blob: 7145e7804e685fde93ec2ab14df33835f803cb7c [file] [log] [blame]
//===-- ClangUserExpression.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <cstdio>
#include <sys/types.h>
#include <cstdlib>
#include <map>
#include <string>
#include "ClangUserExpression.h"
#include "ASTResultSynthesizer.h"
#include "ClangASTMetadata.h"
#include "ClangDiagnostic.h"
#include "ClangExpressionDeclMap.h"
#include "ClangExpressionParser.h"
#include "ClangModulesDeclVendor.h"
#include "ClangPersistentVariables.h"
#include "CppModuleConfiguration.h"
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Expression/ExpressionSourceCode.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Expression/Materializer.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/Block.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanCallUserExpression.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/ScopeExit.h"
using namespace lldb_private;
char ClangUserExpression::ID;
ClangUserExpression::ClangUserExpression(
ExecutionContextScope &exe_scope, llvm::StringRef expr,
llvm::StringRef prefix, lldb::LanguageType language,
ResultType desired_type, const EvaluateExpressionOptions &options,
ValueObject *ctx_obj)
: LLVMUserExpression(exe_scope, expr, prefix, language, desired_type,
options),
m_type_system_helper(*m_target_wp.lock(), options.GetExecutionPolicy() ==
eExecutionPolicyTopLevel),
m_result_delegate(exe_scope.CalculateTarget()), m_ctx_obj(ctx_obj) {
switch (m_language) {
case lldb::eLanguageTypeC_plus_plus:
m_allow_cxx = true;
break;
case lldb::eLanguageTypeObjC:
m_allow_objc = true;
break;
case lldb::eLanguageTypeObjC_plus_plus:
default:
m_allow_cxx = true;
m_allow_objc = true;
break;
}
}
ClangUserExpression::~ClangUserExpression() = default;
void ClangUserExpression::ScanContext(ExecutionContext &exe_ctx, Status &err) {
Log *log = GetLog(LLDBLog::Expressions);
LLDB_LOGF(log, "ClangUserExpression::ScanContext()");
m_target = exe_ctx.GetTargetPtr();
if (!(m_allow_cxx || m_allow_objc)) {
LLDB_LOGF(log, " [CUE::SC] Settings inhibit C++ and Objective-C");
return;
}
StackFrame *frame = exe_ctx.GetFramePtr();
if (frame == nullptr) {
LLDB_LOGF(log, " [CUE::SC] Null stack frame");
return;
}
SymbolContext sym_ctx = frame->GetSymbolContext(lldb::eSymbolContextFunction |
lldb::eSymbolContextBlock);
if (!sym_ctx.function) {
LLDB_LOGF(log, " [CUE::SC] Null function");
return;
}
// Find the block that defines the function represented by "sym_ctx"
Block *function_block = sym_ctx.GetFunctionBlock();
if (!function_block) {
LLDB_LOGF(log, " [CUE::SC] Null function block");
return;
}
CompilerDeclContext decl_context = function_block->GetDeclContext();
if (!decl_context) {
LLDB_LOGF(log, " [CUE::SC] Null decl context");
return;
}
if (m_ctx_obj) {
switch (m_ctx_obj->GetObjectRuntimeLanguage()) {
case lldb::eLanguageTypeC:
case lldb::eLanguageTypeC89:
case lldb::eLanguageTypeC99:
case lldb::eLanguageTypeC11:
case lldb::eLanguageTypeC_plus_plus:
case lldb::eLanguageTypeC_plus_plus_03:
case lldb::eLanguageTypeC_plus_plus_11:
case lldb::eLanguageTypeC_plus_plus_14:
m_in_cplusplus_method = true;
break;
case lldb::eLanguageTypeObjC:
case lldb::eLanguageTypeObjC_plus_plus:
m_in_objectivec_method = true;
break;
default:
break;
}
m_needs_object_ptr = true;
} else if (clang::CXXMethodDecl *method_decl =
TypeSystemClang::DeclContextGetAsCXXMethodDecl(decl_context)) {
if (m_allow_cxx && method_decl->isInstance()) {
if (m_enforce_valid_object) {
lldb::VariableListSP variable_list_sp(
function_block->GetBlockVariableList(true));
const char *thisErrorString = "Stopped in a C++ method, but 'this' "
"isn't available; pretending we are in a "
"generic context";
if (!variable_list_sp) {
err.SetErrorString(thisErrorString);
return;
}
lldb::VariableSP this_var_sp(
variable_list_sp->FindVariable(ConstString("this")));
if (!this_var_sp || !this_var_sp->IsInScope(frame) ||
!this_var_sp->LocationIsValidForFrame(frame)) {
err.SetErrorString(thisErrorString);
return;
}
}
m_in_cplusplus_method = true;
m_needs_object_ptr = true;
}
} else if (clang::ObjCMethodDecl *method_decl =
TypeSystemClang::DeclContextGetAsObjCMethodDecl(
decl_context)) {
if (m_allow_objc) {
if (m_enforce_valid_object) {
lldb::VariableListSP variable_list_sp(
function_block->GetBlockVariableList(true));
const char *selfErrorString = "Stopped in an Objective-C method, but "
"'self' isn't available; pretending we "
"are in a generic context";
if (!variable_list_sp) {
err.SetErrorString(selfErrorString);
return;
}
lldb::VariableSP self_variable_sp =
variable_list_sp->FindVariable(ConstString("self"));
if (!self_variable_sp || !self_variable_sp->IsInScope(frame) ||
!self_variable_sp->LocationIsValidForFrame(frame)) {
err.SetErrorString(selfErrorString);
return;
}
}
m_in_objectivec_method = true;
m_needs_object_ptr = true;
if (!method_decl->isInstanceMethod())
m_in_static_method = true;
}
} else if (clang::FunctionDecl *function_decl =
TypeSystemClang::DeclContextGetAsFunctionDecl(decl_context)) {
// We might also have a function that said in the debug information that it
// captured an object pointer. The best way to deal with getting to the
// ivars at present is by pretending that this is a method of a class in
// whatever runtime the debug info says the object pointer belongs to. Do
// that here.
ClangASTMetadata *metadata =
TypeSystemClang::DeclContextGetMetaData(decl_context, function_decl);
if (metadata && metadata->HasObjectPtr()) {
lldb::LanguageType language = metadata->GetObjectPtrLanguage();
if (language == lldb::eLanguageTypeC_plus_plus) {
if (m_enforce_valid_object) {
lldb::VariableListSP variable_list_sp(
function_block->GetBlockVariableList(true));
const char *thisErrorString = "Stopped in a context claiming to "
"capture a C++ object pointer, but "
"'this' isn't available; pretending we "
"are in a generic context";
if (!variable_list_sp) {
err.SetErrorString(thisErrorString);
return;
}
lldb::VariableSP this_var_sp(
variable_list_sp->FindVariable(ConstString("this")));
if (!this_var_sp || !this_var_sp->IsInScope(frame) ||
!this_var_sp->LocationIsValidForFrame(frame)) {
err.SetErrorString(thisErrorString);
return;
}
}
m_in_cplusplus_method = true;
m_needs_object_ptr = true;
} else if (language == lldb::eLanguageTypeObjC) {
if (m_enforce_valid_object) {
lldb::VariableListSP variable_list_sp(
function_block->GetBlockVariableList(true));
const char *selfErrorString =
"Stopped in a context claiming to capture an Objective-C object "
"pointer, but 'self' isn't available; pretending we are in a "
"generic context";
if (!variable_list_sp) {
err.SetErrorString(selfErrorString);
return;
}
lldb::VariableSP self_variable_sp =
variable_list_sp->FindVariable(ConstString("self"));
if (!self_variable_sp || !self_variable_sp->IsInScope(frame) ||
!self_variable_sp->LocationIsValidForFrame(frame)) {
err.SetErrorString(selfErrorString);
return;
}
Type *self_type = self_variable_sp->GetType();
if (!self_type) {
err.SetErrorString(selfErrorString);
return;
}
CompilerType self_clang_type = self_type->GetForwardCompilerType();
if (!self_clang_type) {
err.SetErrorString(selfErrorString);
return;
}
if (TypeSystemClang::IsObjCClassType(self_clang_type)) {
return;
} else if (TypeSystemClang::IsObjCObjectPointerType(
self_clang_type)) {
m_in_objectivec_method = true;
m_needs_object_ptr = true;
} else {
err.SetErrorString(selfErrorString);
return;
}
} else {
m_in_objectivec_method = true;
m_needs_object_ptr = true;
}
}
}
}
}
// This is a really nasty hack, meant to fix Objective-C expressions of the
// form (int)[myArray count]. Right now, because the type information for
// count is not available, [myArray count] returns id, which can't be directly
// cast to int without causing a clang error.
static void ApplyObjcCastHack(std::string &expr) {
const std::string from = "(int)[";
const std::string to = "(int)(long long)[";
size_t offset;
while ((offset = expr.find(from)) != expr.npos)
expr.replace(offset, from.size(), to);
}
bool ClangUserExpression::SetupPersistentState(DiagnosticManager &diagnostic_manager,
ExecutionContext &exe_ctx) {
if (Target *target = exe_ctx.GetTargetPtr()) {
if (PersistentExpressionState *persistent_state =
target->GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeC)) {
m_clang_state = llvm::cast<ClangPersistentVariables>(persistent_state);
m_result_delegate.RegisterPersistentState(persistent_state);
} else {
diagnostic_manager.PutString(
eDiagnosticSeverityError,
"couldn't start parsing (no persistent data)");
return false;
}
} else {
diagnostic_manager.PutString(eDiagnosticSeverityError,
"error: couldn't start parsing (no target)");
return false;
}
return true;
}
static void SetupDeclVendor(ExecutionContext &exe_ctx, Target *target,
DiagnosticManager &diagnostic_manager) {
if (!target->GetEnableAutoImportClangModules())
return;
auto *persistent_state = llvm::cast<ClangPersistentVariables>(
target->GetPersistentExpressionStateForLanguage(lldb::eLanguageTypeC));
if (!persistent_state)
return;
std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
persistent_state->GetClangModulesDeclVendor();
if (!decl_vendor)
return;
StackFrame *frame = exe_ctx.GetFramePtr();
if (!frame)
return;
Block *block = frame->GetFrameBlock();
if (!block)
return;
SymbolContext sc;
block->CalculateSymbolContext(&sc);
if (!sc.comp_unit)
return;
StreamString error_stream;
ClangModulesDeclVendor::ModuleVector modules_for_macros =
persistent_state->GetHandLoadedClangModules();
if (decl_vendor->AddModulesForCompileUnit(*sc.comp_unit, modules_for_macros,
error_stream))
return;
// Failed to load some modules, so emit the error stream as a diagnostic.
if (!error_stream.Empty()) {
// The error stream already contains several Clang diagnostics that might
// be either errors or warnings, so just print them all as one remark
// diagnostic to prevent that the message starts with "error: error:".
diagnostic_manager.PutString(eDiagnosticSeverityRemark,
error_stream.GetString());
return;
}
diagnostic_manager.PutString(eDiagnosticSeverityError,
"Unknown error while loading modules needed for "
"current compilation unit.");
}
ClangExpressionSourceCode::WrapKind ClangUserExpression::GetWrapKind() const {
assert(m_options.GetExecutionPolicy() != eExecutionPolicyTopLevel &&
"Top level expressions aren't wrapped.");
using Kind = ClangExpressionSourceCode::WrapKind;
if (m_in_cplusplus_method)
return Kind::CppMemberFunction;
else if (m_in_objectivec_method) {
if (m_in_static_method)
return Kind::ObjCStaticMethod;
return Kind::ObjCInstanceMethod;
}
// Not in any kind of 'special' function, so just wrap it in a normal C
// function.
return Kind::Function;
}
void ClangUserExpression::CreateSourceCode(
DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx,
std::vector<std::string> modules_to_import, bool for_completion) {
std::string prefix = m_expr_prefix;
if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) {
m_transformed_text = m_expr_text;
} else {
m_source_code.reset(ClangExpressionSourceCode::CreateWrapped(
m_filename, prefix, m_expr_text, GetWrapKind()));
if (!m_source_code->GetText(m_transformed_text, exe_ctx, !m_ctx_obj,
for_completion, modules_to_import)) {
diagnostic_manager.PutString(eDiagnosticSeverityError,
"couldn't construct expression body");
return;
}
// Find and store the start position of the original code inside the
// transformed code. We need this later for the code completion.
std::size_t original_start;
std::size_t original_end;
bool found_bounds = m_source_code->GetOriginalBodyBounds(
m_transformed_text, original_start, original_end);
if (found_bounds)
m_user_expression_start_pos = original_start;
}
}
static bool SupportsCxxModuleImport(lldb::LanguageType language) {
switch (language) {
case lldb::eLanguageTypeC_plus_plus:
case lldb::eLanguageTypeC_plus_plus_03:
case lldb::eLanguageTypeC_plus_plus_11:
case lldb::eLanguageTypeC_plus_plus_14:
case lldb::eLanguageTypeObjC_plus_plus:
return true;
default:
return false;
}
}
/// Utility method that puts a message into the expression log and
/// returns an invalid module configuration.
static CppModuleConfiguration LogConfigError(const std::string &msg) {
Log *log = GetLog(LLDBLog::Expressions);
LLDB_LOG(log, "[C++ module config] {0}", msg);
return CppModuleConfiguration();
}
CppModuleConfiguration GetModuleConfig(lldb::LanguageType language,
ExecutionContext &exe_ctx) {
Log *log = GetLog(LLDBLog::Expressions);
// Don't do anything if this is not a C++ module configuration.
if (!SupportsCxxModuleImport(language))
return LogConfigError("Language doesn't support C++ modules");
Target *target = exe_ctx.GetTargetPtr();
if (!target)
return LogConfigError("No target");
StackFrame *frame = exe_ctx.GetFramePtr();
if (!frame)
return LogConfigError("No frame");
Block *block = frame->GetFrameBlock();
if (!block)
return LogConfigError("No block");
SymbolContext sc;
block->CalculateSymbolContext(&sc);
if (!sc.comp_unit)
return LogConfigError("Couldn't calculate symbol context");
// Build a list of files we need to analyze to build the configuration.
FileSpecList files;
for (const FileSpec &f : sc.comp_unit->GetSupportFiles())
files.AppendIfUnique(f);
// We also need to look at external modules in the case of -gmodules as they
// contain the support files for libc++ and the C library.
llvm::DenseSet<SymbolFile *> visited_symbol_files;
sc.comp_unit->ForEachExternalModule(
visited_symbol_files, [&files](Module &module) {
for (std::size_t i = 0; i < module.GetNumCompileUnits(); ++i) {
const FileSpecList &support_files =
module.GetCompileUnitAtIndex(i)->GetSupportFiles();
for (const FileSpec &f : support_files) {
files.AppendIfUnique(f);
}
}
return false;
});
LLDB_LOG(log, "[C++ module config] Found {0} support files to analyze",
files.GetSize());
if (log && log->GetVerbose()) {
for (const FileSpec &f : files)
LLDB_LOGV(log, "[C++ module config] Analyzing support file: {0}",
f.GetPath());
}
// Try to create a configuration from the files. If there is no valid
// configuration possible with the files, this just returns an invalid
// configuration.
return CppModuleConfiguration(files, target->GetArchitecture().GetTriple());
}
bool ClangUserExpression::PrepareForParsing(
DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx,
bool for_completion) {
InstallContext(exe_ctx);
if (!SetupPersistentState(diagnostic_manager, exe_ctx))
return false;
Status err;
ScanContext(exe_ctx, err);
if (!err.Success()) {
diagnostic_manager.PutString(eDiagnosticSeverityWarning, err.AsCString());
}
////////////////////////////////////
// Generate the expression
//
ApplyObjcCastHack(m_expr_text);
SetupDeclVendor(exe_ctx, m_target, diagnostic_manager);
m_filename = m_clang_state->GetNextExprFileName();
if (m_target->GetImportStdModule() == eImportStdModuleTrue)
SetupCppModuleImports(exe_ctx);
CreateSourceCode(diagnostic_manager, exe_ctx, m_imported_cpp_modules,
for_completion);
return true;
}
bool ClangUserExpression::TryParse(
DiagnosticManager &diagnostic_manager, ExecutionContextScope *exe_scope,
ExecutionContext &exe_ctx, lldb_private::ExecutionPolicy execution_policy,
bool keep_result_in_memory, bool generate_debug_info) {
m_materializer_up = std::make_unique<Materializer>();
ResetDeclMap(exe_ctx, m_result_delegate, keep_result_in_memory);
auto on_exit = llvm::make_scope_exit([this]() { ResetDeclMap(); });
if (!DeclMap()->WillParse(exe_ctx, GetMaterializer())) {
diagnostic_manager.PutString(
eDiagnosticSeverityError,
"current process state is unsuitable for expression parsing");
return false;
}
if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) {
DeclMap()->SetLookupsEnabled(true);
}
m_parser = std::make_unique<ClangExpressionParser>(
exe_scope, *this, generate_debug_info, m_include_directories, m_filename);
unsigned num_errors = m_parser->Parse(diagnostic_manager);
// Check here for FixItHints. If there are any try to apply the fixits and
// set the fixed text in m_fixed_text before returning an error.
if (num_errors) {
if (diagnostic_manager.HasFixIts()) {
if (m_parser->RewriteExpression(diagnostic_manager)) {
size_t fixed_start;
size_t fixed_end;
m_fixed_text = diagnostic_manager.GetFixedExpression();
// Retrieve the original expression in case we don't have a top level
// expression (which has no surrounding source code).
if (m_source_code && m_source_code->GetOriginalBodyBounds(
m_fixed_text, fixed_start, fixed_end))
m_fixed_text =
m_fixed_text.substr(fixed_start, fixed_end - fixed_start);
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
// Prepare the output of the parser for execution, evaluating it statically
// if possible
//
{
Status jit_error = m_parser->PrepareForExecution(
m_jit_start_addr, m_jit_end_addr, m_execution_unit_sp, exe_ctx,
m_can_interpret, execution_policy);
if (!jit_error.Success()) {
const char *error_cstr = jit_error.AsCString();
if (error_cstr && error_cstr[0])
diagnostic_manager.PutString(eDiagnosticSeverityError, error_cstr);
else
diagnostic_manager.PutString(eDiagnosticSeverityError,
"expression can't be interpreted or run");
return false;
}
}
return true;
}
void ClangUserExpression::SetupCppModuleImports(ExecutionContext &exe_ctx) {
Log *log = GetLog(LLDBLog::Expressions);
CppModuleConfiguration module_config = GetModuleConfig(m_language, exe_ctx);
m_imported_cpp_modules = module_config.GetImportedModules();
m_include_directories = module_config.GetIncludeDirs();
LLDB_LOG(log, "List of imported modules in expression: {0}",
llvm::make_range(m_imported_cpp_modules.begin(),
m_imported_cpp_modules.end()));
LLDB_LOG(log, "List of include directories gathered for modules: {0}",
llvm::make_range(m_include_directories.begin(),
m_include_directories.end()));
}
static bool shouldRetryWithCppModule(Target &target, ExecutionPolicy exe_policy) {
// Top-level expression don't yet support importing C++ modules.
if (exe_policy == ExecutionPolicy::eExecutionPolicyTopLevel)
return false;
return target.GetImportStdModule() == eImportStdModuleFallback;
}
bool ClangUserExpression::Parse(DiagnosticManager &diagnostic_manager,
ExecutionContext &exe_ctx,
lldb_private::ExecutionPolicy execution_policy,
bool keep_result_in_memory,
bool generate_debug_info) {
Log *log = GetLog(LLDBLog::Expressions);
if (!PrepareForParsing(diagnostic_manager, exe_ctx, /*for_completion*/ false))
return false;
LLDB_LOGF(log, "Parsing the following code:\n%s", m_transformed_text.c_str());
////////////////////////////////////
// Set up the target and compiler
//
Target *target = exe_ctx.GetTargetPtr();
if (!target) {
diagnostic_manager.PutString(eDiagnosticSeverityError, "invalid target");
return false;
}
//////////////////////////
// Parse the expression
//
Process *process = exe_ctx.GetProcessPtr();
ExecutionContextScope *exe_scope = process;
if (!exe_scope)
exe_scope = exe_ctx.GetTargetPtr();
bool parse_success = TryParse(diagnostic_manager, exe_scope, exe_ctx,
execution_policy, keep_result_in_memory,
generate_debug_info);
// If the expression failed to parse, check if retrying parsing with a loaded
// C++ module is possible.
if (!parse_success && shouldRetryWithCppModule(*target, execution_policy)) {
// Load the loaded C++ modules.
SetupCppModuleImports(exe_ctx);
// If we did load any modules, then retry parsing.
if (!m_imported_cpp_modules.empty()) {
// Create a dedicated diagnostic manager for the second parse attempt.
// These diagnostics are only returned to the caller if using the fallback
// actually succeeded in getting the expression to parse. This prevents
// that module-specific issues regress diagnostic quality with the
// fallback mode.
DiagnosticManager retry_manager;
// The module imports are injected into the source code wrapper,
// so recreate those.
CreateSourceCode(retry_manager, exe_ctx, m_imported_cpp_modules,
/*for_completion*/ false);
parse_success = TryParse(retry_manager, exe_scope, exe_ctx,
execution_policy, keep_result_in_memory,
generate_debug_info);
// Return the parse diagnostics if we were successful.
if (parse_success)
diagnostic_manager = std::move(retry_manager);
}
}
if (!parse_success)
return false;
if (exe_ctx.GetProcessPtr() && execution_policy == eExecutionPolicyTopLevel) {
Status static_init_error =
m_parser->RunStaticInitializers(m_execution_unit_sp, exe_ctx);
if (!static_init_error.Success()) {
const char *error_cstr = static_init_error.AsCString();
if (error_cstr && error_cstr[0])
diagnostic_manager.Printf(eDiagnosticSeverityError,
"%s\n",
error_cstr);
else
diagnostic_manager.PutString(eDiagnosticSeverityError,
"couldn't run static initializers\n");
return false;
}
}
if (m_execution_unit_sp) {
bool register_execution_unit = false;
if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) {
register_execution_unit = true;
}
// If there is more than one external function in the execution unit, it
// needs to keep living even if it's not top level, because the result
// could refer to that function.
if (m_execution_unit_sp->GetJittedFunctions().size() > 1) {
register_execution_unit = true;
}
if (register_execution_unit) {
if (auto *persistent_state =
exe_ctx.GetTargetPtr()->GetPersistentExpressionStateForLanguage(
m_language))
persistent_state->RegisterExecutionUnit(m_execution_unit_sp);
}
}
if (generate_debug_info) {
lldb::ModuleSP jit_module_sp(m_execution_unit_sp->GetJITModule());
if (jit_module_sp) {
ConstString const_func_name(FunctionName());
FileSpec jit_file;
jit_file.GetFilename() = const_func_name;
jit_module_sp->SetFileSpecAndObjectName(jit_file, ConstString());
m_jit_module_wp = jit_module_sp;
target->GetImages().Append(jit_module_sp);
}
}
if (process && m_jit_start_addr != LLDB_INVALID_ADDRESS)
m_jit_process_wp = lldb::ProcessWP(process->shared_from_this());
return true;
}
/// Converts an absolute position inside a given code string into
/// a column/line pair.
///
/// \param[in] abs_pos
/// A absolute position in the code string that we want to convert
/// to a column/line pair.
///
/// \param[in] code
/// A multi-line string usually representing source code.
///
/// \param[out] line
/// The line in the code that contains the given absolute position.
/// The first line in the string is indexed as 1.
///
/// \param[out] column
/// The column in the line that contains the absolute position.
/// The first character in a line is indexed as 0.
static void AbsPosToLineColumnPos(size_t abs_pos, llvm::StringRef code,
unsigned &line, unsigned &column) {
// Reset to code position to beginning of the file.
line = 0;
column = 0;
assert(abs_pos <= code.size() && "Absolute position outside code string?");
// We have to walk up to the position and count lines/columns.
for (std::size_t i = 0; i < abs_pos; ++i) {
// If we hit a line break, we go back to column 0 and enter a new line.
// We only handle \n because that's what we internally use to make new
// lines for our temporary code strings.
if (code[i] == '\n') {
++line;
column = 0;
continue;
}
++column;
}
}
bool ClangUserExpression::Complete(ExecutionContext &exe_ctx,
CompletionRequest &request,
unsigned complete_pos) {
Log *log = GetLog(LLDBLog::Expressions);
// We don't want any visible feedback when completing an expression. Mostly
// because the results we get from an incomplete invocation are probably not
// correct.
DiagnosticManager diagnostic_manager;
if (!PrepareForParsing(diagnostic_manager, exe_ctx, /*for_completion*/ true))
return false;
LLDB_LOGF(log, "Parsing the following code:\n%s", m_transformed_text.c_str());
//////////////////////////
// Parse the expression
//
m_materializer_up = std::make_unique<Materializer>();
ResetDeclMap(exe_ctx, m_result_delegate, /*keep result in memory*/ true);
auto on_exit = llvm::make_scope_exit([this]() { ResetDeclMap(); });
if (!DeclMap()->WillParse(exe_ctx, GetMaterializer())) {
diagnostic_manager.PutString(
eDiagnosticSeverityError,
"current process state is unsuitable for expression parsing");
return false;
}
if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) {
DeclMap()->SetLookupsEnabled(true);
}
Process *process = exe_ctx.GetProcessPtr();
ExecutionContextScope *exe_scope = process;
if (!exe_scope)
exe_scope = exe_ctx.GetTargetPtr();
ClangExpressionParser parser(exe_scope, *this, false);
// We have to find the source code location where the user text is inside
// the transformed expression code. When creating the transformed text, we
// already stored the absolute position in the m_transformed_text string. The
// only thing left to do is to transform it into the line:column format that
// Clang expects.
// The line and column of the user expression inside the transformed source
// code.
unsigned user_expr_line, user_expr_column;
if (m_user_expression_start_pos)
AbsPosToLineColumnPos(*m_user_expression_start_pos, m_transformed_text,
user_expr_line, user_expr_column);
else
return false;
// The actual column where we have to complete is the start column of the
// user expression + the offset inside the user code that we were given.
const unsigned completion_column = user_expr_column + complete_pos;
parser.Complete(request, user_expr_line, completion_column, complete_pos);
return true;
}
lldb::addr_t ClangUserExpression::GetCppObjectPointer(
lldb::StackFrameSP frame_sp, ConstString &object_name, Status &err) {
auto valobj_sp =
GetObjectPointerValueObject(std::move(frame_sp), object_name, err);
// We're inside a C++ class method. This could potentially be an unnamed
// lambda structure. If the lambda captured a "this", that should be
// the object pointer.
if (auto thisChildSP =
valobj_sp->GetChildMemberWithName(ConstString("this"), true)) {
valobj_sp = thisChildSP;
}
if (!err.Success() || !valobj_sp.get())
return LLDB_INVALID_ADDRESS;
lldb::addr_t ret = valobj_sp->GetValueAsUnsigned(LLDB_INVALID_ADDRESS);
if (ret == LLDB_INVALID_ADDRESS) {
err.SetErrorStringWithFormat(
"Couldn't load '%s' because its value couldn't be evaluated",
object_name.AsCString());
return LLDB_INVALID_ADDRESS;
}
return ret;
}
bool ClangUserExpression::AddArguments(ExecutionContext &exe_ctx,
std::vector<lldb::addr_t> &args,
lldb::addr_t struct_address,
DiagnosticManager &diagnostic_manager) {
lldb::addr_t object_ptr = LLDB_INVALID_ADDRESS;
lldb::addr_t cmd_ptr = LLDB_INVALID_ADDRESS;
if (m_needs_object_ptr) {
lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP();
if (!frame_sp)
return true;
ConstString object_name;
if (m_in_cplusplus_method) {
object_name.SetCString("this");
} else if (m_in_objectivec_method) {
object_name.SetCString("self");
} else {
diagnostic_manager.PutString(
eDiagnosticSeverityError,
"need object pointer but don't know the language");
return false;
}
Status object_ptr_error;
if (m_ctx_obj) {
AddressType address_type;
object_ptr = m_ctx_obj->GetAddressOf(false, &address_type);
if (object_ptr == LLDB_INVALID_ADDRESS ||
address_type != eAddressTypeLoad)
object_ptr_error.SetErrorString("Can't get context object's "
"debuggee address");
} else {
if (m_in_cplusplus_method) {
object_ptr =
GetCppObjectPointer(frame_sp, object_name, object_ptr_error);
} else {
object_ptr = GetObjectPointer(frame_sp, object_name, object_ptr_error);
}
}
if (!object_ptr_error.Success()) {
exe_ctx.GetTargetRef().GetDebugger().GetAsyncOutputStream()->Printf(
"warning: `%s' is not accessible (substituting 0). %s\n",
object_name.AsCString(), object_ptr_error.AsCString());
object_ptr = 0;
}
if (m_in_objectivec_method) {
ConstString cmd_name("_cmd");
cmd_ptr = GetObjectPointer(frame_sp, cmd_name, object_ptr_error);
if (!object_ptr_error.Success()) {
diagnostic_manager.Printf(
eDiagnosticSeverityWarning,
"couldn't get cmd pointer (substituting NULL): %s",
object_ptr_error.AsCString());
cmd_ptr = 0;
}
}
args.push_back(object_ptr);
if (m_in_objectivec_method)
args.push_back(cmd_ptr);
args.push_back(struct_address);
} else {
args.push_back(struct_address);
}
return true;
}
lldb::ExpressionVariableSP ClangUserExpression::GetResultAfterDematerialization(
ExecutionContextScope *exe_scope) {
return m_result_delegate.GetVariable();
}
void ClangUserExpression::ClangUserExpressionHelper::ResetDeclMap(
ExecutionContext &exe_ctx,
Materializer::PersistentVariableDelegate &delegate,
bool keep_result_in_memory,
ValueObject *ctx_obj) {
std::shared_ptr<ClangASTImporter> ast_importer;
auto *state = exe_ctx.GetTargetSP()->GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeC);
if (state) {
auto *persistent_vars = llvm::cast<ClangPersistentVariables>(state);
ast_importer = persistent_vars->GetClangASTImporter();
}
m_expr_decl_map_up = std::make_unique<ClangExpressionDeclMap>(
keep_result_in_memory, &delegate, exe_ctx.GetTargetSP(), ast_importer,
ctx_obj);
}
clang::ASTConsumer *
ClangUserExpression::ClangUserExpressionHelper::ASTTransformer(
clang::ASTConsumer *passthrough) {
m_result_synthesizer_up = std::make_unique<ASTResultSynthesizer>(
passthrough, m_top_level, m_target);
return m_result_synthesizer_up.get();
}
void ClangUserExpression::ClangUserExpressionHelper::CommitPersistentDecls() {
if (m_result_synthesizer_up) {
m_result_synthesizer_up->CommitPersistentDecls();
}
}
ConstString ClangUserExpression::ResultDelegate::GetName() {
return m_persistent_state->GetNextPersistentVariableName(false);
}
void ClangUserExpression::ResultDelegate::DidDematerialize(
lldb::ExpressionVariableSP &variable) {
m_variable = variable;
}
void ClangUserExpression::ResultDelegate::RegisterPersistentState(
PersistentExpressionState *persistent_state) {
m_persistent_state = persistent_state;
}
lldb::ExpressionVariableSP &ClangUserExpression::ResultDelegate::GetVariable() {
return m_variable;
}