case S_NON_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only non-lazy symbol pointers
case S_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only lazy symbol pointers
case S_SYMBOL_STUBS:
type = eSymbolTypeTrampoline;
break; // section with only symbol stubs, byte size of stub in
// the reserved2 field
case S_MOD_INIT_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for initialization
case S_MOD_TERM_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for termination
case S_INTERPOSING:
type = eSymbolTypeTrampoline;
break; // section with only pairs of function pointers for
// interposing
case S_16BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 16 byte literals
case S_DTRACE_DOF:
type = eSymbolTypeInstrumentation;
break;
case S_LAZY_DYLIB_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break;
default:
switch (symbol_section->GetType()) {
case lldb::eSectionTypeCode:
type = eSymbolTypeCode;
break;
case eSectionTypeData:
case eSectionTypeDataCString: // Inlined C string data
case eSectionTypeDataCStringPointers: // Pointers to C string
// data
case eSectionTypeDataSymbolAddress: // Address of a symbol in
// the symbol table
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
type = eSymbolTypeData;
break;
default:
break;
}
break;
}
if (type == eSymbolTypeInvalid) {
const char *symbol_sect_name =
symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant(text_section_sp.get())) {
if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
S_ATTR_SELF_MODIFYING_CODE |
S_ATTR_SOME_INSTRUCTIONS))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
} else if (symbol_section->IsDescendant(data_section_sp.get()) ||
symbol_section->IsDescendant(
data_dirty_section_sp.get()) ||
symbol_section->IsDescendant(
data_const_section_sp.get())) {
if (symbol_sect_name &&
::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
type = eSymbolTypeRuntime;
if (symbol_name) {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith("_OBJC_")) {
llvm::StringRef g_objc_v2_prefix_class(
"_OBJC_CLASS_$_");
llvm::StringRef g_objc_v2_prefix_metaclass(
"_OBJC_METACLASS_$_");
llvm::StringRef g_objc_v2_prefix_ivar(
"_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__gcc_except_tab") ==
symbol_sect_name) {
type = eSymbolTypeException;
} else {
type = eSymbolTypeData;
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__IMPORT") ==
symbol_sect_name) {
type = eSymbolTypeTrampoline;
} else if (symbol_section->IsDescendant(objc_section_sp.get())) {
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.') {
llvm::StringRef symbol_name_ref(symbol_name);
llvm::StringRef g_objc_v1_prefix_class(
".objc_class_name_");
if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name + g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
}
}
}
}
} break;
}
}
if (!add_nlist) {
sym[sym_idx].Clear();
return true;
}
uint64_t symbol_value = nlist.n_value;
if (symbol_name_non_abi_mangled) {
sym[sym_idx].GetMangled().SetMangledName(
ConstString(symbol_name_non_abi_mangled));
sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
} else {
bool symbol_name_is_mangled = false;
if (symbol_name && symbol_name[0] == '_') {
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name) {
ConstString const_symbol_name(symbol_name);
sym[sym_idx].GetMangled().SetValue(const_symbol_name,
symbol_name_is_mangled);
}
}
if (is_gsym) {
const char *gsym_name = sym[sym_idx]
.GetMangled()
.GetName(Mangled::ePreferMangled)
.GetCString();
if (gsym_name)
N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
}
if (symbol_section) {
const addr_t section_file_addr = symbol_section->GetFileAddress();
if (symbol_byte_size == 0 && function_starts_count > 0) {
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses, else get the
// closest since the symbol might be a thumb symbol which has an
// address with bit zero set.
FunctionStarts::Entry *func_start_entry =
function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
if (is_arm && func_start_entry) {
// Verify that the function start address is the symbol address
// (ARM) or the symbol address + 1 (thumb).
if (func_start_entry->addr != symbol_lookup_file_addr &&
func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
// Not the right entry, NULL it out...
func_start_entry = nullptr;
}
}
if (func_start_entry) {
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
if (is_arm)
symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
const FunctionStarts::Entry *next_func_start_entry =
function_starts.FindNextEntry(func_start_entry);
const addr_t section_end_file_addr =
section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry) {
addr_t next_symbol_file_addr = next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when we calculate the
// size from the current and next address
if (is_arm)
next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
symbol_byte_size = std::min<lldb::addr_t>(
next_symbol_file_addr - symbol_file_addr,
section_end_file_addr - symbol_file_addr);
} else {
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
if (!is_debug) {
if (type == eSymbolTypeCode) {
// See if we can find a N_FUN entry for any code symbols. If we do
// find a match, and the name matches, then we can merge the two into
// just the function symbol to avoid duplicate entries in the symbol
// table.
std::pair<ValueToSymbolIndexMap::const_iterator,
ValueToSymbolIndexMap::const_iterator>
range;
range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
if (range.first != range.second) {
for (ValueToSymbolIndexMap::const_iterator pos = range.first;
pos != range.second; ++pos) {
if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these
// flags into the N_FUN flags to avoid duplicate symbols in the
// symbol table.
sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
sym[pos->second].SetType(eSymbolTypeResolver);
sym[sym_idx].Clear();
return true;
}
}
} else {
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
type = eSymbolTypeResolver;
}
} else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
type == eSymbolTypeObjCMetaClass ||
type == eSymbolTypeObjCIVar) {
// See if we can find a N_STSYM entry for any data symbols. If we do
// find a match, and the name matches, then we can merge the two into
// just the Static symbol to avoid duplicate entries in the symbol
// table.
std::pair<ValueToSymbolIndexMap::const_iterator,
ValueToSymbolIndexMap::const_iterator>
range;
range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
if (range.first != range.second) {
for (ValueToSymbolIndexMap::const_iterator pos = range.first;
pos != range.second; ++pos) {
if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these
// flags into the N_STSYM flags to avoid duplicate symbols in
// the symbol table.
sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
return true;
}
}
} else {
// Combine N_GSYM stab entries with the non stab symbol.
const char *gsym_name = sym[sym_idx]
.GetMangled()
.GetName(Mangled::ePreferMangled)
.GetCString();
if (gsym_name) {
ConstNameToSymbolIndexMap::const_iterator pos =
N_GSYM_name_to_sym_idx.find(gsym_name);
if (pos != N_GSYM_name_to_sym_idx.end()) {
const uint32_t GSYM_sym_idx = pos->second;
m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
// Copy the address, because often the N_GSYM address has an
// invalid address of zero when the global is a common symbol.
sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
add_symbol_addr(
sym[GSYM_sym_idx].GetAddress().GetFileAddress());
// We just need the flags from the linker symbol, so put these
// flags into the N_GSYM flags to avoid duplicate symbols in
// the symbol table.
sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
return true;
}
}
}
}
}
sym[sym_idx].SetID(nlist_idx);
sym[sym_idx].SetType(type);
if (set_value) {
sym[sym_idx].GetAddressRef().SetSection(symbol_section);
sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
if (symbol_section)
add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
}
sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
if (nlist.n_desc & N_WEAK_REF)
sym[sym_idx].SetIsWeak(true);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
++sym_idx;
return true;
};
// First parse all the nlists but don't process them yet. See the next
// comment for an explanation why.
std::vector<struct nlist_64> nlists;
nlists.reserve(symtab_load_command.nsyms);
for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
if (auto nlist =
ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
nlists.push_back(*nlist);
else
break;
}
// Now parse all the debug symbols. This is needed to merge non-debug
// symbols in the next step. Non-debug symbols are always coalesced into
// the debug symbol. Doing this in one step would mean that some symbols
// won't be merged.
nlist_idx = 0;
for (auto &nlist : nlists) {
if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
break;
}
// Finally parse all the non debug symbols.
nlist_idx = 0;
for (auto &nlist : nlists) {
if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
break;
}
for (const auto &pos : reexport_shlib_needs_fixup) {
const auto undef_pos = undefined_name_to_desc.find(pos.second);
if (undef_pos != undefined_name_to_desc.end()) {
const uint8_t dylib_ordinal =
llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
sym[pos.first].SetReExportedSymbolSharedLibrary(
dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
}
}
}
// Count how many trie symbols we'll add to the symbol table
int trie_symbol_table_augment_count = 0;
for (auto &e : external_sym_trie_entries) {
if (symbols_added.find(e.entry.address) == symbols_added.end())
trie_symbol_table_augment_count++;
}
if (num_syms < sym_idx + trie_symbol_table_augment_count) {
num_syms = sym_idx + trie_symbol_table_augment_count;
sym = symtab.Resize(num_syms);
}
uint32_t synthetic_sym_id = symtab_load_command.nsyms;
// Add symbols from the trie to the symbol table.
for (auto &e : external_sym_trie_entries) {
if (symbols_added.contains(e.entry.address))
continue;
// Find the section that this trie address is in, use that to annotate
// symbol type as we add the trie address and name to the symbol table.
Address symbol_addr;
if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
SectionSP symbol_section(symbol_addr.GetSection());
const char *symbol_name = e.entry.name.GetCString();
bool demangled_is_synthesized = false;
SymbolType type =
GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
data_section_sp, data_dirty_section_sp,
data_const_section_sp, symbol_section);
sym[sym_idx].SetType(type);
if (symbol_section) {
sym[sym_idx].SetID(synthetic_sym_id++);
sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].SetExternal(true);
sym[sym_idx].GetAddressRef() = symbol_addr;
add_symbol_addr(symbol_addr.GetFileAddress());
if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
++sym_idx;
}
}
}
if (function_starts_count > 0) {
uint32_t num_synthetic_function_symbols = 0;
for (i = 0; i < function_starts_count; ++i) {
if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
symbols_added.end())
++num_synthetic_function_symbols;
}
if (num_synthetic_function_symbols > 0) {
if (num_syms < sym_idx + num_synthetic_function_symbols) {
num_syms = sym_idx + num_synthetic_function_symbols;
sym = symtab.Resize(num_syms);
}
for (i = 0; i < function_starts_count; ++i) {
const FunctionStarts::Entry *func_start_entry =
function_starts.GetEntryAtIndex(i);
if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (func_start_entry->data)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
Address symbol_addr;
if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
SectionSP symbol_section(symbol_addr.GetSection());
uint32_t symbol_byte_size = 0;
if (symbol_section) {
const addr_t section_file_addr = symbol_section->GetFileAddress();
const FunctionStarts::Entry *next_func_start_entry =
function_starts.FindNextEntry(func_start_entry);
const addr_t section_end_file_addr =
section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry) {
addr_t next_symbol_file_addr = next_func_start_entry->addr;
if (is_arm)
next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
symbol_byte_size = std::min<lldb::addr_t>(
next_symbol_file_addr - symbol_file_addr,
section_end_file_addr - symbol_file_addr);
} else {
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
sym[sym_idx].SetID(synthetic_sym_id++);
// Don't set the name for any synthetic symbols, the Symbol
// object will generate one if needed when the name is accessed
// via accessors.
sym[sym_idx].GetMangled().SetDemangledName(ConstString());
sym[sym_idx].SetType(eSymbolTypeCode);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].GetAddressRef() = symbol_addr;
add_symbol_addr(symbol_addr.GetFileAddress());
if (symbol_flags)
sym[sym_idx].SetFlags(symbol_flags);
if (symbol_byte_size)
sym[sym_idx].SetByteSize(symbol_byte_size);
++sym_idx;
}
}
}
}
}
}
// Trim our symbols down to just what we ended up with after removing any
// symbols.
if (sym_idx < num_syms) {
num_syms = sym_idx;
sym = symtab.Resize(num_syms);
}
// Now synthesize indirect symbols
if (m_dysymtab.nindirectsyms != 0) {
if (indirect_symbol_index_data.GetByteSize()) {
NListIndexToSymbolIndexMap::const_iterator end_index_pos =
m_nlist_idx_to_sym_idx.end();
for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
++sect_idx) {
if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
S_SYMBOL_STUBS) {
uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
if (symbol_stub_byte_size == 0)
continue;
const uint32_t num_symbol_stubs =
m_mach_sections[sect_idx].size / symbol_stub_byte_size;
if (num_symbol_stubs == 0)
continue;
const uint32_t symbol_stub_index_offset =
m_mach_sections[sect_idx].reserved1;
for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
const uint32_t symbol_stub_index =
symbol_stub_index_offset + stub_idx;
const lldb::addr_t symbol_stub_addr =
m_mach_sections[sect_idx].addr +
(stub_idx * symbol_stub_byte_size);
lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
symbol_stub_offset, 4)) {
const uint32_t stub_sym_id =
indirect_symbol_index_data.GetU32(&symbol_stub_offset);
if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
continue;
NListIndexToSymbolIndexMap::const_iterator index_pos =
m_nlist_idx_to_sym_idx.find(stub_sym_id);
Symbol *stub_symbol = nullptr;
if (index_pos != end_index_pos) {
// We have a remapping from the original nlist index to a
// current symbol index, so just look this up by index
stub_symbol = symtab.SymbolAtIndex(index_pos->second);
} else {
// We need to lookup a symbol using the original nlist symbol
// index since this index is coming from the S_SYMBOL_STUBS
stub_symbol = symtab.FindSymbolByID(stub_sym_id);
}
if (stub_symbol) {
Address so_addr(symbol_stub_addr, section_list);
if (stub_symbol->GetType() == eSymbolTypeUndefined) {
// Change the external symbol into a trampoline that makes
// sense These symbols were N_UNDF N_EXT, and are useless
// to us, so we can re-use them so we don't have to make up
// a synthetic symbol for no good reason.
if (resolver_addresses.find(symbol_stub_addr) ==
resolver_addresses.end())
stub_symbol->SetType(eSymbolTypeTrampoline);
else
stub_symbol->SetType(eSymbolTypeResolver);
stub_symbol->SetExternal(false);
stub_symbol->GetAddressRef() = so_addr;
stub_symbol->SetByteSize(symbol_stub_byte_size);
} else {
// Make a synthetic symbol to describe the trampoline stub
Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
if (sym_idx >= num_syms) {
sym = symtab.Resize(++num_syms);
stub_symbol = nullptr; // this pointer no longer valid
}
sym[sym_idx].SetID(synthetic_sym_id++);
sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
if (resolver_addresses.find(symbol_stub_addr) ==
resolver_addresses.end())
sym[sym_idx].SetType(eSymbolTypeTrampoline);
else
sym[sym_idx].SetType(eSymbolTypeResolver);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].GetAddressRef() = so_addr;
add_symbol_addr(so_addr.GetFileAddress());
sym[sym_idx].SetByteSize(symbol_stub_byte_size);
++sym_idx;
}
} else {
if (log)
log->Warning("symbol stub referencing symbol table symbol "
"%u that isn't in our minimal symbol table, "
"fix this!!!",
stub_sym_id);
}
}
}
}
}
}
}
if (!reexport_trie_entries.empty()) {
for (const auto &e : reexport_trie_entries) {
if (e.entry.import_name) {
// Only add indirect symbols from the Trie entries if we didn't have
// a N_INDR nlist entry for this already
if (indirect_symbol_names.find(e.entry.name) ==
indirect_symbol_names.end()) {
// Make a synthetic symbol to describe re-exported symbol.
if (sym_idx >= num_syms)
sym = symtab.Resize(++num_syms);
sym[sym_idx].SetID(synthetic_sym_id++);
sym[sym_idx].GetMangled() = Mangled(e.entry.name);
sym[sym_idx].SetType(eSymbolTypeReExported);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
sym[sym_idx].SetReExportedSymbolSharedLibrary(
dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
}
++sym_idx;
}
}
}
}
}
void ObjectFileMachO::Dump(Stream *s) {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
s->Printf("%p: ", static_cast<void *>(this));
s->Indent();
if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
s->PutCString("ObjectFileMachO64");
else
s->PutCString("ObjectFileMachO32");
*s << ", file = '" << m_file;
ModuleSpecList all_specs;
ModuleSpec base_spec;
GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
base_spec, all_specs);
for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
*s << "', triple";
if (e)
s->Printf("[%d]", i);
*s << " = ";
*s << all_specs.GetModuleSpecRefAtIndex(i)
.GetArchitecture()
.GetTriple()
.getTriple();
}
*s << "\n";
SectionList *sections = GetSectionList();
if (sections)
sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
UINT32_MAX);
if (m_symtab_up)
m_symtab_up->Dump(s, nullptr, eSortOrderNone);
}
}
UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
const lldb_private::DataExtractor &data,
lldb::offset_t lc_offset) {
uint32_t i;
llvm::MachO::uuid_command load_cmd;
lldb::offset_t offset = lc_offset;
for (i = 0; i < header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
if (load_cmd.cmd == LC_UUID) {
const uint8_t *uuid_bytes = data.PeekData(offset, 16);
if (uuid_bytes) {
// OpenCL on Mac OS X uses the same UUID for each of its object files.
// We pretend these object files have no UUID to prevent crashing.
const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
0xbb, 0x14, 0xf0, 0x0d};
if (!memcmp(uuid_bytes, opencl_uuid, 16))
return UUID();
return UUID::fromOptionalData(uuid_bytes, 16);
}
return UUID();
}
offset = cmd_offset + load_cmd.cmdsize;
}
return UUID();
}
static llvm::StringRef GetOSName(uint32_t cmd) {
switch (cmd) {
case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
case llvm::MachO::LC_VERSION_MIN_MACOSX:
return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
case llvm::MachO::LC_VERSION_MIN_TVOS:
return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
case llvm::MachO::LC_VERSION_MIN_WATCHOS:
return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
default:
llvm_unreachable("unexpected LC_VERSION load command");
}
}
namespace {
struct OSEnv {
llvm::StringRef os_type;
llvm::StringRef environment;
OSEnv(uint32_t cmd) {
switch (cmd) {
case llvm::MachO::PLATFORM_MACOS:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
return;
case llvm::MachO::PLATFORM_IOS:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
return;
case llvm::MachO::PLATFORM_TVOS:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
return;
case llvm::MachO::PLATFORM_WATCHOS:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
return;
// TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
// NEED_BRIDGEOS_TRIPLE
// case llvm::MachO::PLATFORM_BRIDGEOS:
// os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
// return;
// case llvm::MachO::PLATFORM_DRIVERKIT:
// os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
// return;
case llvm::MachO::PLATFORM_MACCATALYST:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
return;
case llvm::MachO::PLATFORM_IOSSIMULATOR:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
environment =
llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
return;
case llvm::MachO::PLATFORM_TVOSSIMULATOR:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
environment =
llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
return;
case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
environment =
llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
return;
default: {
Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
}
}
}
};
struct MinOS {
uint32_t major_version, minor_version, patch_version;
MinOS(uint32_t version)
: major_version(version >> 16), minor_version((version >> 8) & 0xffu),
patch_version(version & 0xffu) {}
};
} // namespace
void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
const lldb_private::DataExtractor &data,
lldb::offset_t lc_offset,
ModuleSpec &base_spec,
lldb_private::ModuleSpecList &all_specs) {
auto &base_arch = base_spec.GetArchitecture();
base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
if (!base_arch.IsValid())
return;
bool found_any = false;
auto add_triple = [&](const llvm::Triple &triple) {
auto spec = base_spec;
spec.GetArchitecture().GetTriple() = triple;
if (spec.GetArchitecture().IsValid()) {
spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
all_specs.Append(spec);
found_any = true;
}
};
// Set OS to an unspecified unknown or a "*" so it can match any OS
llvm::Triple base_triple = base_arch.GetTriple();
base_triple.setOS(llvm::Triple::UnknownOS);
base_triple.setOSName(llvm::StringRef());
if (header.filetype == MH_PRELOAD) {
if (header.cputype == CPU_TYPE_ARM) {
// If this is a 32-bit arm binary, and it's a standalone binary, force
// the Vendor to Apple so we don't accidentally pick up the generic
// armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the
// frame pointer register; most other armv7 ABIs use a combination of
// r7 and r11.
base_triple.setVendor(llvm::Triple::Apple);
} else {
// Set vendor to an unspecified unknown or a "*" so it can match any
// vendor This is required for correct behavior of EFI debugging on
// x86_64
base_triple.setVendor(llvm::Triple::UnknownVendor);
base_triple.setVendorName(llvm::StringRef());
}
return add_triple(base_triple);
}
llvm::MachO::load_command load_cmd;
// See if there is an LC_VERSION_MIN_* load command that can give
// us the OS type.
lldb::offset_t offset = lc_offset;
for (uint32_t i = 0; i < header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
llvm::MachO::version_min_command version_min;
switch (load_cmd.cmd) {
case llvm::MachO::LC_VERSION_MIN_MACOSX:
case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
case llvm::MachO::LC_VERSION_MIN_TVOS:
case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
if (load_cmd.cmdsize != sizeof(version_min))
break;
if (data.ExtractBytes(cmd_offset, sizeof(version_min),
data.GetByteOrder(), &version_min) == 0)
break;
MinOS min_os(version_min.version);
llvm::SmallString<32> os_name;
llvm::raw_svector_ostream os(os_name);
os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
<< min_os.minor_version << '.' << min_os.patch_version;
auto triple = base_triple;
triple.setOSName(os.str());
// Disambiguate legacy simulator platforms.
if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
(base_triple.getArch() == llvm::Triple::x86_64 ||
base_triple.getArch() == llvm::Triple::x86)) {
// The combination of legacy LC_VERSION_MIN load command and
// x86 architecture always indicates a simulator environment.
// The combination of LC_VERSION_MIN and arm architecture only
// appears for native binaries. Back-deploying simulator
// binaries on Apple Silicon Macs use the modern unambigous
// LC_BUILD_VERSION load commands; no special handling required.
triple.setEnvironment(llvm::Triple::Simulator);
}
add_triple(triple);
break;
}
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
// See if there are LC_BUILD_VERSION load commands that can give
// us the OS type.
offset = lc_offset;
for (uint32_t i = 0; i < header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
do {
if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
llvm::MachO::build_version_command build_version;
if (load_cmd.cmdsize < sizeof(build_version)) {
// Malformed load command.
break;
}
if (data.ExtractBytes(cmd_offset, sizeof(build_version),
data.GetByteOrder(), &build_version) == 0)
break;
MinOS min_os(build_version.minos);
OSEnv os_env(build_version.platform);
llvm::SmallString<16> os_name;
llvm::raw_svector_ostream os(os_name);
os << os_env.os_type << min_os.major_version << '.'
<< min_os.minor_version << '.' << min_os.patch_version;
auto triple = base_triple;
triple.setOSName(os.str());
os_name.clear();
if (!os_env.environment.empty())
triple.setEnvironmentName(os_env.environment);
add_triple(triple);
}
} while (false);
offset = cmd_offset + load_cmd.cmdsize;
}
if (!found_any) {
add_triple(base_triple);
}
}
ArchSpec ObjectFileMachO::GetArchitecture(
ModuleSP module_sp, const llvm::MachO::mach_header &header,
const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
ModuleSpecList all_specs;
ModuleSpec base_spec;
GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
base_spec, all_specs);
// If the object file offers multiple alternative load commands,
// pick the one that matches the module.
if (module_sp) {
const ArchSpec &module_arch = module_sp->GetArchitecture();
for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
ArchSpec mach_arch =
all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
if (module_arch.IsCompatibleMatch(mach_arch))
return mach_arch;
}
}
// Return the first arch we found.
if (all_specs.GetSize() == 0)
return {};
return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
}
UUID ObjectFileMachO::GetUUID() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
return GetUUID(m_header, m_data, offset);
}
return UUID();
}
uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
uint32_t count = 0;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
llvm::MachO::load_command load_cmd;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
std::vector<std::string> rpath_paths;
std::vector<std::string> rpath_relative_paths;
std::vector<std::string> at_exec_relative_paths;
uint32_t i;
for (i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
switch (load_cmd.cmd) {
case LC_RPATH:
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:
case LC_REEXPORT_DYLIB:
case LC_LOAD_DYLINKER:
case LC_LOADFVMLIB:
case LC_LOAD_UPWARD_DYLIB: {
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
if (path) {
if (load_cmd.cmd == LC_RPATH)
rpath_paths.push_back(path);
else {
if (path[0] == '@') {
if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
rpath_relative_paths.push_back(path + strlen("@rpath"));
else if (strncmp(path, "@executable_path",
strlen("@executable_path")) == 0)
at_exec_relative_paths.push_back(path +
strlen("@executable_path"));
} else {
FileSpec file_spec(path);
if (files.AppendIfUnique(file_spec))
count++;
}
}
}
} break;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
FileSpec this_file_spec(m_file);
FileSystem::Instance().Resolve(this_file_spec);
if (!rpath_paths.empty()) {
// Fixup all LC_RPATH values to be absolute paths
std::string loader_path("@loader_path");
std::string executable_path("@executable_path");
for (auto &rpath : rpath_paths) {
if (llvm::StringRef(rpath).startswith(loader_path)) {
rpath.erase(0, loader_path.size());
rpath.insert(0, this_file_spec.GetDirectory().GetCString());
} else if (llvm::StringRef(rpath).startswith(executable_path)) {
rpath.erase(0, executable_path.size());
rpath.insert(0, this_file_spec.GetDirectory().GetCString());
}
}
for (const auto &rpath_relative_path : rpath_relative_paths) {
for (const auto &rpath : rpath_paths) {
std::string path = rpath;
path += rpath_relative_path;
// It is OK to resolve this path because we must find a file on disk
// for us to accept it anyway if it is rpath relative.
FileSpec file_spec(path);
FileSystem::Instance().Resolve(file_spec);
if (FileSystem::Instance().Exists(file_spec) &&
files.AppendIfUnique(file_spec)) {
count++;
break;
}
}
}
}
// We may have @executable_paths but no RPATHS. Figure those out here.
// Only do this if this object file is the executable. We have no way to
// get back to the actual executable otherwise, so we won't get the right
// path.
if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
for (const auto &at_exec_relative_path : at_exec_relative_paths) {
FileSpec file_spec =
exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
if (FileSystem::Instance().Exists(file_spec) &&
files.AppendIfUnique(file_spec))
count++;
}
}
}
return count;
}
lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
// If the object file is not an executable it can't hold the entry point.
// m_entry_point_address is initialized to an invalid address, so we can just
// return that. If m_entry_point_address is valid it means we've found it
// already, so return the cached value.
if ((!IsExecutable() && !IsDynamicLoader()) ||
m_entry_point_address.IsValid()) {
return m_entry_point_address;
}
// Otherwise, look for the UnixThread or Thread command. The data for the
// Thread command is given in /usr/include/mach-o.h, but it is basically:
//
// uint32_t flavor - this is the flavor argument you would pass to
// thread_get_state
// uint32_t count - this is the count of longs in the thread state data
// struct XXX_thread_state state - this is the structure from
// <machine/thread_status.h> corresponding to the flavor.
// <repeat this trio>
//
// So we just keep reading the various register flavors till we find the GPR
// one, then read the PC out of there.
// FIXME: We will need to have a "RegisterContext data provider" class at some
// point that can get all the registers
// out of data in this form & attach them to a given thread. That should
// underlie the MacOS X User process plugin, and we'll also need it for the
// MacOS X Core File process plugin. When we have that we can also use it
// here.
//
// For now we hard-code the offsets and flavors we need:
//
//
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
llvm::MachO::load_command load_cmd;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
bool done = false;
for (i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
switch (load_cmd.cmd) {
case LC_UNIXTHREAD:
case LC_THREAD: {
while (offset < cmd_offset + load_cmd.cmdsize) {
uint32_t flavor = m_data.GetU32(&offset);
uint32_t count = m_data.GetU32(&offset);
if (count == 0) {
// We've gotten off somehow, log and exit;
return m_entry_point_address;
}
switch (m_header.cputype) {
case llvm::MachO::CPU_TYPE_ARM:
if (flavor == 1 ||
flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
// from mach/arm/thread_status.h
{
offset += 60; // This is the offset of pc in the GPR thread state
// data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPU_TYPE_ARM64:
case llvm::MachO::CPU_TYPE_ARM64_32:
if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
{
offset += 256; // This is the offset of pc in the GPR thread state
// data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
case llvm::MachO::CPU_TYPE_I386:
if (flavor ==
1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
{
offset += 40; // This is the offset of eip in the GPR thread state
// data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPU_TYPE_X86_64:
if (flavor ==
4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
{
offset += 16 * 8; // This is the offset of rip in the GPR thread
// state data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
default:
return m_entry_point_address;
}
// Haven't found the GPR flavor yet, skip over the data for this
// flavor:
if (done)
break;
offset += count * 4;
}
} break;
case LC_MAIN: {
ConstString text_segment_name("__TEXT");
uint64_t entryoffset = m_data.GetU64(&offset);
SectionSP text_segment_sp =
GetSectionList()->FindSectionByName(text_segment_name);
if (text_segment_sp) {
done = true;
start_address = text_segment_sp->GetFileAddress() + entryoffset;
}
} break;
default:
break;
}
if (done)
break;
// Go to the next load command:
offset = cmd_offset + load_cmd.cmdsize;
}
if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
if (GetSymtab()) {
Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
Symtab::eDebugAny, Symtab::eVisibilityAny);
if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
start_address = dyld_start_sym->GetAddress().GetFileAddress();
}
}
}
if (start_address != LLDB_INVALID_ADDRESS) {
// We got the start address from the load commands, so now resolve that
// address in the sections of this ObjectFile:
if (!m_entry_point_address.ResolveAddressUsingFileSections(
start_address, GetSectionList())) {
m_entry_point_address.Clear();
}
} else {
// We couldn't read the UnixThread load command - maybe it wasn't there.
// As a fallback look for the "start" symbol in the main executable.
ModuleSP module_sp(GetModule());
if (module_sp) {
SymbolContextList contexts;
SymbolContext context;
module_sp->FindSymbolsWithNameAndType(ConstString("start"),
eSymbolTypeCode, contexts);
if (contexts.GetSize()) {
if (contexts.GetContextAtIndex(0, context))
m_entry_point_address = context.symbol->GetAddress();
}
}
}
}
return m_entry_point_address;
}
lldb_private::Address ObjectFileMachO::GetBaseAddress() {
lldb_private::Address header_addr;
SectionList *section_list = GetSectionList();
if (section_list) {
SectionSP text_segment_sp(
section_list->FindSectionByName(GetSegmentNameTEXT()));
if (text_segment_sp) {
header_addr.SetSection(text_segment_sp);
header_addr.SetOffset(0);
}
}
return header_addr;
}
uint32_t ObjectFileMachO::GetNumThreadContexts() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
if (!m_thread_context_offsets_valid) {
m_thread_context_offsets_valid = true;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
FileRangeArray::Entry file_range;
llvm::MachO::thread_command thread_cmd;
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
break;
if (thread_cmd.cmd == LC_THREAD) {
file_range.SetRangeBase(offset);
file_range.SetByteSize(thread_cmd.cmdsize - 8);
m_thread_context_offsets.Append(file_range);
}
offset = cmd_offset + thread_cmd.cmdsize;
}
}
}
return m_thread_context_offsets.GetSize();
}
std::string ObjectFileMachO::GetIdentifierString() {
std::string result;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
// First, look over the load commands for an LC_NOTE load command with
// data_owner string "kern ver str" & use that if found.
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
llvm::MachO::load_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == LC_NOTE) {
char data_owner[17];
m_data.CopyData(offset, 16, data_owner);
data_owner[16] = '\0';
offset += 16;
uint64_t fileoff = m_data.GetU64_unchecked(&offset);
uint64_t size = m_data.GetU64_unchecked(&offset);
// "kern ver str" has a uint32_t version and then a nul terminated
// c-string.
if (strcmp("kern ver str", data_owner) == 0) {
offset = fileoff;
uint32_t version;
if (m_data.GetU32(&offset, &version, 1) != nullptr) {
if (version == 1) {
uint32_t strsize = size - sizeof(uint32_t);
char *buf = (char *)malloc(strsize);
if (buf) {
m_data.CopyData(offset, strsize, buf);
buf[strsize - 1] = '\0';
result = buf;
if (buf)
free(buf);
return result;
}
}
}
}
}
offset = cmd_offset + lc.cmdsize;
}
// Second, make a pass over the load commands looking for an obsolete
// LC_IDENT load command.
offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
llvm::MachO::ident_command ident_command;
if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
break;
if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
char *buf = (char *)malloc(ident_command.cmdsize);
if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
buf) == ident_command.cmdsize) {
buf[ident_command.cmdsize - 1] = '\0';
result = buf;
}
if (buf)
free(buf);
}
offset = cmd_offset + ident_command.cmdsize;
}
}
return result;
}
addr_t ObjectFileMachO::GetAddressMask() {
addr_t mask = 0;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
llvm::MachO::load_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == LC_NOTE) {
char data_owner[17];
m_data.CopyData(offset, 16, data_owner);
data_owner[16] = '\0';
offset += 16;
uint64_t fileoff = m_data.GetU64_unchecked(&offset);
// "addrable bits" has a uint32_t version and a uint32_t
// number of bits used in addressing.
if (strcmp("addrable bits", data_owner) == 0) {
offset = fileoff;
uint32_t version;
if (m_data.GetU32(&offset, &version, 1) != nullptr) {
if (version == 3) {
uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
if (num_addr_bits != 0) {
mask = ~((1ULL << num_addr_bits) - 1);
}
break;
}
}
}
}
offset = cmd_offset + lc.cmdsize;
}
}
return mask;
}
bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
bool &value_is_offset,
UUID &uuid,
ObjectFile::BinaryType &type) {
value = LLDB_INVALID_ADDRESS;
value_is_offset = false;
uuid.Clear();
uint32_t log2_pagesize = 0; // not currently passed up to caller
uint32_t platform = 0; // not currently passed up to caller
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
llvm::MachO::load_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == LC_NOTE) {
char data_owner[17];
memset(data_owner, 0, sizeof(data_owner));
m_data.CopyData(offset, 16, data_owner);
offset += 16;
uint64_t fileoff = m_data.GetU64_unchecked(&offset);
uint64_t size = m_data.GetU64_unchecked(&offset);
// struct main_bin_spec
// {
// uint32_t version; // currently 2
// uint32_t type; // 0 == unspecified, 1 == kernel,
// // 2 == user process,
// // 3 == standalone binary
// uint64_t address; // UINT64_MAX if address not specified
// uint64_t slide; // slide, UINT64_MAX if unspecified
// // 0 if no slide needs to be applied to
// // file address
// uuid_t uuid; // all zero's if uuid not specified
// uint32_t log2_pagesize; // process page size in log base 2,
// // e.g. 4k pages are 12.
// // 0 for unspecified
// uint32_t platform; // The Mach-O platform for this corefile.
// // 0 for unspecified.
// // The values are defined in
// // <mach-o/loader.h>, PLATFORM_*.
// } __attribute((packed));
// "main bin spec" (main binary specification) data payload is
// formatted:
// uint32_t version [currently 1]
// uint32_t type [0 == unspecified, 1 == kernel,
// 2 == user process, 3 == firmware ]
// uint64_t address [ UINT64_MAX if address not specified ]
// uuid_t uuid [ all zero's if uuid not specified ]
// uint32_t log2_pagesize [ process page size in log base
// 2, e.g. 4k pages are 12.
// 0 for unspecified ]
// uint32_t unused [ for alignment ]
if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
offset = fileoff;
uint32_t version;
if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
uint32_t binspec_type = 0;
uuid_t raw_uuid;
memset(raw_uuid, 0, sizeof(uuid_t));
if (!m_data.GetU32(&offset, &binspec_type, 1))
return false;
if (!m_data.GetU64(&offset, &value, 1))
return false;
uint64_t slide = LLDB_INVALID_ADDRESS;
if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
return false;
if (value == LLDB_INVALID_ADDRESS &&
slide != LLDB_INVALID_ADDRESS) {
value = slide;
value_is_offset = true;
}
if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
// convert the "main bin spec" type into our
// ObjectFile::BinaryType enum
switch (binspec_type) {
case 0:
type = eBinaryTypeUnknown;
break;
case 1:
type = eBinaryTypeKernel;
break;
case 2:
type = eBinaryTypeUser;
break;
case 3:
type = eBinaryTypeStandalone;
break;
}
if (!m_data.GetU32(&offset, &log2_pagesize, 1))
return false;
if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
return false;
return true;
}
}
}
}
offset = cmd_offset + lc.cmdsize;
}
}
return false;
}
lldb::RegisterContextSP
ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
lldb_private::Thread &thread) {
lldb::RegisterContextSP reg_ctx_sp;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
if (!m_thread_context_offsets_valid)
GetNumThreadContexts();
const FileRangeArray::Entry *thread_context_file_range =
m_thread_context_offsets.GetEntryAtIndex(idx);
if (thread_context_file_range) {
DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
thread_context_file_range->GetByteSize());
switch (m_header.cputype) {
case llvm::MachO::CPU_TYPE_ARM64:
case llvm::MachO::CPU_TYPE_ARM64_32:
reg_ctx_sp =
std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
break;
case llvm::MachO::CPU_TYPE_ARM:
reg_ctx_sp =
std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
break;
case llvm::MachO::CPU_TYPE_I386:
reg_ctx_sp =
std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
break;
case llvm::MachO::CPU_TYPE_X86_64:
reg_ctx_sp =
std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
break;
}
}
}
return reg_ctx_sp;
}
ObjectFile::Type ObjectFileMachO::CalculateType() {
switch (m_header.filetype) {
case MH_OBJECT: // 0x1u
if (GetAddressByteSize() == 4) {
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
if (GetUUID()) {
// this checking for the UUID load command is not enough we could
// eventually look for the symbol named "OSKextGetCurrentIdentifier" as
// this is required of kexts
if (m_strata == eStrataInvalid)
m_strata = eStrataKernel;
return eTypeSharedLibrary;
}
}
return eTypeObjectFile;
case MH_EXECUTE:
return eTypeExecutable; // 0x2u
case MH_FVMLIB:
return eTypeSharedLibrary; // 0x3u
case MH_CORE:
return eTypeCoreFile; // 0x4u
case MH_PRELOAD:
return eTypeSharedLibrary; // 0x5u
case MH_DYLIB:
return eTypeSharedLibrary; // 0x6u
case MH_DYLINKER:
return eTypeDynamicLinker; // 0x7u
case MH_BUNDLE:
return eTypeSharedLibrary; // 0x8u
case MH_DYLIB_STUB:
return eTypeStubLibrary; // 0x9u
case MH_DSYM:
return eTypeDebugInfo; // 0xAu
case MH_KEXT_BUNDLE:
return eTypeSharedLibrary; // 0xBu
default:
break;
}
return eTypeUnknown;
}
ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
switch (m_header.filetype) {
case MH_OBJECT: // 0x1u
{
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
if (GetUUID()) {
// this checking for the UUID load command is not enough we could
// eventually look for the symbol named "OSKextGetCurrentIdentifier" as
// this is required of kexts
if (m_type == eTypeInvalid)
m_type = eTypeSharedLibrary;
return eStrataKernel;
}
}
return eStrataUnknown;
case MH_EXECUTE: // 0x2u
// Check for the MH_DYLDLINK bit in the flags
if (m_header.flags & MH_DYLDLINK) {
return eStrataUser;
} else {
SectionList *section_list = GetSectionList();
if (section_list) {
static ConstString g_kld_section_name("__KLD");
if (section_list->FindSectionByName(g_kld_section_name))
return eStrataKernel;
}
}
return eStrataRawImage;
case MH_FVMLIB:
return eStrataUser; // 0x3u
case MH_CORE:
return eStrataUnknown; // 0x4u
case MH_PRELOAD:
return eStrataRawImage; // 0x5u
case MH_DYLIB:
return eStrataUser; // 0x6u
case MH_DYLINKER:
return eStrataUser; // 0x7u
case MH_BUNDLE:
return eStrataUser; // 0x8u
case MH_DYLIB_STUB:
return eStrataUser; // 0x9u
case MH_DSYM:
return eStrataUnknown; // 0xAu
case MH_KEXT_BUNDLE:
return eStrataKernel; // 0xBu
default:
break;
}
return eStrataUnknown;
}
llvm::VersionTuple ObjectFileMachO::GetVersion() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
llvm::MachO::dylib_command load_cmd;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t version_cmd = 0;
uint64_t version = 0;
uint32_t i;
for (i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
break;
if (load_cmd.cmd == LC_ID_DYLIB) {
if (version_cmd == 0) {
version_cmd = load_cmd.cmd;
if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
break;
version = load_cmd.dylib.current_version;
}
break; // Break for now unless there is another more complete version
// number load command in the future.
}
offset = cmd_offset + load_cmd.cmdsize;
}
if (version_cmd == LC_ID_DYLIB) {
unsigned major = (version & 0xFFFF0000ull) >> 16;
unsigned minor = (version & 0x0000FF00ull) >> 8;
unsigned subminor = (version & 0x000000FFull);
return llvm::VersionTuple(major, minor, subminor);
}
}
return llvm::VersionTuple();
}
ArchSpec ObjectFileMachO::GetArchitecture() {
ModuleSP module_sp(GetModule());
ArchSpec arch;
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
return GetArchitecture(module_sp, m_header, m_data,
MachHeaderSizeFromMagic(m_header.magic));
}
return arch;
}
void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
addr_t &base_addr, UUID &uuid) {
uuid.Clear();
base_addr = LLDB_INVALID_ADDRESS;
if (process && process->GetDynamicLoader()) {
DynamicLoader *dl = process->GetDynamicLoader();
LazyBool using_shared_cache;
LazyBool private_shared_cache;
dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
private_shared_cache);
}
Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
LLDB_LOGF(
log,
"inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
uuid.GetAsString().c_str(), base_addr);
}
// From dyld SPI header dyld_process_info.h
typedef void *dyld_process_info;
struct lldb_copy__dyld_process_cache_info {
uuid_t cacheUUID; // UUID of cache used by process
uint64_t cacheBaseAddress; // load address of dyld shared cache
bool noCache; // process is running without a dyld cache
bool privateCache; // process is using a private copy of its dyld cache
};
// #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
// llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
// errors. So we need to use the actual underlying types of task_t and
// kern_return_t below.
extern "C" unsigned int /*task_t*/ mach_task_self();
void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
uuid.Clear();
base_addr = LLDB_INVALID_ADDRESS;
#if defined(__APPLE__)
uint8_t *(*dyld_get_all_image_infos)(void);
dyld_get_all_image_infos =
(uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
if (dyld_get_all_image_infos) {
uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
if (dyld_all_image_infos_address) {
uint32_t *version = (uint32_t *)
dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
if (*version >= 13) {
uuid_t *sharedCacheUUID_address = 0;
int wordsize = sizeof(uint8_t *);
if (wordsize == 8) {
sharedCacheUUID_address =
(uuid_t *)((uint8_t *)dyld_all_image_infos_address +
160); // sharedCacheUUID <mach-o/dyld_images.h>
if (*version >= 15)
base_addr =
*(uint64_t
*)((uint8_t *)dyld_all_image_infos_address +
176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
} else {
sharedCacheUUID_address =
(uuid_t *)((uint8_t *)dyld_all_image_infos_address +
84); // sharedCacheUUID <mach-o/dyld_images.h>
if (*version >= 15) {
base_addr = 0;
base_addr =
*(uint32_t
*)((uint8_t *)dyld_all_image_infos_address +
100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
}
}
uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
}
}
} else {
// Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
dyld_process_info (*dyld_process_info_create)(
unsigned int /* task_t */ task, uint64_t timestamp,
unsigned int /*kern_return_t*/ *kernelError);
void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
void (*dyld_process_info_release)(dyld_process_info info);
dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
unsigned int /*kern_return_t*/ *))
dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
RTLD_DEFAULT, "_dyld_process_info_get_cache");
dyld_process_info_release =
(void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
if (dyld_process_info_create && dyld_process_info_get_cache) {
unsigned int /*kern_return_t */ kern_ret;
dyld_process_info process_info =
dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
if (process_info) {
struct lldb_copy__dyld_process_cache_info sc_info;
memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
dyld_process_info_get_cache(process_info, &sc_info);
if (sc_info.cacheBaseAddress != 0) {
base_addr = sc_info.cacheBaseAddress;
uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
}
dyld_process_info_release(process_info);
}
}
}
Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
if (log && uuid.IsValid())
LLDB_LOGF(log,
"lldb's in-memory shared cache has a UUID of %s base address of "
"0x%" PRIx64,
uuid.GetAsString().c_str(), base_addr);
#endif
}
llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
if (!m_min_os_version) {
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
llvm::MachO::version_min_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
if (m_data.GetU32(&offset, &lc.version,
(sizeof(lc) / sizeof(uint32_t)) - 2)) {
const uint32_t xxxx = lc.version >> 16;
const uint32_t yy = (lc.version >> 8) & 0xffu;
const uint32_t zz = lc.version & 0xffu;
if (xxxx) {
m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
break;
}
}
} else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
// struct build_version_command {
// uint32_t cmd; /* LC_BUILD_VERSION */
// uint32_t cmdsize; /* sizeof(struct
// build_version_command) plus */
// /* ntools * sizeof(struct
// build_tool_version) */
// uint32_t platform; /* platform */
// uint32_t minos; /* X.Y.Z is encoded in nibbles
// xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded in
// nibbles xxxx.yy.zz */ uint32_t ntools; /* number of
// tool entries following this */
// };
offset += 4; // skip platform
uint32_t minos = m_data.GetU32(&offset);
const uint32_t xxxx = minos >> 16;
const uint32_t yy = (minos >> 8) & 0xffu;
const uint32_t zz = minos & 0xffu;
if (xxxx) {
m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
break;
}
}
offset = load_cmd_offset + lc.cmdsize;
}
if (!m_min_os_version) {
// Set version to an empty value so we don't keep trying to
m_min_os_version = llvm::VersionTuple();
}
}
return *m_min_os_version;
}
llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
if (!m_sdk_versions) {
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
llvm::MachO::version_min_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
if (m_data.GetU32(&offset, &lc.version,
(sizeof(lc) / sizeof(uint32_t)) - 2)) {
const uint32_t xxxx = lc.sdk >> 16;
const uint32_t yy = (lc.sdk >> 8) & 0xffu;
const uint32_t zz = lc.sdk & 0xffu;
if (xxxx) {
m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
break;
} else {
GetModule()->ReportWarning("minimum OS version load command with "
"invalid (0) version found.");
}
}
}
offset = load_cmd_offset + lc.cmdsize;
}
if (!m_sdk_versions) {
offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
llvm::MachO::version_min_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
// struct build_version_command {
// uint32_t cmd; /* LC_BUILD_VERSION */
// uint32_t cmdsize; /* sizeof(struct
// build_version_command) plus */
// /* ntools * sizeof(struct
// build_tool_version) */
// uint32_t platform; /* platform */
// uint32_t minos; /* X.Y.Z is encoded in nibbles
// xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded
// in nibbles xxxx.yy.zz */ uint32_t ntools; /* number
// of tool entries following this */
// };
offset += 4; // skip platform
uint32_t minos = m_data.GetU32(&offset);
const uint32_t xxxx = minos >> 16;
const uint32_t yy = (minos >> 8) & 0xffu;
const uint32_t zz = minos & 0xffu;
if (xxxx) {
m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
break;
}
}
offset = load_cmd_offset + lc.cmdsize;
}
}
if (!m_sdk_versions)
m_sdk_versions = llvm::VersionTuple();
}
return *m_sdk_versions;
}
bool ObjectFileMachO::GetIsDynamicLinkEditor() {
return m_header.filetype == llvm::MachO::MH_DYLINKER;
}
bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
return m_allow_assembly_emulation_unwind_plans;
}
Section *ObjectFileMachO::GetMachHeaderSection() {
// Find the first address of the mach header which is the first non-zero file
// sized section whose file offset is zero. This is the base file address of
// the mach-o file which can be subtracted from the vmaddr of the other
// segments found in memory and added to the load address
ModuleSP module_sp = GetModule();
if (!module_sp)
return nullptr;
SectionList *section_list = GetSectionList();
if (!section_list)
return nullptr;
const size_t num_sections = section_list->GetSize();
for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
Section *section = section_list->GetSectionAtIndex(sect_idx).get();
if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
return section;
}
// We may have a binary in the shared cache that has a non-zero
// file address for its first segment, traditionally the __TEXT segment.
// Search for it by name and return it as our next best guess.
SectionSP text_segment_sp =
GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
return text_segment_sp.get();
return nullptr;
}
bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
if (!section)
return false;
const bool is_dsym = (m_header.filetype == MH_DSYM);
if (section->GetFileSize() == 0 && !is_dsym)
return false;
if (section->IsThreadSpecific())
return false;
if (GetModule().get() != section->GetModule().get())
return false;
// Be careful with __LINKEDIT and __DWARF segments
if (section->GetName() == GetSegmentNameLINKEDIT() ||
section->GetName() == GetSegmentNameDWARF()) {
// Only map __LINKEDIT and __DWARF if we have an in memory image and
// this isn't a kernel binary like a kext or mach_kernel.
const bool is_memory_image = (bool)m_process_wp.lock();
const Strata strata = GetStrata();
if (is_memory_image == false || strata == eStrataKernel)
return false;
}
return true;
}
lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
lldb::addr_t header_load_address, const Section *header_section,
const Section *section) {
ModuleSP module_sp = GetModule();
if (module_sp && header_section && section &&
header_load_address != LLDB_INVALID_ADDRESS) {
lldb::addr_t file_addr = header_section->GetFileAddress();
if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
return section->GetFileAddress() - file_addr + header_load_address;
}
return LLDB_INVALID_ADDRESS;
}
bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
bool value_is_offset) {
ModuleSP module_sp = GetModule();
if (!module_sp)
return false;
SectionList *section_list = GetSectionList();
if (!section_list)
return false;
size_t num_loaded_sections = 0;
const size_t num_sections = section_list->GetSize();
if (value_is_offset) {
// "value" is an offset to apply to each top level segment
for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
// Iterate through the object file sections to find all of the
// sections that size on disk (to avoid __PAGEZERO) and load them
SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
if (SectionIsLoadable(section_sp.get()))
if (target.GetSectionLoadList().SetSectionLoadAddress(
section_sp, section_sp->GetFileAddress() + value))
++num_loaded_sections;
}
} else {
// "value" is the new base address of the mach_header, adjust each
// section accordingly
Section *mach_header_section = GetMachHeaderSection();
if (mach_header_section) {
for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
lldb::addr_t section_load_addr =
CalculateSectionLoadAddressForMemoryImage(
value, mach_header_section, section_sp.get());
if (section_load_addr != LLDB_INVALID_ADDRESS) {
if (target.GetSectionLoadList().SetSectionLoadAddress(
section_sp, section_load_addr))
++num_loaded_sections;
}
}
}
}
return num_loaded_sections > 0;
}
struct all_image_infos_header {
uint32_t version; // currently 1
uint32_t imgcount; // number of binary images
uint64_t entries_fileoff; // file offset in the corefile of where the array of
// struct entry's begin.
uint32_t entries_size; // size of 'struct entry'.
uint32_t unused;
};
struct image_entry {
uint64_t filepath_offset; // offset in corefile to c-string of the file path,
// UINT64_MAX if unavailable.
uuid_t uuid; // uint8_t[16]. should be set to all zeroes if
// uuid is unknown.
uint64_t load_address; // UINT64_MAX if unknown.
uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
uint32_t segment_count; // The number of segments for this binary.
uint32_t unused;
image_entry() {
filepath_offset = UINT64_MAX;
memset(&uuid, 0, sizeof(uuid_t));
segment_count = 0;
load_address = UINT64_MAX;
seg_addrs_offset = UINT64_MAX;
unused = 0;
}
image_entry(const image_entry &rhs) {
filepath_offset = rhs.filepath_offset;
memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
segment_count = rhs.segment_count;
seg_addrs_offset = rhs.seg_addrs_offset;
load_address = rhs.load_address;
unused = rhs.unused;
}
};
struct segment_vmaddr {
char segname[16];
uint64_t vmaddr;
uint64_t unused;
segment_vmaddr() {
memset(&segname, 0, 16);
vmaddr = UINT64_MAX;
unused = 0;
}
segment_vmaddr(const segment_vmaddr &rhs) {
memcpy(&segname, &rhs.segname, 16);
vmaddr = rhs.vmaddr;
unused = rhs.unused;
}
};
// Write the payload for the "all image infos" LC_NOTE into
// the supplied all_image_infos_payload, assuming that this
// will be written into the corefile starting at
// initial_file_offset.
//
// The placement of this payload is a little tricky. We're
// laying this out as
//
// 1. header (struct all_image_info_header)
// 2. Array of fixed-size (struct image_entry)'s, one
// per binary image present in the process.
// 3. Arrays of (struct segment_vmaddr)'s, a varying number
// for each binary image.
// 4. Variable length c-strings of binary image filepaths,
// one per binary.
//
// To compute where everything will be laid out in the
// payload, we need to iterate over the images and calculate
// how many segment_vmaddr structures each image will need,
// and how long each image's filepath c-string is. There
// are some multiple passes over the image list while calculating
// everything.
static offset_t CreateAllImageInfosPayload(
const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
Target &target = process_sp->GetTarget();
ModuleList modules = target.GetImages();
// stack-only corefiles have no reason to include binaries that
// are not executing; we're trying to make the smallest corefile
// we can, so leave the rest out.
if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
modules.Clear();
std::set<std::string> executing_uuids;
ThreadList &thread_list(process_sp->GetThreadList());
for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
for (uint32_t j = 0; j < stack_frame_count; j++) {
StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
Address pc = stack_frame_sp->GetFrameCodeAddress();
ModuleSP module_sp = pc.GetModule();
if (module_sp) {
UUID uuid = module_sp->GetUUID();
if (uuid.IsValid()) {
executing_uuids.insert(uuid.GetAsString());
modules.AppendIfNeeded(module_sp);
}
}
}
}
size_t modules_count = modules.GetSize();
struct all_image_infos_header infos;
infos.version = 1;
infos.imgcount = modules_count;
infos.entries_size = sizeof(image_entry);
infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
infos.unused = 0;
all_image_infos_payload.PutHex32(infos.version);
all_image_infos_payload.PutHex32(infos.imgcount);
all_image_infos_payload.PutHex64(infos.entries_fileoff);
all_image_infos_payload.PutHex32(infos.entries_size);
all_image_infos_payload.PutHex32(infos.unused);
// First create the structures for all of the segment name+vmaddr vectors
// for each module, so we will know the size of them as we add the
// module entries.
std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
for (size_t i = 0; i < modules_count; i++) {
ModuleSP module = modules.GetModuleAtIndex(i);
SectionList *sections = module->GetSectionList();
size_t sections_count = sections->GetSize();
std::vector<segment_vmaddr> segment_vmaddrs;
for (size_t j = 0; j < sections_count; j++) {
SectionSP section = sections->GetSectionAtIndex(j);
if (!section->GetParent().get()) {
addr_t vmaddr = section->GetLoadBaseAddress(&target);
if (vmaddr == LLDB_INVALID_ADDRESS)
continue;
ConstString name = section->GetName();
segment_vmaddr seg_vmaddr;
strncpy(seg_vmaddr.segname, name.AsCString(),
sizeof(seg_vmaddr.segname));
seg_vmaddr.vmaddr = vmaddr;
seg_vmaddr.unused = 0;
segment_vmaddrs.push_back(seg_vmaddr);
}
}
modules_segment_vmaddrs.push_back(segment_vmaddrs);
}
offset_t size_of_vmaddr_structs = 0;
for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
size_of_vmaddr_structs +=
modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
}
offset_t size_of_filepath_cstrings = 0;
for (size_t i = 0; i < modules_count; i++) {
ModuleSP module_sp = modules.GetModuleAtIndex(i);
size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
}
// Calculate the file offsets of our "all image infos" payload in the
// corefile. initial_file_offset the original value passed in to this method.
offset_t start_of_entries =
initial_file_offset + sizeof(all_image_infos_header);
offset_t start_of_seg_vmaddrs =
start_of_entries + sizeof(image_entry) * modules_count;
offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
// Now write the one-per-module 'struct image_entry' into the
// StringStream; keep track of where the struct segment_vmaddr
// entries for each module will end up in the corefile.
offset_t current_string_offset = start_of_filenames;
offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
std::vector<struct image_entry> image_entries;
for (size_t i = 0; i < modules_count; i++) {
ModuleSP module_sp = modules.GetModuleAtIndex(i);
struct image_entry ent;
memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
if (modules_segment_vmaddrs[i].size() > 0) {
ent.segment_count = modules_segment_vmaddrs[i].size();
ent.seg_addrs_offset = current_segaddrs_offset;
}
ent.filepath_offset = current_string_offset;
ObjectFile *objfile = module_sp->GetObjectFile();
if (objfile) {
Address base_addr(objfile->GetBaseAddress());
if (base_addr.IsValid()) {
ent.load_address = base_addr.GetLoadAddress(&target);
}
}
all_image_infos_payload.PutHex64(ent.filepath_offset);
all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
all_image_infos_payload.PutHex64(ent.load_address);
all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
all_image_infos_payload.PutHex32(ent.segment_count);
if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
executing_uuids.end())
all_image_infos_payload.PutHex32(1);
else
all_image_infos_payload.PutHex32(0);
current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
}
// Now write the struct segment_vmaddr entries into the StringStream.
for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
if (modules_segment_vmaddrs[i].size() == 0)
continue;
for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
all_image_infos_payload.PutHex64(segvm.vmaddr);
all_image_infos_payload.PutHex64(segvm.unused);
}
}
for (size_t i = 0; i < modules_count; i++) {
ModuleSP module_sp = modules.GetModuleAtIndex(i);
std::string filepath = module_sp->GetFileSpec().GetPath();
all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
}
return final_file_offset;
}
// Temp struct used to combine contiguous memory regions with
// identical permissions.
struct page_object {
addr_t addr;
addr_t size;
uint32_t prot;
};
bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
const FileSpec &outfile,
lldb::SaveCoreStyle &core_style, Status &error) {
if (!process_sp)
return false;
// Default on macOS is to create a dirty-memory-only corefile.
if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
}
Target &target = process_sp->GetTarget();
const ArchSpec target_arch = target.GetArchitecture();
const llvm::Triple &target_triple = target_arch.GetTriple();
if (target_triple.getVendor() == llvm::Triple::Apple &&
(target_triple.getOS() == llvm::Triple::MacOSX ||
target_triple.getOS() == llvm::Triple::IOS ||
target_triple.getOS() == llvm::Triple::WatchOS ||
target_triple.getOS() == llvm::Triple::TvOS)) {
// NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
// {
bool make_core = false;
switch (target_arch.GetMachine()) {
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::arm:
case llvm::Triple::thumb:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
make_core = true;
break;
default:
error.SetErrorStringWithFormat("unsupported core architecture: %s",
target_triple.str().c_str());
break;
}
if (make_core) {
std::vector<llvm::MachO::segment_command_64> segment_load_commands;
// uint32_t range_info_idx = 0;
MemoryRegionInfo range_info;
Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
const ByteOrder byte_order = target_arch.GetByteOrder();
std::vector<page_object> pages_to_copy;
if (range_error.Success()) {
while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
// Calculate correct protections
uint32_t prot = 0;
if (range_info.GetReadable() == MemoryRegionInfo::eYes)
prot |= VM_PROT_READ;
if (range_info.GetWritable() == MemoryRegionInfo::eYes)
prot |= VM_PROT_WRITE;
if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
prot |= VM_PROT_EXECUTE;
const addr_t addr = range_info.GetRange().GetRangeBase();
const addr_t size = range_info.GetRange().GetByteSize();
if (size == 0)
break;
bool include_this_region = true;
bool dirty_pages_only = false;
if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
dirty_pages_only = true;
if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
include_this_region = false;
}
}
if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
dirty_pages_only = true;
}
if (prot != 0 && include_this_region) {
addr_t pagesize = range_info.GetPageSize();
const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
range_info.GetDirtyPageList();
if (dirty_pages_only && dirty_page_list) {
for (addr_t dirtypage : dirty_page_list.value()) {
page_object obj;
obj.addr = dirtypage;
obj.size = pagesize;
obj.prot = prot;
pages_to_copy.push_back(obj);
}
} else {
page_object obj;
obj.addr = addr;
obj.size = size;
obj.prot = prot;
pages_to_copy.push_back(obj);
}
}
range_error = process_sp->GetMemoryRegionInfo(
range_info.GetRange().GetRangeEnd(), range_info);
if (range_error.Fail())
break;
}
// Combine contiguous entries that have the same
// protections so we don't have an excess of
// load commands.
std::vector<page_object> combined_page_objects;
page_object last_obj;
last_obj.addr = LLDB_INVALID_ADDRESS;
last_obj.size = 0;
for (page_object obj : pages_to_copy) {
if (last_obj.addr == LLDB_INVALID_ADDRESS) {
last_obj = obj;
continue;
}
if (last_obj.addr + last_obj.size == obj.addr &&
last_obj.prot == obj.prot) {
last_obj.size += obj.size;
continue;
}
combined_page_objects.push_back(last_obj);
last_obj = obj;
}
// Add the last entry we were looking to combine
// on to the array.
if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
combined_page_objects.push_back(last_obj);
for (page_object obj : combined_page_objects) {
uint32_t cmd_type = LC_SEGMENT_64;
uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
if (addr_byte_size == 4) {
cmd_type = LC_SEGMENT;
segment_size = sizeof(llvm::MachO::segment_command);
}
llvm::MachO::segment_command_64 segment = {
cmd_type, // uint32_t cmd;
segment_size, // uint32_t cmdsize;
{0}, // char segname[16];
obj.addr, // uint64_t vmaddr; // uint32_t for 32-bit
// Mach-O
obj.size, // uint64_t vmsize; // uint32_t for 32-bit
// Mach-O
0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O
obj.size, // uint64_t filesize; // uint32_t for 32-bit
// Mach-O
obj.prot, // uint32_t maxprot;
obj.prot, // uint32_t initprot;
0, // uint32_t nsects;
0}; // uint32_t flags;
segment_load_commands.push_back(segment);
}
StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
llvm::MachO::mach_header_64 mach_header;
if (addr_byte_size == 8) {
mach_header.magic = MH_MAGIC_64;
} else {
mach_header.magic = MH_MAGIC;
}
mach_header.cputype = target_arch.GetMachOCPUType();
mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
mach_header.filetype = MH_CORE;
mach_header.ncmds = segment_load_commands.size();
mach_header.flags = 0;
mach_header.reserved = 0;
ThreadList &thread_list = process_sp->GetThreadList();
const uint32_t num_threads = thread_list.GetSize();
// Make an array of LC_THREAD data items. Each one contains the
// contents of the LC_THREAD load command. The data doesn't contain
// the load command + load command size, we will add the load command
// and load command size as we emit the data.
std::vector<StreamString> LC_THREAD_datas(num_threads);
for (auto &LC_THREAD_data : LC_THREAD_datas) {
LC_THREAD_data.GetFlags().Set(Stream::eBinary);
LC_THREAD_data.SetAddressByteSize(addr_byte_size);
LC_THREAD_data.SetByteOrder(byte_order);
}
for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
if (thread_sp) {
switch (mach_header.cputype) {
case llvm::MachO::CPU_TYPE_ARM64:
case llvm::MachO::CPU_TYPE_ARM64_32:
RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
case llvm::MachO::CPU_TYPE_ARM:
RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
case llvm::MachO::CPU_TYPE_I386:
RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
case llvm::MachO::CPU_TYPE_X86_64:
RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
}
}
}
// The size of the load command is the size of the segments...
if (addr_byte_size == 8) {
mach_header.sizeofcmds = segment_load_commands.size() *
sizeof(llvm::MachO::segment_command_64);
} else {
mach_header.sizeofcmds = segment_load_commands.size() *
sizeof(llvm::MachO::segment_command);
}
// and the size of all LC_THREAD load command
for (const auto &LC_THREAD_data : LC_THREAD_datas) {
++mach_header.ncmds;
mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
}
// Bits will be set to indicate which bits are NOT used in
// addressing in this process or 0 for unknown.
uint64_t address_mask = process_sp->GetCodeAddressMask();
if (address_mask != 0) {
// LC_NOTE "addrable bits"
mach_header.ncmds++;
mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
}
// LC_NOTE "all image infos"
mach_header.ncmds++;
mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
// Write the mach header
buffer.PutHex32(mach_header.magic);
buffer.PutHex32(mach_header.cputype);
buffer.PutHex32(mach_header.cpusubtype);
buffer.PutHex32(mach_header.filetype);
buffer.PutHex32(mach_header.ncmds);
buffer.PutHex32(mach_header.sizeofcmds);
buffer.PutHex32(mach_header.flags);
if (addr_byte_size == 8) {
buffer.PutHex32(mach_header.reserved);
}
// Skip the mach header and all load commands and align to the next
// 0x1000 byte boundary
addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
file_offset = llvm::alignTo(file_offset, 16);
std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
// Add "addrable bits" LC_NOTE when an address mask is available
if (address_mask != 0) {
std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
new LCNoteEntry(addr_byte_size, byte_order));
addrable_bits_lcnote_up->name = "addrable bits";
addrable_bits_lcnote_up->payload_file_offset = file_offset;
int bits = std::bitset<64>(~address_mask).count();
addrable_bits_lcnote_up->payload.PutHex32(3); // version
addrable_bits_lcnote_up->payload.PutHex32(
bits); // # of bits used for addressing
addrable_bits_lcnote_up->payload.PutHex64(0); // unused
file_offset += addrable_bits_lcnote_up->payload.GetSize();
lc_notes.push_back(std::move(addrable_bits_lcnote_up));
}
// Add "all image infos" LC_NOTE
std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
new LCNoteEntry(addr_byte_size, byte_order));
all_image_infos_lcnote_up->name = "all image infos";
all_image_infos_lcnote_up->payload_file_offset = file_offset;
file_offset = CreateAllImageInfosPayload(
process_sp, file_offset, all_image_infos_lcnote_up->payload,
core_style);
lc_notes.push_back(std::move(all_image_infos_lcnote_up));
// Add LC_NOTE load commands
for (auto &lcnote : lc_notes) {
// Add the LC_NOTE load command to the file.
buffer.PutHex32(LC_NOTE);
buffer.PutHex32(sizeof(llvm::MachO::note_command));
char namebuf[16];
memset(namebuf, 0, sizeof(namebuf));
// this is the uncommon case where strncpy is exactly
// the right one, doesn't need to be nul terminated.
strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
buffer.PutRawBytes(namebuf, sizeof(namebuf));
buffer.PutHex64(lcnote->payload_file_offset);
buffer.PutHex64(lcnote->payload.GetSize());
}
// Align to 4096-byte page boundary for the LC_SEGMENTs.
file_offset = llvm::alignTo(file_offset, 4096);
for (auto &segment : segment_load_commands) {
segment.fileoff = file_offset;
file_offset += segment.filesize;
}
// Write out all of the LC_THREAD load commands
for (const auto &LC_THREAD_data : LC_THREAD_datas) {
const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
buffer.PutHex32(LC_THREAD);
buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
}
// Write out all of the segment load commands
for (const auto &segment : segment_load_commands) {
buffer.PutHex32(segment.cmd);
buffer.PutHex32(segment.cmdsize);
buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
if (addr_byte_size == 8) {
buffer.PutHex64(segment.vmaddr);
buffer.PutHex64(segment.vmsize);
buffer.PutHex64(segment.fileoff);
buffer.PutHex64(segment.filesize);
} else {
buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
}
buffer.PutHex32(segment.maxprot);
buffer.PutHex32(segment.initprot);
buffer.PutHex32(segment.nsects);
buffer.PutHex32(segment.flags);
}
std::string core_file_path(outfile.GetPath());
auto core_file = FileSystem::Instance().Open(
outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
File::eOpenOptionCanCreate);
if (!core_file) {
error = core_file.takeError();
} else {
// Read 1 page at a time
uint8_t bytes[0x1000];
// Write the mach header and load commands out to the core file
size_t bytes_written = buffer.GetString().size();
error =
core_file.get()->Write(buffer.GetString().data(), bytes_written);
if (error.Success()) {
for (auto &lcnote : lc_notes) {
if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
-1) {
error.SetErrorStringWithFormat("Unable to seek to corefile pos "
"to write '%s' LC_NOTE payload",
lcnote->name.c_str());
return false;
}
bytes_written = lcnote->payload.GetSize();
error = core_file.get()->Write(lcnote->payload.GetData(),
bytes_written);
if (!error.Success())
return false;
}
// Now write the file data for all memory segments in the process
for (const auto &segment : segment_load_commands) {
if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
error.SetErrorStringWithFormat(
"unable to seek to offset 0x%" PRIx64 " in '%s'",
segment.fileoff, core_file_path.c_str());
break;
}
target.GetDebugger().GetAsyncOutputStream()->Printf(
"Saving %" PRId64
" bytes of data for memory region at 0x%" PRIx64 "\n",
segment.vmsize, segment.vmaddr);
addr_t bytes_left = segment.vmsize;
addr_t addr = segment.vmaddr;
Status memory_read_error;
while (bytes_left > 0 && error.Success()) {
const size_t bytes_to_read =
bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
// In a savecore setting, we don't really care about caching,
// as the data is dumped and very likely never read again,
// so we call ReadMemoryFromInferior to bypass it.
const size_t bytes_read = process_sp->ReadMemoryFromInferior(
addr, bytes, bytes_to_read, memory_read_error);
if (bytes_read == bytes_to_read) {
size_t bytes_written = bytes_read;
error = core_file.get()->Write(bytes, bytes_written);
bytes_left -= bytes_read;
addr += bytes_read;
} else {
// Some pages within regions are not readable, those should
// be zero filled
memset(bytes, 0, bytes_to_read);
size_t bytes_written = bytes_to_read;
error = core_file.get()->Write(bytes, bytes_written);
bytes_left -= bytes_to_read;
addr += bytes_to_read;
}
}
}
}
}
} else {
error.SetErrorString(
"process doesn't support getting memory region info");
}
}
return true; // This is the right plug to handle saving core files for
// this process
}
return false;
}
ObjectFileMachO::MachOCorefileAllImageInfos
ObjectFileMachO::GetCorefileAllImageInfos() {
MachOCorefileAllImageInfos image_infos;
// Look for an "all image infos" LC_NOTE.
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
llvm::MachO::load_command lc = {};
if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
break;
if (lc.cmd == LC_NOTE) {
char data_owner[17];
m_data.CopyData(offset, 16, data_owner);
data_owner[16] = '\0';
offset += 16;
uint64_t fileoff = m_data.GetU64_unchecked(&offset);
offset += 4; /* size unused */
if (strcmp("all image infos", data_owner) == 0) {
offset = fileoff;
// Read the struct all_image_infos_header.
uint32_t version = m_data.GetU32(&offset);
if (version != 1) {
return image_infos;
}
uint32_t imgcount = m_data.GetU32(&offset);
uint64_t entries_fileoff = m_data.GetU64(&offset);
offset += 4; // uint32_t entries_size;
offset += 4; // uint32_t unused;
offset = entries_fileoff;
for (uint32_t i = 0; i < imgcount; i++) {
// Read the struct image_entry.
offset_t filepath_offset = m_data.GetU64(&offset);
uuid_t uuid;
memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
sizeof(uuid_t));
uint64_t load_address = m_data.GetU64(&offset);
offset_t seg_addrs_offset = m_data.GetU64(&offset);
uint32_t segment_count = m_data.GetU32(&offset);
uint32_t currently_executing = m_data.GetU32(&offset);
MachOCorefileImageEntry image_entry;
image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
image_entry.load_address = load_address;
image_entry.currently_executing = currently_executing;
offset_t seg_vmaddrs_offset = seg_addrs_offset;
for (uint32_t j = 0; j < segment_count; j++) {
char segname[17];
m_data.CopyData(seg_vmaddrs_offset, 16, segname);
segname[16] = '\0';
seg_vmaddrs_offset += 16;
uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
seg_vmaddrs_offset += 8; /* unused */
std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
vmaddr};
image_entry.segment_load_addresses.push_back(new_seg);
}
image_infos.all_image_infos.push_back(image_entry);
}
} else if (strcmp("load binary", data_owner) == 0) {
uint32_t version = m_data.GetU32(&fileoff);
if (version == 1) {
uuid_t uuid;
memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
sizeof(uuid_t));
uint64_t load_address = m_data.GetU64(&fileoff);
uint64_t slide = m_data.GetU64(&fileoff);
std::string filename = m_data.GetCStr(&fileoff);
MachOCorefileImageEntry image_entry;
image_entry.filename = filename;
image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
image_entry.load_address = load_address;
image_entry.slide = slide;
image_infos.all_image_infos.push_back(image_entry);
}
}
}
offset = cmd_offset + lc.cmdsize;
}
return image_infos;
}
bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
Log *log = GetLog(LLDBLog::DynamicLoader);
ModuleList added_modules;
for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
ModuleSpec module_spec;
module_spec.GetUUID() = image.uuid;
if (image.filename.empty()) {
char namebuf[80];
if (image.load_address != LLDB_INVALID_ADDRESS)
snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
image.load_address);
else
snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
module_spec.GetFileSpec() = FileSpec(namebuf);
} else {
module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
}
if (image.currently_executing) {
Status error;
Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
process.GetTarget().GetOrCreateModule(module_spec, false);
}
}
Status error;
ModuleSP module_sp =
process.GetTarget().GetOrCreateModule(module_spec, false, &error);
if (!module_sp.get() || !module_sp->GetObjectFile()) {
if (image.load_address != LLDB_INVALID_ADDRESS) {
module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
image.load_address);
}
}
if (module_sp.get()) {
// Will call ModulesDidLoad with all modules once they've all
// been added to the Target with load addresses. Don't notify
// here, before the load address is set.
const bool notify = false;
process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
added_modules.Append(module_sp, notify);
if (image.segment_load_addresses.size() > 0) {
if (log) {
std::string uuidstr = image.uuid.GetAsString();
log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
"UUID %s with section load addresses",
image.filename.c_str(), uuidstr.c_str());
}
for (auto name_vmaddr_tuple : image.segment_load_addresses) {
SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
if (sectlist) {
SectionSP sect_sp =
sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
if (sect_sp) {
process.GetTarget().SetSectionLoadAddress(
sect_sp, std::get<1>(name_vmaddr_tuple));
}
}
}
} else if (image.load_address != LLDB_INVALID_ADDRESS) {
if (log) {
std::string uuidstr = image.uuid.GetAsString();
log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
"UUID %s with load address 0x%" PRIx64,
image.filename.c_str(), uuidstr.c_str(),
image.load_address);
}
const bool address_is_slide = false;
bool changed = false;
module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
address_is_slide, changed);
} else if (image.slide != 0) {
if (log) {
std::string uuidstr = image.uuid.GetAsString();
log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
"UUID %s with slide amount 0x%" PRIx64,
image.filename.c_str(), uuidstr.c_str(), image.slide);
}
const bool address_is_slide = true;
bool changed = false;
module_sp->SetLoadAddress(process.GetTarget(), image.slide,
address_is_slide, changed);
} else {
if (log) {
std::string uuidstr = image.uuid.GetAsString();
log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
"UUID %s at its file address, no slide applied",
image.filename.c_str(), uuidstr.c_str());
}
const bool address_is_slide = true;
bool changed = false;
module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
changed);
}
}
}
if (added_modules.GetSize() > 0) {
process.GetTarget().ModulesDidLoad(added_modules);
process.Flush();
return true;
}
return false;
}