blob: cc47ae4386b477e1da0c334fd8be2ca0072bcc2a [file] [log] [blame]
//===- Target.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_MACHO_TARGET_H
#define LLD_MACHO_TARGET_H
#include "MachOStructs.h"
#include "Relocations.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cstddef>
#include <cstdint>
#include "mach-o/compact_unwind_encoding.h"
namespace lld::macho {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
class Symbol;
class Defined;
class DylibSymbol;
class InputSection;
class ObjFile;
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_MASK) ==
static_cast<uint32_t>(UNWIND_X86_MODE_MASK) &&
static_cast<uint32_t>(UNWIND_ARM64_MODE_MASK) ==
static_cast<uint32_t>(UNWIND_X86_64_MODE_MASK));
// Since the mode masks have the same value on all targets, define
// a common one for convenience.
constexpr uint32_t UNWIND_MODE_MASK = UNWIND_X86_64_MODE_MASK;
class TargetInfo {
public:
template <class LP> TargetInfo(LP) {
// Having these values available in TargetInfo allows us to access them
// without having to resort to templates.
magic = LP::magic;
pageZeroSize = LP::pageZeroSize;
headerSize = sizeof(typename LP::mach_header);
wordSize = LP::wordSize;
p2WordSize = llvm::CTLog2<LP::wordSize>();
}
virtual ~TargetInfo() = default;
// Validate the relocation structure and get its addend.
virtual int64_t
getEmbeddedAddend(llvm::MemoryBufferRef, uint64_t offset,
const llvm::MachO::relocation_info) const = 0;
virtual void relocateOne(uint8_t *loc, const Reloc &, uint64_t va,
uint64_t relocVA) const = 0;
// Write code for lazy binding. See the comments on StubsSection for more
// details.
virtual void writeStub(uint8_t *buf, const Symbol &,
uint64_t pointerVA) const = 0;
virtual void writeStubHelperHeader(uint8_t *buf) const = 0;
virtual void writeStubHelperEntry(uint8_t *buf, const Symbol &,
uint64_t entryAddr) const = 0;
virtual void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym,
uint64_t stubsAddr, uint64_t &stubOffset,
uint64_t selrefVA,
Symbol *objcMsgSend) const = 0;
// Symbols may be referenced via either the GOT or the stubs section,
// depending on the relocation type. prepareSymbolRelocation() will set up the
// GOT/stubs entries, and resolveSymbolVA() will return the addresses of those
// entries. resolveSymbolVA() may also relax the target instructions to save
// on a level of address indirection.
virtual void relaxGotLoad(uint8_t *loc, uint8_t type) const = 0;
virtual uint64_t getPageSize() const = 0;
virtual void populateThunk(InputSection *thunk, Symbol *funcSym) {
llvm_unreachable("target does not use thunks");
}
const RelocAttrs &getRelocAttrs(uint8_t type) const {
assert(type < relocAttrs.size() && "invalid relocation type");
if (type >= relocAttrs.size())
return invalidRelocAttrs;
return relocAttrs[type];
}
bool hasAttr(uint8_t type, RelocAttrBits bit) const {
return getRelocAttrs(type).hasAttr(bit);
}
bool usesThunks() const { return thunkSize > 0; }
// For now, handleDtraceReloc only implements -no_dtrace_dof, and ensures
// that the linking would not fail even when there are user-provided dtrace
// symbols. However, unlike ld64, lld currently does not emit __dof sections.
virtual void handleDtraceReloc(const Symbol *sym, const Reloc &r,
uint8_t *loc) const {
llvm_unreachable("Unsupported architecture for dtrace symbols");
}
virtual void applyOptimizationHints(uint8_t *, const ObjFile &) const {};
uint32_t magic;
llvm::MachO::CPUType cpuType;
uint32_t cpuSubtype;
uint64_t pageZeroSize;
size_t headerSize;
size_t stubSize;
size_t stubHelperHeaderSize;
size_t stubHelperEntrySize;
size_t objcStubsFastSize;
size_t objcStubsSmallSize;
size_t objcStubsFastAlignment;
size_t objcStubsSmallAlignment;
uint8_t p2WordSize;
size_t wordSize;
size_t thunkSize = 0;
uint64_t forwardBranchRange = 0;
uint64_t backwardBranchRange = 0;
uint32_t modeDwarfEncoding;
uint8_t subtractorRelocType;
uint8_t unsignedRelocType;
llvm::ArrayRef<RelocAttrs> relocAttrs;
// We contrive this value as sufficiently far from any valid address that it
// will always be out-of-range for any architecture. UINT64_MAX is not a
// good choice because it is (a) only 1 away from wrapping to 0, and (b) the
// tombstone value for DenseMap<> and caused weird assertions for me.
static constexpr uint64_t outOfRangeVA = 0xfull << 60;
};
TargetInfo *createX86_64TargetInfo();
TargetInfo *createARM64TargetInfo();
TargetInfo *createARM64_32TargetInfo();
struct LP64 {
using mach_header = llvm::MachO::mach_header_64;
using nlist = structs::nlist_64;
using segment_command = llvm::MachO::segment_command_64;
using section = llvm::MachO::section_64;
using encryption_info_command = llvm::MachO::encryption_info_command_64;
static constexpr uint32_t magic = llvm::MachO::MH_MAGIC_64;
static constexpr uint32_t segmentLCType = llvm::MachO::LC_SEGMENT_64;
static constexpr uint32_t encryptionInfoLCType =
llvm::MachO::LC_ENCRYPTION_INFO_64;
static constexpr uint64_t pageZeroSize = 1ull << 32;
static constexpr size_t wordSize = 8;
};
struct ILP32 {
using mach_header = llvm::MachO::mach_header;
using nlist = structs::nlist;
using segment_command = llvm::MachO::segment_command;
using section = llvm::MachO::section;
using encryption_info_command = llvm::MachO::encryption_info_command;
static constexpr uint32_t magic = llvm::MachO::MH_MAGIC;
static constexpr uint32_t segmentLCType = llvm::MachO::LC_SEGMENT;
static constexpr uint32_t encryptionInfoLCType =
llvm::MachO::LC_ENCRYPTION_INFO;
static constexpr uint64_t pageZeroSize = 1ull << 12;
static constexpr size_t wordSize = 4;
};
extern TargetInfo *target;
} // namespace lld::macho
#endif