blob: e8fadfef56d4b2a2342a4ea05bafc763792888aa [file] [log] [blame]
//===- SyntheticSections.h -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
#define LLD_MACHO_SYNTHETIC_SECTIONS_H
#include "Config.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "Target.h"
#include "Writer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <unordered_map>
namespace llvm {
class DWARFUnit;
} // namespace llvm
namespace lld::macho {
class Defined;
class DylibSymbol;
class LoadCommand;
class ObjFile;
class UnwindInfoSection;
class SyntheticSection : public OutputSection {
public:
SyntheticSection(const char *segname, const char *name);
virtual ~SyntheticSection() = default;
static bool classof(const OutputSection *sec) {
return sec->kind() == SyntheticKind;
}
StringRef segname;
// This fake InputSection makes it easier for us to write code that applies
// generically to both user inputs and synthetics.
InputSection *isec;
};
// All sections in __LINKEDIT should inherit from this.
class LinkEditSection : public SyntheticSection {
public:
LinkEditSection(const char *segname, const char *name)
: SyntheticSection(segname, name) {
align = target->wordSize;
}
// Implementations of this method can assume that the regular (non-__LINKEDIT)
// sections already have their addresses assigned.
virtual void finalizeContents() {}
// Sections in __LINKEDIT are special: their offsets are recorded in the
// load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
// headers.
bool isHidden() const final { return true; }
virtual uint64_t getRawSize() const = 0;
// codesign (or more specifically libstuff) checks that each section in
// __LINKEDIT ends where the next one starts -- no gaps are permitted. We
// therefore align every section's start and end points to WordSize.
//
// NOTE: This assumes that the extra bytes required for alignment can be
// zero-valued bytes.
uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); }
};
// The header of the Mach-O file, which must have a file offset of zero.
class MachHeaderSection final : public SyntheticSection {
public:
MachHeaderSection();
bool isHidden() const override { return true; }
uint64_t getSize() const override;
void writeTo(uint8_t *buf) const override;
void addLoadCommand(LoadCommand *);
protected:
std::vector<LoadCommand *> loadCommands;
uint32_t sizeOfCmds = 0;
};
// A hidden section that exists solely for the purpose of creating the
// __PAGEZERO segment, which is used to catch null pointer dereferences.
class PageZeroSection final : public SyntheticSection {
public:
PageZeroSection();
bool isHidden() const override { return true; }
bool isNeeded() const override { return target->pageZeroSize != 0; }
uint64_t getSize() const override { return target->pageZeroSize; }
uint64_t getFileSize() const override { return 0; }
void writeTo(uint8_t *buf) const override {}
};
// This is the base class for the GOT and TLVPointer sections, which are nearly
// functionally identical -- they will both be populated by dyld with addresses
// to non-lazily-loaded dylib symbols. The main difference is that the
// TLVPointerSection stores references to thread-local variables.
class NonLazyPointerSectionBase : public SyntheticSection {
public:
NonLazyPointerSectionBase(const char *segname, const char *name);
const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }
bool isNeeded() const override { return !entries.empty(); }
uint64_t getSize() const override {
return entries.size() * target->wordSize;
}
void writeTo(uint8_t *buf) const override;
void addEntry(Symbol *sym);
uint64_t getVA(uint32_t gotIndex) const {
return addr + gotIndex * target->wordSize;
}
private:
llvm::SetVector<const Symbol *> entries;
};
class GotSection final : public NonLazyPointerSectionBase {
public:
GotSection();
};
class TlvPointerSection final : public NonLazyPointerSectionBase {
public:
TlvPointerSection();
};
struct Location {
const InputSection *isec;
uint64_t offset;
Location(const InputSection *isec, uint64_t offset)
: isec(isec), offset(offset) {}
uint64_t getVA() const { return isec->getVA(offset); }
};
// Stores rebase opcodes, which tell dyld where absolute addresses have been
// encoded in the binary. If the binary is not loaded at its preferred address,
// dyld has to rebase these addresses by adding an offset to them.
class RebaseSection final : public LinkEditSection {
public:
RebaseSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override { return !locations.empty(); }
void writeTo(uint8_t *buf) const override;
void addEntry(const InputSection *isec, uint64_t offset) {
if (config->isPic)
locations.emplace_back(isec, offset);
}
private:
std::vector<Location> locations;
SmallVector<char, 128> contents;
};
struct BindingEntry {
int64_t addend;
Location target;
BindingEntry(int64_t addend, Location target)
: addend(addend), target(target) {}
};
template <class Sym>
using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>;
// Stores bind opcodes for telling dyld which symbols to load non-lazily.
class BindingSection final : public LinkEditSection {
public:
BindingSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override { return !bindingsMap.empty(); }
void writeTo(uint8_t *buf) const override;
void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset,
int64_t addend = 0) {
bindingsMap[dysym].emplace_back(addend, Location(isec, offset));
}
private:
BindingsMap<const Symbol *> bindingsMap;
SmallVector<char, 128> contents;
};
// Stores bind opcodes for telling dyld which weak symbols need coalescing.
// There are two types of entries in this section:
//
// 1) Non-weak definitions: This is a symbol definition that weak symbols in
// other dylibs should coalesce to.
//
// 2) Weak bindings: These tell dyld that a given symbol reference should
// coalesce to a non-weak definition if one is found. Note that unlike the
// entries in the BindingSection, the bindings here only refer to these
// symbols by name, but do not specify which dylib to load them from.
class WeakBindingSection final : public LinkEditSection {
public:
WeakBindingSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override {
return !bindingsMap.empty() || !definitions.empty();
}
void writeTo(uint8_t *buf) const override;
void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset,
int64_t addend = 0) {
bindingsMap[symbol].emplace_back(addend, Location(isec, offset));
}
bool hasEntry() const { return !bindingsMap.empty(); }
void addNonWeakDefinition(const Defined *defined) {
definitions.emplace_back(defined);
}
bool hasNonWeakDefinition() const { return !definitions.empty(); }
private:
BindingsMap<const Symbol *> bindingsMap;
std::vector<const Defined *> definitions;
SmallVector<char, 128> contents;
};
// The following sections implement lazy symbol binding -- very similar to the
// PLT mechanism in ELF.
//
// ELF's .plt section is broken up into two sections in Mach-O: StubsSection
// and StubHelperSection. Calls to functions in dylibs will end up calling into
// StubsSection, which contains indirect jumps to addresses stored in the
// LazyPointerSection (the counterpart to ELF's .plt.got).
//
// We will first describe how non-weak symbols are handled.
//
// At program start, the LazyPointerSection contains addresses that point into
// one of the entry points in the middle of the StubHelperSection. The code in
// StubHelperSection will push on the stack an offset into the
// LazyBindingSection. The push is followed by a jump to the beginning of the
// StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
// dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
// the GOT.
//
// The stub binder will look up the bind opcodes in the LazyBindingSection at
// the given offset. The bind opcodes will tell the binder to update the
// address in the LazyPointerSection to point to the symbol, so that subsequent
// calls don't have to redo the symbol resolution. The binder will then jump to
// the resolved symbol.
//
// With weak symbols, the situation is slightly different. Since there is no
// "weak lazy" lookup, function calls to weak symbols are always non-lazily
// bound. We emit both regular non-lazy bindings as well as weak bindings, in
// order that the weak bindings may overwrite the non-lazy bindings if an
// appropriate symbol is found at runtime. However, the bound addresses will
// still be written (non-lazily) into the LazyPointerSection.
//
// Symbols are always bound eagerly when chained fixups are used. In that case,
// StubsSection contains indirect jumps to addresses stored in the GotSection.
// The GOT directly contains the fixup entries, which will be replaced by the
// address of the target symbols on load. LazyPointerSection and
// StubHelperSection are not used.
class StubsSection final : public SyntheticSection {
public:
StubsSection();
uint64_t getSize() const override;
bool isNeeded() const override { return !entries.empty(); }
void finalize() override;
void writeTo(uint8_t *buf) const override;
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
// Creates a stub for the symbol and the corresponding entry in the
// LazyPointerSection.
void addEntry(Symbol *);
uint64_t getVA(uint32_t stubsIndex) const {
assert(isFinal || target->usesThunks());
// ConcatOutputSection::finalize() can seek the address of a
// stub before its address is assigned. Before __stubs is
// finalized, return a contrived out-of-range address.
return isFinal ? addr + stubsIndex * target->stubSize
: TargetInfo::outOfRangeVA;
}
bool isFinal = false; // is address assigned?
private:
llvm::SetVector<Symbol *> entries;
};
class StubHelperSection final : public SyntheticSection {
public:
StubHelperSection();
uint64_t getSize() const override;
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
void setUp();
DylibSymbol *stubBinder = nullptr;
Defined *dyldPrivate = nullptr;
};
class ObjCSelRefsHelper {
public:
static void initialize();
static void cleanup();
static ConcatInputSection *getSelRef(StringRef methname);
static ConcatInputSection *makeSelRef(StringRef methname);
private:
static llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *>
methnameToSelref;
};
// Objective-C stubs are hoisted objc_msgSend calls per selector called in the
// program. Apple Clang produces undefined symbols to each stub, such as
// '_objc_msgSend$foo', which are then synthesized by the linker. The stubs
// load the particular selector 'foo' from __objc_selrefs, setting it to the
// first argument of the objc_msgSend call, and then jumps to objc_msgSend. The
// actual stub contents are mirrored from ld64.
class ObjCStubsSection final : public SyntheticSection {
public:
ObjCStubsSection();
void addEntry(Symbol *sym);
uint64_t getSize() const override;
bool isNeeded() const override { return !symbols.empty(); }
void finalize() override { isec->isFinal = true; }
void writeTo(uint8_t *buf) const override;
void setUp();
static constexpr llvm::StringLiteral symbolPrefix = "_objc_msgSend$";
static bool isObjCStubSymbol(Symbol *sym);
static StringRef getMethname(Symbol *sym);
private:
std::vector<Defined *> symbols;
Symbol *objcMsgSend = nullptr;
};
// Note that this section may also be targeted by non-lazy bindings. In
// particular, this happens when branch relocations target weak symbols.
class LazyPointerSection final : public SyntheticSection {
public:
LazyPointerSection();
uint64_t getSize() const override;
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
uint64_t getVA(uint32_t index) const {
return addr + (index << target->p2WordSize);
}
};
class LazyBindingSection final : public LinkEditSection {
public:
LazyBindingSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override { return !entries.empty(); }
void writeTo(uint8_t *buf) const override;
// Note that every entry here will by referenced by a corresponding entry in
// the StubHelperSection.
void addEntry(Symbol *dysym);
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
private:
uint32_t encode(const Symbol &);
llvm::SetVector<Symbol *> entries;
SmallVector<char, 128> contents;
llvm::raw_svector_ostream os{contents};
};
// Stores a trie that describes the set of exported symbols.
class ExportSection final : public LinkEditSection {
public:
ExportSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return size; }
bool isNeeded() const override { return size; }
void writeTo(uint8_t *buf) const override;
bool hasWeakSymbol = false;
private:
TrieBuilder trieBuilder;
size_t size = 0;
};
// Stores 'data in code' entries that describe the locations of data regions
// inside code sections. This is used by llvm-objdump to distinguish jump tables
// and stop them from being disassembled as instructions.
class DataInCodeSection final : public LinkEditSection {
public:
DataInCodeSection();
void finalizeContents() override;
uint64_t getRawSize() const override {
return sizeof(llvm::MachO::data_in_code_entry) * entries.size();
}
void writeTo(uint8_t *buf) const override;
private:
std::vector<llvm::MachO::data_in_code_entry> entries;
};
// Stores ULEB128 delta encoded addresses of functions.
class FunctionStartsSection final : public LinkEditSection {
public:
FunctionStartsSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
void writeTo(uint8_t *buf) const override;
private:
SmallVector<char, 128> contents;
};
// Stores the strings referenced by the symbol table.
class StringTableSection final : public LinkEditSection {
public:
StringTableSection();
// Returns the start offset of the added string.
uint32_t addString(StringRef);
uint64_t getRawSize() const override { return size; }
void writeTo(uint8_t *buf) const override;
static constexpr size_t emptyStringIndex = 1;
private:
// ld64 emits string tables which start with a space and a zero byte. We
// match its behavior here since some tools depend on it.
// Consequently, the empty string will be at index 1, not zero.
std::vector<StringRef> strings{" "};
size_t size = 2;
};
struct SymtabEntry {
Symbol *sym;
size_t strx;
};
struct StabsEntry {
uint8_t type = 0;
uint32_t strx = StringTableSection::emptyStringIndex;
uint8_t sect = 0;
uint16_t desc = 0;
uint64_t value = 0;
StabsEntry() = default;
explicit StabsEntry(uint8_t type) : type(type) {}
};
// Symbols of the same type must be laid out contiguously: we choose to emit
// all local symbols first, then external symbols, and finally undefined
// symbols. For each symbol type, the LC_DYSYMTAB load command will record the
// range (start index and total number) of those symbols in the symbol table.
class SymtabSection : public LinkEditSection {
public:
void finalizeContents() override;
uint32_t getNumSymbols() const;
uint32_t getNumLocalSymbols() const {
return stabs.size() + localSymbols.size();
}
uint32_t getNumExternalSymbols() const { return externalSymbols.size(); }
uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); }
private:
void emitBeginSourceStab(StringRef);
void emitEndSourceStab();
void emitObjectFileStab(ObjFile *);
void emitEndFunStab(Defined *);
void emitStabs();
protected:
SymtabSection(StringTableSection &);
StringTableSection &stringTableSection;
// STABS symbols are always local symbols, but we represent them with special
// entries because they may use fields like n_sect and n_desc differently.
std::vector<StabsEntry> stabs;
std::vector<SymtabEntry> localSymbols;
std::vector<SymtabEntry> externalSymbols;
std::vector<SymtabEntry> undefinedSymbols;
};
template <class LP> SymtabSection *makeSymtabSection(StringTableSection &);
// The indirect symbol table is a list of 32-bit integers that serve as indices
// into the (actual) symbol table. The indirect symbol table is a
// concatenation of several sub-arrays of indices, each sub-array belonging to
// a separate section. The starting offset of each sub-array is stored in the
// reserved1 header field of the respective section.
//
// These sub-arrays provide symbol information for sections that store
// contiguous sequences of symbol references. These references can be pointers
// (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
// function stubs).
class IndirectSymtabSection final : public LinkEditSection {
public:
IndirectSymtabSection();
void finalizeContents() override;
uint32_t getNumSymbols() const;
uint64_t getRawSize() const override {
return getNumSymbols() * sizeof(uint32_t);
}
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
};
// The code signature comes at the very end of the linked output file.
class CodeSignatureSection final : public LinkEditSection {
public:
// NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
// and any changes here, should be repeated there.
static constexpr uint8_t blockSizeShift = 12;
static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB
static constexpr size_t hashSize = 256 / 8;
static constexpr size_t blobHeadersSize = llvm::alignTo<8>(
sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex));
static constexpr uint32_t fixedHeadersSize =
blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory);
uint32_t fileNamePad = 0;
uint32_t allHeadersSize = 0;
StringRef fileName;
CodeSignatureSection();
uint64_t getRawSize() const override;
bool isNeeded() const override { return true; }
void writeTo(uint8_t *buf) const override;
uint32_t getBlockCount() const;
void writeHashes(uint8_t *buf) const;
};
class CStringSection : public SyntheticSection {
public:
CStringSection(const char *name);
void addInput(CStringInputSection *);
uint64_t getSize() const override { return size; }
virtual void finalizeContents();
bool isNeeded() const override { return !inputs.empty(); }
void writeTo(uint8_t *buf) const override;
std::vector<CStringInputSection *> inputs;
private:
uint64_t size;
};
class DeduplicatedCStringSection final : public CStringSection {
public:
DeduplicatedCStringSection(const char *name) : CStringSection(name){};
uint64_t getSize() const override { return size; }
void finalizeContents() override;
void writeTo(uint8_t *buf) const override;
struct StringOffset {
uint8_t trailingZeros;
uint64_t outSecOff = UINT64_MAX;
explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {}
};
StringOffset getStringOffset(StringRef str) const;
private:
llvm::DenseMap<llvm::CachedHashStringRef, StringOffset> stringOffsetMap;
size_t size = 0;
};
/*
* This section contains deduplicated literal values. The 16-byte values are
* laid out first, followed by the 8- and then the 4-byte ones.
*/
class WordLiteralSection final : public SyntheticSection {
public:
using UInt128 = std::pair<uint64_t, uint64_t>;
// I don't think the standard guarantees the size of a pair, so let's make
// sure it's exact -- that way we can construct it via `mmap`.
static_assert(sizeof(UInt128) == 16);
WordLiteralSection();
void addInput(WordLiteralInputSection *);
void finalizeContents();
void writeTo(uint8_t *buf) const override;
uint64_t getSize() const override {
return literal16Map.size() * 16 + literal8Map.size() * 8 +
literal4Map.size() * 4;
}
bool isNeeded() const override {
return !literal16Map.empty() || !literal4Map.empty() ||
!literal8Map.empty();
}
uint64_t getLiteral16Offset(uintptr_t buf) const {
return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16;
}
uint64_t getLiteral8Offset(uintptr_t buf) const {
return literal16Map.size() * 16 +
literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8;
}
uint64_t getLiteral4Offset(uintptr_t buf) const {
return literal16Map.size() * 16 + literal8Map.size() * 8 +
literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4;
}
private:
std::vector<WordLiteralInputSection *> inputs;
template <class T> struct Hasher {
llvm::hash_code operator()(T v) const { return llvm::hash_value(v); }
};
// We're using unordered_map instead of DenseMap here because we need to
// support all possible integer values -- there are no suitable tombstone
// values for DenseMap.
std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map;
std::unordered_map<uint64_t, uint64_t> literal8Map;
std::unordered_map<uint32_t, uint64_t> literal4Map;
};
class ObjCImageInfoSection final : public SyntheticSection {
public:
ObjCImageInfoSection();
bool isNeeded() const override { return !files.empty(); }
uint64_t getSize() const override { return 8; }
void addFile(const InputFile *file) {
assert(!file->objCImageInfo.empty());
files.push_back(file);
}
void finalizeContents();
void writeTo(uint8_t *buf) const override;
private:
struct ImageInfo {
uint8_t swiftVersion = 0;
bool hasCategoryClassProperties = false;
} info;
static ImageInfo parseImageInfo(const InputFile *);
std::vector<const InputFile *> files; // files with image info
};
// This section stores 32-bit __TEXT segment offsets of initializer functions.
//
// The compiler stores pointers to initializers in __mod_init_func. These need
// to be fixed up at load time, which takes time and dirties memory. By
// synthesizing InitOffsetsSection from them, this data can live in the
// read-only __TEXT segment instead. This section is used by default when
// chained fixups are enabled.
//
// There is no similar counterpart to __mod_term_func, as that section is
// deprecated, and static destructors are instead handled by registering them
// via __cxa_atexit from an autogenerated initializer function (see D121736).
class InitOffsetsSection final : public SyntheticSection {
public:
InitOffsetsSection();
bool isNeeded() const override { return !sections.empty(); }
uint64_t getSize() const override;
void writeTo(uint8_t *buf) const override;
void setUp();
void addInput(ConcatInputSection *isec) { sections.push_back(isec); }
const std::vector<ConcatInputSection *> &inputs() const { return sections; }
private:
std::vector<ConcatInputSection *> sections;
};
// This SyntheticSection is for the __objc_methlist section, which contains
// relative method lists if the -objc_relative_method_lists option is enabled.
class ObjCMethListSection final : public SyntheticSection {
public:
ObjCMethListSection();
static bool isMethodList(const ConcatInputSection *isec);
void addInput(ConcatInputSection *isec) { inputs.push_back(isec); }
std::vector<ConcatInputSection *> getInputs() { return inputs; }
void setUp();
void finalize() override;
bool isNeeded() const override { return !inputs.empty(); }
uint64_t getSize() const override { return sectionSize; }
void writeTo(uint8_t *bufStart) const override;
private:
void readMethodListHeader(const uint8_t *buf, uint32_t &structSizeAndFlags,
uint32_t &structCount) const;
void writeMethodListHeader(uint8_t *buf, uint32_t structSizeAndFlags,
uint32_t structCount) const;
uint32_t computeRelativeMethodListSize(uint32_t absoluteMethodListSize) const;
void writeRelativeOffsetForIsec(const ConcatInputSection *isec, uint8_t *buf,
uint32_t &inSecOff, uint32_t &outSecOff,
bool useSelRef) const;
uint32_t writeRelativeMethodList(const ConcatInputSection *isec,
uint8_t *buf) const;
static constexpr uint32_t methodListHeaderSize =
/*structSizeAndFlags*/ sizeof(uint32_t) +
/*structCount*/ sizeof(uint32_t);
// Relative method lists are supported only for 3-pointer method lists
static constexpr uint32_t pointersPerStruct = 3;
// The runtime identifies relative method lists via this magic value
static constexpr uint32_t relMethodHeaderFlag = 0x80000000;
// In the method list header, the first 2 bytes are the size of struct
static constexpr uint32_t structSizeMask = 0x0000FFFF;
// In the method list header, the last 2 bytes are the flags for the struct
static constexpr uint32_t structFlagsMask = 0xFFFF0000;
// Relative method lists have 4 byte alignment as all data in the InputSection
// is 4 byte
static constexpr uint32_t relativeOffsetSize = sizeof(uint32_t);
// The output size of the __objc_methlist section, computed during finalize()
uint32_t sectionSize = 0;
std::vector<ConcatInputSection *> inputs;
};
// Chained fixups are a replacement for classic dyld opcodes. In this format,
// most of the metadata necessary for binding symbols and rebasing addresses is
// stored directly in the memory location that will have the fixup applied.
//
// The fixups form singly linked lists; each one covering a single page in
// memory. The __LINKEDIT,__chainfixups section stores the page offset of the
// first fixup of each page; the rest can be found by walking the chain using
// the offset that is embedded in each entry.
//
// This setup allows pages to be relocated lazily at page-in time and without
// being dirtied. The kernel can discard and load them again as needed. This
// technique, called page-in linking, was introduced in macOS 13.
//
// The benefits of this format are:
// - smaller __LINKEDIT segment, as most of the fixup information is stored in
// the data segment
// - faster startup, since not all relocations need to be done upfront
// - slightly lower memory usage, as fewer pages are dirtied
//
// Userspace x86_64 and arm64 binaries have two types of fixup entries:
// - Rebase entries contain an absolute address, to which the object's load
// address will be added to get the final value. This is used for loading
// the address of a symbol defined in the same binary.
// - Binding entries are mostly used for symbols imported from other dylibs,
// but for weakly bound and interposable symbols as well. They are looked up
// by a (symbol name, library) pair stored in __chainfixups. This import
// entry also encodes whether the import is weak (i.e. if the symbol is
// missing, it should be set to null instead of producing a load error).
// The fixup encodes an ordinal associated with the import, and an optional
// addend.
//
// The entries are tightly packed 64-bit bitfields. One of the bits specifies
// which kind of fixup to interpret them as.
//
// LLD generates the fixup data in 5 stages:
// 1. While scanning relocations, we make a note of each location that needs
// a fixup by calling addRebase() or addBinding(). During this, we assign
// a unique ordinal for each (symbol name, library, addend) import tuple.
// 2. After addresses have been assigned to all sections, and thus the memory
// layout of the linked image is final; finalizeContents() is called. Here,
// the page offsets of the chain start entries are calculated.
// 3. ChainedFixupsSection::writeTo() writes the page start offsets and the
// imports table to the output file.
// 4. Each section's fixup entries are encoded and written to disk in
// ConcatInputSection::writeTo(), but without writing the offsets that form
// the chain.
// 5. Finally, each page's (which might correspond to multiple sections)
// fixups are linked together in Writer::buildFixupChains().
class ChainedFixupsSection final : public LinkEditSection {
public:
ChainedFixupsSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return size; }
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
void addRebase(const InputSection *isec, uint64_t offset) {
locations.emplace_back(isec, offset);
}
void addBinding(const Symbol *dysym, const InputSection *isec,
uint64_t offset, int64_t addend = 0);
void setHasNonWeakDefinition() { hasNonWeakDef = true; }
// Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind.
std::pair<uint32_t, uint8_t> getBinding(const Symbol *sym,
int64_t addend) const;
const std::vector<Location> &getLocations() const { return locations; }
bool hasWeakBinding() const { return hasWeakBind; }
bool hasNonWeakDefinition() const { return hasNonWeakDef; }
private:
// Location::offset initially stores the offset within an InputSection, but
// contains output segment offsets after finalizeContents().
std::vector<Location> locations;
// (target symbol, addend) => import ordinal
llvm::MapVector<std::pair<const Symbol *, int64_t>, uint32_t> bindings;
struct SegmentInfo {
SegmentInfo(const OutputSegment *oseg) : oseg(oseg) {}
const OutputSegment *oseg;
// (page index, fixup starts offset)
llvm::SmallVector<std::pair<uint16_t, uint16_t>> pageStarts;
size_t getSize() const;
size_t writeTo(uint8_t *buf) const;
};
llvm::SmallVector<SegmentInfo, 4> fixupSegments;
size_t symtabSize = 0;
size_t size = 0;
bool needsAddend = false;
bool needsLargeAddend = false;
bool hasWeakBind = false;
bool hasNonWeakDef = false;
llvm::MachO::ChainedImportFormat importFormat;
};
void writeChainedRebase(uint8_t *buf, uint64_t targetVA);
void writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend);
struct InStruct {
const uint8_t *bufferStart = nullptr;
MachHeaderSection *header = nullptr;
CStringSection *cStringSection = nullptr;
DeduplicatedCStringSection *objcMethnameSection = nullptr;
WordLiteralSection *wordLiteralSection = nullptr;
RebaseSection *rebase = nullptr;
BindingSection *binding = nullptr;
WeakBindingSection *weakBinding = nullptr;
LazyBindingSection *lazyBinding = nullptr;
ExportSection *exports = nullptr;
GotSection *got = nullptr;
TlvPointerSection *tlvPointers = nullptr;
LazyPointerSection *lazyPointers = nullptr;
StubsSection *stubs = nullptr;
StubHelperSection *stubHelper = nullptr;
ObjCStubsSection *objcStubs = nullptr;
UnwindInfoSection *unwindInfo = nullptr;
ObjCImageInfoSection *objCImageInfo = nullptr;
ConcatInputSection *imageLoaderCache = nullptr;
InitOffsetsSection *initOffsets = nullptr;
ObjCMethListSection *objcMethList = nullptr;
ChainedFixupsSection *chainedFixups = nullptr;
};
extern InStruct in;
extern std::vector<SyntheticSection *> syntheticSections;
void createSyntheticSymbols();
} // namespace lld::macho
#endif