blob: 29070810bb049e9574881cf334872f30ca820f60 [file] [log] [blame]
//===- SyntheticSections.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SyntheticSections.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "ExportTrie.h"
#include "InputFiles.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/xxhash.h"
#if defined(__APPLE__)
#include <sys/mman.h>
#define COMMON_DIGEST_FOR_OPENSSL
#include <CommonCrypto/CommonDigest.h>
#else
#include "llvm/Support/SHA256.h"
#endif
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
// Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
#if defined(__APPLE__)
// FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
// for some notes on this.
CC_SHA256(data, len, output);
#else
ArrayRef<uint8_t> block(data, len);
std::array<uint8_t, 32> hash = SHA256::hash(block);
static_assert(hash.size() == CodeSignatureSection::hashSize);
memcpy(output, hash.data(), hash.size());
#endif
}
InStruct macho::in;
std::vector<SyntheticSection *> macho::syntheticSections;
SyntheticSection::SyntheticSection(const char *segname, const char *name)
: OutputSection(SyntheticKind, name) {
std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
isec = makeSyntheticInputSection(segname, name);
isec->parent = this;
syntheticSections.push_back(this);
}
// dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
// from the beginning of the file (i.e. the header).
MachHeaderSection::MachHeaderSection()
: SyntheticSection(segment_names::text, section_names::header) {
// XXX: This is a hack. (See D97007)
// Setting the index to 1 to pretend that this section is the text
// section.
index = 1;
isec->isFinal = true;
}
void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
loadCommands.push_back(lc);
sizeOfCmds += lc->getSize();
}
uint64_t MachHeaderSection::getSize() const {
uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
// If we are emitting an encryptable binary, our load commands must have a
// separate (non-encrypted) page to themselves.
if (config->emitEncryptionInfo)
size = alignToPowerOf2(size, target->getPageSize());
return size;
}
static uint32_t cpuSubtype() {
uint32_t subtype = target->cpuSubtype;
if (config->outputType == MH_EXECUTE && !config->staticLink &&
target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
config->platform() == PLATFORM_MACOS &&
config->platformInfo.target.MinDeployment >= VersionTuple(10, 5))
subtype |= CPU_SUBTYPE_LIB64;
return subtype;
}
static bool hasWeakBinding() {
return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
: in.weakBinding->hasEntry();
}
static bool hasNonWeakDefinition() {
return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
: in.weakBinding->hasNonWeakDefinition();
}
void MachHeaderSection::writeTo(uint8_t *buf) const {
auto *hdr = reinterpret_cast<mach_header *>(buf);
hdr->magic = target->magic;
hdr->cputype = target->cpuType;
hdr->cpusubtype = cpuSubtype();
hdr->filetype = config->outputType;
hdr->ncmds = loadCommands.size();
hdr->sizeofcmds = sizeOfCmds;
hdr->flags = MH_DYLDLINK;
if (config->namespaceKind == NamespaceKind::twolevel)
hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
if (config->outputType == MH_DYLIB && !config->hasReexports)
hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
if (config->markDeadStrippableDylib)
hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
if (config->outputType == MH_EXECUTE && config->isPic)
hdr->flags |= MH_PIE;
if (config->outputType == MH_DYLIB && config->applicationExtension)
hdr->flags |= MH_APP_EXTENSION_SAFE;
if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
hdr->flags |= MH_WEAK_DEFINES;
if (in.exports->hasWeakSymbol || hasWeakBinding())
hdr->flags |= MH_BINDS_TO_WEAK;
for (const OutputSegment *seg : outputSegments) {
for (const OutputSection *osec : seg->getSections()) {
if (isThreadLocalVariables(osec->flags)) {
hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
break;
}
}
}
uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
for (const LoadCommand *lc : loadCommands) {
lc->writeTo(p);
p += lc->getSize();
}
}
PageZeroSection::PageZeroSection()
: SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
RebaseSection::RebaseSection()
: LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
namespace {
struct RebaseState {
uint64_t sequenceLength;
uint64_t skipLength;
};
} // namespace
static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
assert(incr != 0);
if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
(incr % target->wordSize) == 0) {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
(incr >> target->p2WordSize));
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
encodeULEB128(incr, os);
}
}
static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
assert(state.sequenceLength > 0);
if (state.skipLength == target->wordSize) {
if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
state.sequenceLength);
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
encodeULEB128(state.sequenceLength, os);
}
} else if (state.sequenceLength == 1) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
encodeULEB128(state.skipLength - target->wordSize, os);
} else {
os << static_cast<uint8_t>(
REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
encodeULEB128(state.sequenceLength, os);
encodeULEB128(state.skipLength - target->wordSize, os);
}
}
// Rebases are communicated to dyld using a bytecode, whose opcodes cause the
// memory location at a specific address to be rebased and/or the address to be
// incremented.
//
// Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
// one, encoding a series of evenly spaced addresses. This algorithm works by
// splitting up the sorted list of addresses into such chunks. If the locations
// are consecutive or the sequence consists of a single location, flushRebase
// will use a smaller, more specialized encoding.
static void encodeRebases(const OutputSegment *seg,
MutableArrayRef<Location> locations,
raw_svector_ostream &os) {
// dyld operates on segments. Translate section offsets into segment offsets.
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
// The algorithm assumes that locations are unique.
Location *end =
llvm::unique(locations, [](const Location &a, const Location &b) {
return a.offset == b.offset;
});
size_t count = end - locations.begin();
os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index);
assert(!locations.empty());
uint64_t offset = locations[0].offset;
encodeULEB128(offset, os);
RebaseState state{1, target->wordSize};
for (size_t i = 1; i < count; ++i) {
offset = locations[i].offset;
uint64_t skip = offset - locations[i - 1].offset;
assert(skip != 0 && "duplicate locations should have been weeded out");
if (skip == state.skipLength) {
++state.sequenceLength;
} else if (state.sequenceLength == 1) {
++state.sequenceLength;
state.skipLength = skip;
} else if (skip < state.skipLength) {
// The address is lower than what the rebase pointer would be if the last
// location would be part of a sequence. We start a new sequence from the
// previous location.
--state.sequenceLength;
flushRebase(state, os);
state.sequenceLength = 2;
state.skipLength = skip;
} else {
// The address is at some positive offset from the rebase pointer. We
// start a new sequence which begins with the current location.
flushRebase(state, os);
emitIncrement(skip - state.skipLength, os);
state.sequenceLength = 1;
state.skipLength = target->wordSize;
}
}
flushRebase(state, os);
}
void RebaseSection::finalizeContents() {
if (locations.empty())
return;
raw_svector_ostream os{contents};
os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
llvm::sort(locations, [](const Location &a, const Location &b) {
return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
});
for (size_t i = 0, count = locations.size(); i < count;) {
const OutputSegment *seg = locations[i].isec->parent->parent;
size_t j = i + 1;
while (j < count && locations[j].isec->parent->parent == seg)
++j;
encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
i = j;
}
os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
}
void RebaseSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
const char *name)
: SyntheticSection(segname, name) {
align = target->wordSize;
}
void macho::addNonLazyBindingEntries(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
if (config->emitChainedFixups) {
if (needsBinding(sym))
in.chainedFixups->addBinding(sym, isec, offset, addend);
else if (isa<Defined>(sym))
in.chainedFixups->addRebase(isec, offset);
else
llvm_unreachable("cannot bind to an undefined symbol");
return;
}
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
in.binding->addEntry(dysym, isec, offset, addend);
if (dysym->isWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
} else if (const auto *defined = dyn_cast<Defined>(sym)) {
in.rebase->addEntry(isec, offset);
if (defined->isExternalWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
else if (defined->interposable)
in.binding->addEntry(sym, isec, offset, addend);
} else {
// Undefined symbols are filtered out in scanRelocations(); we should never
// get here
llvm_unreachable("cannot bind to an undefined symbol");
}
}
void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
if (entries.insert(sym)) {
assert(!sym->isInGot());
sym->gotIndex = entries.size() - 1;
addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
}
}
void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
assert(config->emitChainedFixups);
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
rebase->target = targetVA & 0xf'ffff'ffff;
rebase->high8 = (targetVA >> 56);
rebase->reserved = 0;
rebase->next = 0;
rebase->bind = 0;
// The fixup format places a 64 GiB limit on the output's size.
// Should we handle this gracefully?
uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
if (encodedVA != targetVA)
error("rebase target address 0x" + Twine::utohexstr(targetVA) +
" does not fit into chained fixup. Re-link with -no_fixup_chains");
}
static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
assert(config->emitChainedFixups);
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
bind->ordinal = ordinal;
bind->addend = inlineAddend;
bind->reserved = 0;
bind->next = 0;
bind->bind = 1;
}
void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
if (needsBinding(sym))
writeChainedBind(buf, sym, addend);
else
writeChainedRebase(buf, sym->getVA() + addend);
}
void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
if (config->emitChainedFixups) {
for (const auto &[i, entry] : llvm::enumerate(entries))
writeChainedFixup(&buf[i * target->wordSize], entry, 0);
} else {
for (const auto &[i, entry] : llvm::enumerate(entries))
if (auto *defined = dyn_cast<Defined>(entry))
write64le(&buf[i * target->wordSize], defined->getVA());
}
}
GotSection::GotSection()
: NonLazyPointerSectionBase(segment_names::data, section_names::got) {
flags = S_NON_LAZY_SYMBOL_POINTERS;
}
TlvPointerSection::TlvPointerSection()
: NonLazyPointerSectionBase(segment_names::data,
section_names::threadPtrs) {
flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
}
BindingSection::BindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::binding) {}
namespace {
struct Binding {
OutputSegment *segment = nullptr;
uint64_t offset = 0;
int64_t addend = 0;
};
struct BindIR {
// Default value of 0xF0 is not valid opcode and should make the program
// scream instead of accidentally writing "valid" values.
uint8_t opcode = 0xF0;
uint64_t data = 0;
uint64_t consecutiveCount = 0;
};
} // namespace
// Encode a sequence of opcodes that tell dyld to write the address of symbol +
// addend at osec->addr + outSecOff.
//
// The bind opcode "interpreter" remembers the values of each binding field, so
// we only need to encode the differences between bindings. Hence the use of
// lastBinding.
static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
int64_t addend, Binding &lastBinding,
std::vector<BindIR> &opcodes) {
OutputSegment *seg = osec->parent;
uint64_t offset = osec->getSegmentOffset() + outSecOff;
if (lastBinding.segment != seg) {
opcodes.push_back(
{static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index),
offset});
lastBinding.segment = seg;
lastBinding.offset = offset;
} else if (lastBinding.offset != offset) {
opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
lastBinding.offset = offset;
}
if (lastBinding.addend != addend) {
opcodes.push_back(
{BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
lastBinding.addend = addend;
}
opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
// DO_BIND causes dyld to both perform the binding and increment the offset
lastBinding.offset += target->wordSize;
}
static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
// Pass 1: Combine bind/add pairs
size_t i;
int pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
opcodes[pWrite].data = opcodes[i].data;
++i;
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 2: Compress two or more bind_add opcodes
pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
opcodes[pWrite].consecutiveCount = 2;
opcodes[pWrite].data = opcodes[i].data;
++i;
while (i < opcodes.size() &&
(opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].consecutiveCount++;
++i;
}
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 3: Use immediate encodings
// Every binding is the size of one pointer. If the next binding is a
// multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
// opcode can be scaled by wordSize into a single byte and dyld will
// expand it to the correct address.
for (auto &p : opcodes) {
// It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
// but ld64 currently does this. This could be a potential bug, but
// for now, perform the same behavior to prevent mysterious bugs.
if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
((p.data % target->wordSize) == 0)) {
p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
p.data /= target->wordSize;
}
}
}
static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
switch (opcode) {
case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
case BIND_OPCODE_ADD_ADDR_ULEB:
case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
os << op.opcode;
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_SET_ADDEND_SLEB:
os << op.opcode;
encodeSLEB128(static_cast<int64_t>(op.data), os);
break;
case BIND_OPCODE_DO_BIND:
os << op.opcode;
break;
case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
os << op.opcode;
encodeULEB128(op.consecutiveCount, os);
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
os << static_cast<uint8_t>(op.opcode | op.data);
break;
default:
llvm_unreachable("cannot bind to an unrecognized symbol");
}
}
// Non-weak bindings need to have their dylib ordinal encoded as well.
static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
assert(dysym.getFile()->isReferenced());
return dysym.getFile()->ordinal;
}
static int16_t ordinalForSymbol(const Symbol &sym) {
if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
return ordinalForDylibSymbol(*dysym);
assert(cast<Defined>(&sym)->interposable);
return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
}
static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
if (ordinal <= 0) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
(ordinal & BIND_IMMEDIATE_MASK));
} else if (ordinal <= BIND_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
} else {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
encodeULEB128(ordinal, os);
}
}
static void encodeWeakOverride(const Defined *defined,
raw_svector_ostream &os) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
<< defined->getName() << '\0';
}
// Organize the bindings so we can encoded them with fewer opcodes.
//
// First, all bindings for a given symbol should be grouped together.
// BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
// has an associated symbol string), so we only want to emit it once per symbol.
//
// Within each group, we sort the bindings by address. Since bindings are
// delta-encoded, sorting them allows for a more compact result. Note that
// sorting by address alone ensures that bindings for the same segment / section
// are located together, minimizing the number of times we have to emit
// BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
//
// Finally, we sort the symbols by the address of their first binding, again
// to facilitate the delta-encoding process.
template <class Sym>
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
bindingsMap.begin(), bindingsMap.end());
for (auto &p : bindingsVec) {
std::vector<BindingEntry> &bindings = p.second;
llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
return a.target.getVA() < b.target.getVA();
});
}
llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
return a.second[0].target.getVA() < b.second[0].target.getVA();
});
return bindingsVec;
}
// Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
// interprets to update a record with the following fields:
// * segment index (of the segment to write the symbol addresses to, typically
// the __DATA_CONST segment which contains the GOT)
// * offset within the segment, indicating the next location to write a binding
// * symbol type
// * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
// * symbol name
// * addend
// When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
// a symbol in the GOT, and increments the segment offset to point to the next
// entry. It does *not* clear the record state after doing the bind, so
// subsequent opcodes only need to encode the differences between bindings.
void BindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
int16_t lastOrdinal = 0;
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym->isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
int16_t ordinal = ordinalForSymbol(*sym);
if (ordinal != lastOrdinal) {
encodeDylibOrdinal(ordinal, os);
lastOrdinal = ordinal;
}
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void BindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
WeakBindingSection::WeakBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
void WeakBindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
for (const Defined *defined : definitions)
encodeWeakOverride(defined, os);
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
<< sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty() || !definitions.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void WeakBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
StubsSection::StubsSection()
: SyntheticSection(segment_names::text, section_names::stubs) {
flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
// The stubs section comprises machine instructions, which are aligned to
// 4 bytes on the archs we care about.
align = 4;
reserved2 = target->stubSize;
}
uint64_t StubsSection::getSize() const {
return entries.size() * target->stubSize;
}
void StubsSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : entries) {
uint64_t pointerVA =
config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
target->writeStub(buf + off, *sym, pointerVA);
off += target->stubSize;
}
}
void StubsSection::finalize() { isFinal = true; }
static void addBindingsForStub(Symbol *sym) {
assert(!config->emitChainedFixups);
if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (sym->isWeakDef()) {
in.binding->addEntry(dysym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
in.weakBinding->addEntry(sym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
} else {
in.lazyBinding->addEntry(dysym);
}
} else if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isExternalWeakDef()) {
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
in.weakBinding->addEntry(sym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
} else if (defined->interposable) {
in.lazyBinding->addEntry(sym);
} else {
llvm_unreachable("invalid stub target");
}
} else {
llvm_unreachable("invalid stub target symbol type");
}
}
void StubsSection::addEntry(Symbol *sym) {
bool inserted = entries.insert(sym);
if (inserted) {
sym->stubsIndex = entries.size() - 1;
if (config->emitChainedFixups)
in.got->addEntry(sym);
else
addBindingsForStub(sym);
}
}
StubHelperSection::StubHelperSection()
: SyntheticSection(segment_names::text, section_names::stubHelper) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = 4; // This section comprises machine instructions
}
uint64_t StubHelperSection::getSize() const {
return target->stubHelperHeaderSize +
in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
}
bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
void StubHelperSection::writeTo(uint8_t *buf) const {
target->writeStubHelperHeader(buf);
size_t off = target->stubHelperHeaderSize;
for (const Symbol *sym : in.lazyBinding->getEntries()) {
target->writeStubHelperEntry(buf + off, *sym, addr + off);
off += target->stubHelperEntrySize;
}
}
void StubHelperSection::setUp() {
Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
/*isWeakRef=*/false);
if (auto *undefined = dyn_cast<Undefined>(binder))
treatUndefinedSymbol(*undefined,
"lazy binding (normally in libSystem.dylib)");
// treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
if (stubBinder == nullptr)
return;
in.got->addEntry(stubBinder);
in.imageLoaderCache->parent =
ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
addInputSection(in.imageLoaderCache);
// Since this isn't in the symbol table or in any input file, the noDeadStrip
// argument doesn't matter.
dyldPrivate =
make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
dyldPrivate->used = true;
}
llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *>
ObjCSelRefsHelper::methnameToSelref;
void ObjCSelRefsHelper::initialize() {
// Do not fold selrefs without ICF.
if (config->icfLevel == ICFLevel::none)
return;
// Search methnames already referenced in __objc_selrefs
// Map the name to the corresponding selref entry
// which we will reuse when creating objc stubs.
for (ConcatInputSection *isec : inputSections) {
if (isec->shouldOmitFromOutput())
continue;
if (isec->getName() != section_names::objcSelrefs)
continue;
// We expect a single relocation per selref entry to __objc_methname that
// might be aggregated.
assert(isec->relocs.size() == 1);
auto Reloc = isec->relocs[0];
if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) {
if (const auto *d = dyn_cast<Defined>(sym)) {
auto *cisec = cast<CStringInputSection>(d->isec());
auto methname = cisec->getStringRefAtOffset(d->value);
methnameToSelref[CachedHashStringRef(methname)] = isec;
}
}
}
}
void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); }
ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) {
auto methnameOffset =
in.objcMethnameSection->getStringOffset(methname).outSecOff;
size_t wordSize = target->wordSize;
uint8_t *selrefData = bAlloc().Allocate<uint8_t>(wordSize);
write64le(selrefData, methnameOffset);
ConcatInputSection *objcSelref =
makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
ArrayRef<uint8_t>{selrefData, wordSize},
/*align=*/wordSize);
assert(objcSelref->live);
objcSelref->relocs.push_back({/*type=*/target->unsignedRelocType,
/*pcrel=*/false, /*length=*/3,
/*offset=*/0,
/*addend=*/static_cast<int64_t>(methnameOffset),
/*referent=*/in.objcMethnameSection->isec});
objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref);
addInputSection(objcSelref);
objcSelref->isFinal = true;
methnameToSelref[CachedHashStringRef(methname)] = objcSelref;
return objcSelref;
}
ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) {
auto it = methnameToSelref.find(CachedHashStringRef(methname));
if (it == methnameToSelref.end())
return nullptr;
return it->second;
}
ObjCStubsSection::ObjCStubsSection()
: SyntheticSection(segment_names::text, section_names::objcStubs) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = config->objcStubsMode == ObjCStubsMode::fast
? target->objcStubsFastAlignment
: target->objcStubsSmallAlignment;
}
bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) {
return sym->getName().starts_with(symbolPrefix);
}
StringRef ObjCStubsSection::getMethname(Symbol *sym) {
assert(isObjCStubSymbol(sym) && "not an objc stub");
auto name = sym->getName();
StringRef methname = name.drop_front(symbolPrefix.size());
return methname;
}
void ObjCStubsSection::addEntry(Symbol *sym) {
StringRef methname = getMethname(sym);
// We create a selref entry for each unique methname.
if (!ObjCSelRefsHelper::getSelRef(methname))
ObjCSelRefsHelper::makeSelRef(methname);
auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
? target->objcStubsFastSize
: target->objcStubsSmallSize;
Defined *newSym = replaceSymbol<Defined>(
sym, sym->getName(), nullptr, isec,
/*value=*/symbols.size() * stubSize,
/*size=*/stubSize,
/*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
/*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
symbols.push_back(newSym);
}
void ObjCStubsSection::setUp() {
objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
/*isWeakRef=*/false);
if (auto *undefined = dyn_cast<Undefined>(objcMsgSend))
treatUndefinedSymbol(*undefined,
"lazy binding (normally in libobjc.dylib)");
objcMsgSend->used = true;
if (config->objcStubsMode == ObjCStubsMode::fast) {
in.got->addEntry(objcMsgSend);
assert(objcMsgSend->isInGot());
} else {
assert(config->objcStubsMode == ObjCStubsMode::small);
// In line with ld64's behavior, when objc_msgSend is a direct symbol,
// we directly reference it.
// In other cases, typically when binding in libobjc.dylib,
// we generate a stub to invoke objc_msgSend.
if (!isa<Defined>(objcMsgSend))
in.stubs->addEntry(objcMsgSend);
}
}
uint64_t ObjCStubsSection::getSize() const {
auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
? target->objcStubsFastSize
: target->objcStubsSmallSize;
return stubSize * symbols.size();
}
void ObjCStubsSection::writeTo(uint8_t *buf) const {
uint64_t stubOffset = 0;
for (size_t i = 0, n = symbols.size(); i < n; ++i) {
Defined *sym = symbols[i];
auto methname = getMethname(sym);
InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
assert(selRef != nullptr && "no selref for methname");
auto selrefAddr = selRef->getVA(0);
target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
stubOffset, selrefAddr, objcMsgSend);
}
}
LazyPointerSection::LazyPointerSection()
: SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
align = target->wordSize;
flags = S_LAZY_SYMBOL_POINTERS;
}
uint64_t LazyPointerSection::getSize() const {
return in.stubs->getEntries().size() * target->wordSize;
}
bool LazyPointerSection::isNeeded() const {
return !in.stubs->getEntries().empty();
}
void LazyPointerSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : in.stubs->getEntries()) {
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->hasStubsHelper()) {
uint64_t stubHelperOffset =
target->stubHelperHeaderSize +
dysym->stubsHelperIndex * target->stubHelperEntrySize;
write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
}
} else {
write64le(buf + off, sym->getVA());
}
off += target->wordSize;
}
}
LazyBindingSection::LazyBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
void LazyBindingSection::finalizeContents() {
// TODO: Just precompute output size here instead of writing to a temporary
// buffer
for (Symbol *sym : entries)
sym->lazyBindOffset = encode(*sym);
}
void LazyBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
void LazyBindingSection::addEntry(Symbol *sym) {
assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
if (entries.insert(sym)) {
sym->stubsHelperIndex = entries.size() - 1;
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
}
}
// Unlike the non-lazy binding section, the bind opcodes in this section aren't
// interpreted all at once. Rather, dyld will start interpreting opcodes at a
// given offset, typically only binding a single symbol before it finds a
// BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
// we cannot encode just the differences between symbols; we have to emit the
// complete bind information for each symbol.
uint32_t LazyBindingSection::encode(const Symbol &sym) {
uint32_t opstreamOffset = contents.size();
OutputSegment *dataSeg = in.lazyPointers->parent;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
dataSeg->index);
uint64_t offset =
in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
encodeULEB128(offset, os);
encodeDylibOrdinal(ordinalForSymbol(sym), os);
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym.isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym.getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
<< static_cast<uint8_t>(BIND_OPCODE_DONE);
return opstreamOffset;
}
ExportSection::ExportSection()
: LinkEditSection(segment_names::linkEdit, section_names::export_) {}
void ExportSection::finalizeContents() {
trieBuilder.setImageBase(in.header->addr);
for (const Symbol *sym : symtab->getSymbols()) {
if (const auto *defined = dyn_cast<Defined>(sym)) {
if (defined->privateExtern || !defined->isLive())
continue;
trieBuilder.addSymbol(*defined);
hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->shouldReexport)
trieBuilder.addSymbol(*dysym);
}
}
size = trieBuilder.build();
}
void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
DataInCodeSection::DataInCodeSection()
: LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
template <class LP>
static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
std::vector<MachO::data_in_code_entry> dataInCodeEntries;
for (const InputFile *inputFile : inputFiles) {
if (!isa<ObjFile>(inputFile))
continue;
const ObjFile *objFile = cast<ObjFile>(inputFile);
ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
if (entries.empty())
continue;
std::vector<MachO::data_in_code_entry> sortedEntries;
sortedEntries.assign(entries.begin(), entries.end());
llvm::sort(sortedEntries, [](const data_in_code_entry &lhs,
const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
});
// For each code subsection find 'data in code' entries residing in it.
// Compute the new offset values as
// <offset within subsection> + <subsection address> - <__TEXT address>.
for (const Section *section : objFile->sections) {
for (const Subsection &subsec : section->subsections) {
const InputSection *isec = subsec.isec;
if (!isCodeSection(isec))
continue;
if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
continue;
const uint64_t beginAddr = section->addr + subsec.offset;
auto it = llvm::lower_bound(
sortedEntries, beginAddr,
[](const MachO::data_in_code_entry &entry, uint64_t addr) {
return entry.offset < addr;
});
const uint64_t endAddr = beginAddr + isec->getSize();
for (const auto end = sortedEntries.end();
it != end && it->offset + it->length <= endAddr; ++it)
dataInCodeEntries.push_back(
{static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
in.header->addr),
it->length, it->kind});
}
}
}
// ld64 emits the table in sorted order too.
llvm::sort(dataInCodeEntries,
[](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
});
return dataInCodeEntries;
}
void DataInCodeSection::finalizeContents() {
entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
: collectDataInCodeEntries<ILP32>();
}
void DataInCodeSection::writeTo(uint8_t *buf) const {
if (!entries.empty())
memcpy(buf, entries.data(), getRawSize());
}
FunctionStartsSection::FunctionStartsSection()
: LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
void FunctionStartsSection::finalizeContents() {
raw_svector_ostream os{contents};
std::vector<uint64_t> addrs;
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (const Symbol *sym : objFile->symbols) {
if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (!defined->isec() || !isCodeSection(defined->isec()) ||
!defined->isLive())
continue;
addrs.push_back(defined->getVA());
}
}
}
}
llvm::sort(addrs);
uint64_t addr = in.header->addr;
for (uint64_t nextAddr : addrs) {
uint64_t delta = nextAddr - addr;
if (delta == 0)
continue;
encodeULEB128(delta, os);
addr = nextAddr;
}
os << '\0';
}
void FunctionStartsSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
stringTableSection(stringTableSection) {}
void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
StabsEntry stab(N_SO);
stab.strx = stringTableSection.addString(saver().save(sourceFile));
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndSourceStab() {
StabsEntry stab(N_SO);
stab.sect = 1;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitObjectFileStab(ObjFile *file) {
StabsEntry stab(N_OSO);
stab.sect = target->cpuSubtype;
SmallString<261> path(!file->archiveName.empty() ? file->archiveName
: file->getName());
std::error_code ec = sys::fs::make_absolute(path);
if (ec)
fatal("failed to get absolute path for " + path);
if (!file->archiveName.empty())
path.append({"(", file->getName(), ")"});
StringRef adjustedPath = saver().save(path.str());
adjustedPath.consume_front(config->osoPrefix);
stab.strx = stringTableSection.addString(adjustedPath);
stab.desc = 1;
stab.value = file->modTime;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndFunStab(Defined *defined) {
StabsEntry stab(N_FUN);
stab.value = defined->size;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitStabs() {
if (config->omitDebugInfo)
return;
for (const std::string &s : config->astPaths) {
StabsEntry astStab(N_AST);
astStab.strx = stringTableSection.addString(s);
stabs.emplace_back(std::move(astStab));
}
// Cache the file ID for each symbol in an std::pair for faster sorting.
using SortingPair = std::pair<Defined *, int>;
std::vector<SortingPair> symbolsNeedingStabs;
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols)) {
Symbol *sym = entry.sym;
assert(sym->isLive() &&
"dead symbols should not be in localSymbols, externalSymbols");
if (auto *defined = dyn_cast<Defined>(sym)) {
// Excluded symbols should have been filtered out in finalizeContents().
assert(defined->includeInSymtab);
if (defined->isAbsolute())
continue;
// Constant-folded symbols go in the executable's symbol table, but don't
// get a stabs entry.
if (defined->wasIdenticalCodeFolded)
continue;
ObjFile *file = defined->getObjectFile();
if (!file || !file->compileUnit)
continue;
symbolsNeedingStabs.emplace_back(defined, defined->isec()->getFile()->id);
}
}
llvm::stable_sort(symbolsNeedingStabs,
[&](const SortingPair &a, const SortingPair &b) {
return a.second < b.second;
});
// Emit STABS symbols so that dsymutil and/or the debugger can map address
// regions in the final binary to the source and object files from which they
// originated.
InputFile *lastFile = nullptr;
for (SortingPair &pair : symbolsNeedingStabs) {
Defined *defined = pair.first;
InputSection *isec = defined->isec();
ObjFile *file = cast<ObjFile>(isec->getFile());
if (lastFile == nullptr || lastFile != file) {
if (lastFile != nullptr)
emitEndSourceStab();
lastFile = file;
emitBeginSourceStab(file->sourceFile());
emitObjectFileStab(file);
}
StabsEntry symStab;
symStab.sect = defined->isec()->parent->index;
symStab.strx = stringTableSection.addString(defined->getName());
symStab.value = defined->getVA();
if (isCodeSection(isec)) {
symStab.type = N_FUN;
stabs.emplace_back(std::move(symStab));
emitEndFunStab(defined);
} else {
symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
stabs.emplace_back(std::move(symStab));
}
}
if (!stabs.empty())
emitEndSourceStab();
}
void SymtabSection::finalizeContents() {
auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
uint32_t strx = stringTableSection.addString(sym->getName());
symbols.push_back({sym, strx});
};
std::function<void(Symbol *)> localSymbolsHandler;
switch (config->localSymbolsPresence) {
case SymtabPresence::All:
localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
break;
case SymtabPresence::None:
localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
break;
case SymtabPresence::SelectivelyIncluded:
localSymbolsHandler = [&](Symbol *sym) {
if (config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
case SymtabPresence::SelectivelyExcluded:
localSymbolsHandler = [&](Symbol *sym) {
if (!config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
}
// Local symbols aren't in the SymbolTable, so we walk the list of object
// files to gather them.
// But if `-x` is set, then we don't need to. localSymbolsHandler() will do
// the right thing regardless, but this check is a perf optimization because
// iterating through all the input files and their symbols is expensive.
if (config->localSymbolsPresence != SymtabPresence::None) {
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (Symbol *sym : objFile->symbols) {
if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (defined->isExternal() || !defined->isLive() ||
!defined->includeInSymtab)
continue;
localSymbolsHandler(sym);
}
}
}
}
}
// __dyld_private is a local symbol too. It's linker-created and doesn't
// exist in any object file.
if (in.stubHelper && in.stubHelper->dyldPrivate)
localSymbolsHandler(in.stubHelper->dyldPrivate);
for (Symbol *sym : symtab->getSymbols()) {
if (!sym->isLive())
continue;
if (auto *defined = dyn_cast<Defined>(sym)) {
if (!defined->includeInSymtab)
continue;
assert(defined->isExternal());
if (defined->privateExtern)
localSymbolsHandler(defined);
else
addSymbol(externalSymbols, defined);
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->isReferenced())
addSymbol(undefinedSymbols, sym);
}
}
emitStabs();
uint32_t symtabIndex = stabs.size();
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
entry.sym->symtabIndex = symtabIndex++;
}
}
uint32_t SymtabSection::getNumSymbols() const {
return stabs.size() + localSymbols.size() + externalSymbols.size() +
undefinedSymbols.size();
}
// This serves to hide (type-erase) the template parameter from SymtabSection.
template <class LP> class SymtabSectionImpl final : public SymtabSection {
public:
SymtabSectionImpl(StringTableSection &stringTableSection)
: SymtabSection(stringTableSection) {}
uint64_t getRawSize() const override;
void writeTo(uint8_t *buf) const override;
};
template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
return getNumSymbols() * sizeof(typename LP::nlist);
}
template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
// Emit the stabs entries before the "real" symbols. We cannot emit them
// after as that would render Symbol::symtabIndex inaccurate.
for (const StabsEntry &entry : stabs) {
nList->n_strx = entry.strx;
nList->n_type = entry.type;
nList->n_sect = entry.sect;
nList->n_desc = entry.desc;
nList->n_value = entry.value;
++nList;
}
for (const SymtabEntry &entry : concat<const SymtabEntry>(
localSymbols, externalSymbols, undefinedSymbols)) {
nList->n_strx = entry.strx;
// TODO populate n_desc with more flags
if (auto *defined = dyn_cast<Defined>(entry.sym)) {
uint8_t scope = 0;
if (defined->privateExtern) {
// Private external -- dylib scoped symbol.
// Promote to non-external at link time.
scope = N_PEXT;
} else if (defined->isExternal()) {
// Normal global symbol.
scope = N_EXT;
} else {
// TU-local symbol from localSymbols.
scope = 0;
}
if (defined->isAbsolute()) {
nList->n_type = scope | N_ABS;
nList->n_sect = NO_SECT;
nList->n_value = defined->value;
} else {
nList->n_type = scope | N_SECT;
nList->n_sect = defined->isec()->parent->index;
// For the N_SECT symbol type, n_value is the address of the symbol
nList->n_value = defined->getVA();
}
nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
nList->n_desc |=
defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
} else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
uint16_t n_desc = nList->n_desc;
int16_t ordinal = ordinalForDylibSymbol(*dysym);
if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
else {
assert(ordinal > 0);
SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
}
nList->n_type = N_EXT;
n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
nList->n_desc = n_desc;
}
++nList;
}
}
template <class LP>
SymtabSection *
macho::makeSymtabSection(StringTableSection &stringTableSection) {
return make<SymtabSectionImpl<LP>>(stringTableSection);
}
IndirectSymtabSection::IndirectSymtabSection()
: LinkEditSection(segment_names::linkEdit,
section_names::indirectSymbolTable) {}
uint32_t IndirectSymtabSection::getNumSymbols() const {
uint32_t size = in.got->getEntries().size() +
in.tlvPointers->getEntries().size() +
in.stubs->getEntries().size();
if (!config->emitChainedFixups)
size += in.stubs->getEntries().size();
return size;
}
bool IndirectSymtabSection::isNeeded() const {
return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
in.stubs->isNeeded();
}
void IndirectSymtabSection::finalizeContents() {
uint32_t off = 0;
in.got->reserved1 = off;
off += in.got->getEntries().size();
in.tlvPointers->reserved1 = off;
off += in.tlvPointers->getEntries().size();
in.stubs->reserved1 = off;
if (in.lazyPointers) {
off += in.stubs->getEntries().size();
in.lazyPointers->reserved1 = off;
}
}
static uint32_t indirectValue(const Symbol *sym) {
if (sym->symtabIndex == UINT32_MAX)
return INDIRECT_SYMBOL_LOCAL;
if (auto *defined = dyn_cast<Defined>(sym))
if (defined->privateExtern)
return INDIRECT_SYMBOL_LOCAL;
return sym->symtabIndex;
}
void IndirectSymtabSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (const Symbol *sym : in.got->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.tlvPointers->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
if (in.lazyPointers) {
// There is a 1:1 correspondence between stubs and LazyPointerSection
// entries. But giving __stubs and __la_symbol_ptr the same reserved1
// (the offset into the indirect symbol table) so that they both refer
// to the same range of offsets confuses `strip`, so write the stubs
// symbol table offsets a second time.
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
}
}
StringTableSection::StringTableSection()
: LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
uint32_t StringTableSection::addString(StringRef str) {
uint32_t strx = size;
strings.push_back(str); // TODO: consider deduplicating strings
size += str.size() + 1; // account for null terminator
return strx;
}
void StringTableSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (StringRef str : strings) {
memcpy(buf + off, str.data(), str.size());
off += str.size() + 1; // account for null terminator
}
}
static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
CodeSignatureSection::CodeSignatureSection()
: LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
align = 16; // required by libstuff
// XXX: This mimics LD64, where it uses the install-name as codesign
// identifier, if available.
if (!config->installName.empty())
fileName = config->installName;
else
// FIXME: Consider using finalOutput instead of outputFile.
fileName = config->outputFile;
size_t slashIndex = fileName.rfind("/");
if (slashIndex != std::string::npos)
fileName = fileName.drop_front(slashIndex + 1);
// NOTE: Any changes to these calculations should be repeated
// in llvm-objcopy's MachOLayoutBuilder::layoutTail.
allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
}
uint32_t CodeSignatureSection::getBlockCount() const {
return (fileOff + blockSize - 1) / blockSize;
}
uint64_t CodeSignatureSection::getRawSize() const {
return allHeadersSize + getBlockCount() * hashSize;
}
void CodeSignatureSection::writeHashes(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint8_t *hashes = buf + fileOff + allHeadersSize;
parallelFor(0, getBlockCount(), [&](size_t i) {
sha256(buf + i * blockSize,
std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
hashes + i * hashSize);
});
#if defined(__APPLE__)
// This is macOS-specific work-around and makes no sense for any
// other host OS. See https://openradar.appspot.com/FB8914231
//
// The macOS kernel maintains a signature-verification cache to
// quickly validate applications at time of execve(2). The trouble
// is that for the kernel creates the cache entry at the time of the
// mmap(2) call, before we have a chance to write either the code to
// sign or the signature header+hashes. The fix is to invalidate
// all cached data associated with the output file, thus discarding
// the bogus prematurely-cached signature.
msync(buf, fileOff + getSize(), MS_INVALIDATE);
#endif
}
void CodeSignatureSection::writeTo(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint32_t signatureSize = static_cast<uint32_t>(getSize());
auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
write32be(&superBlob->length, signatureSize);
write32be(&superBlob->count, 1);
auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
write32be(&blobIndex->offset, blobHeadersSize);
auto *codeDirectory =
reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
write32be(&codeDirectory->hashOffset,
sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
codeDirectory->nSpecialSlots = 0;
write32be(&codeDirectory->nCodeSlots, getBlockCount());
write32be(&codeDirectory->codeLimit, fileOff);
codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
codeDirectory->hashType = kSecCodeSignatureHashSHA256;
codeDirectory->platform = 0;
codeDirectory->pageSize = blockSizeShift;
codeDirectory->spare2 = 0;
codeDirectory->scatterOffset = 0;
codeDirectory->teamOffset = 0;
codeDirectory->spare3 = 0;
codeDirectory->codeLimit64 = 0;
OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
write64be(&codeDirectory->execSegBase, textSeg->fileOff);
write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
write64be(&codeDirectory->execSegFlags,
config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
memcpy(id, fileName.begin(), fileName.size());
memset(id + fileName.size(), 0, fileNamePad);
}
CStringSection::CStringSection(const char *name)
: SyntheticSection(segment_names::text, name) {
flags = S_CSTRING_LITERALS;
}
void CStringSection::addInput(CStringInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
if (isec->align > align)
align = isec->align;
}
void CStringSection::writeTo(uint8_t *buf) const {
for (const CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
StringRef string = isec->getStringRef(i);
memcpy(buf + piece.outSecOff, string.data(), string.size());
}
}
}
void CStringSection::finalizeContents() {
uint64_t offset = 0;
for (CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
// See comment above DeduplicatedCStringSection for how alignment is
// handled.
uint32_t pieceAlign = 1
<< llvm::countr_zero(isec->align | piece.inSecOff);
offset = alignToPowerOf2(offset, pieceAlign);
piece.outSecOff = offset;
isec->isFinal = true;
StringRef string = isec->getStringRef(i);
offset += string.size() + 1; // account for null terminator
}
}
size = offset;
}
// Mergeable cstring literals are found under the __TEXT,__cstring section. In
// contrast to ELF, which puts strings that need different alignments into
// different sections, clang's Mach-O backend puts them all in one section.
// Strings that need to be aligned have the .p2align directive emitted before
// them, which simply translates into zero padding in the object file. In other
// words, we have to infer the desired alignment of these cstrings from their
// addresses.
//
// We differ slightly from ld64 in how we've chosen to align these cstrings.
// Both LLD and ld64 preserve the number of trailing zeros in each cstring's
// address in the input object files. When deduplicating identical cstrings,
// both linkers pick the cstring whose address has more trailing zeros, and
// preserve the alignment of that address in the final binary. However, ld64
// goes a step further and also preserves the offset of the cstring from the
// last section-aligned address. I.e. if a cstring is at offset 18 in the
// input, with a section alignment of 16, then both LLD and ld64 will ensure the
// final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
// ensure that the final address is of the form 16 * k + 2 for some k.
//
// Note that ld64's heuristic means that a dedup'ed cstring's final address is
// dependent on the order of the input object files. E.g. if in addition to the
// cstring at offset 18 above, we have a duplicate one in another file with a
// `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
// the cstring from the object file earlier on the command line (since both have
// the same number of trailing zeros in their address). So the final cstring may
// either be at some address `16 * k + 2` or at some address `2 * k`.
//
// I've opted not to follow this behavior primarily for implementation
// simplicity, and secondarily to save a few more bytes. It's not clear to me
// that preserving the section alignment + offset is ever necessary, and there
// are many cases that are clearly redundant. In particular, if an x86_64 object
// file contains some strings that are accessed via SIMD instructions, then the
// .cstring section in the object file will be 16-byte-aligned (since SIMD
// requires its operand addresses to be 16-byte aligned). However, there will
// typically also be other cstrings in the same file that aren't used via SIMD
// and don't need this alignment. They will be emitted at some arbitrary address
// `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
// % A`.
void DeduplicatedCStringSection::finalizeContents() {
// Find the largest alignment required for each string.
for (const CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
assert(isec->align != 0);
uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff);
auto it = stringOffsetMap.insert(
std::make_pair(s, StringOffset(trailingZeros)));
if (!it.second && it.first->second.trailingZeros < trailingZeros)
it.first->second.trailingZeros = trailingZeros;
}
}
// Assign an offset for each string and save it to the corresponding
// StringPieces for easy access.
for (CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
auto it = stringOffsetMap.find(s);
assert(it != stringOffsetMap.end());
StringOffset &offsetInfo = it->second;
if (offsetInfo.outSecOff == UINT64_MAX) {
offsetInfo.outSecOff =
alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros);
size =
offsetInfo.outSecOff + s.size() + 1; // account for null terminator
}
piece.outSecOff = offsetInfo.outSecOff;
}
isec->isFinal = true;
}
}
void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
for (const auto &p : stringOffsetMap) {
StringRef data = p.first.val();
uint64_t off = p.second.outSecOff;
if (!data.empty())
memcpy(buf + off, data.data(), data.size());
}
}
DeduplicatedCStringSection::StringOffset
DeduplicatedCStringSection::getStringOffset(StringRef str) const {
// StringPiece uses 31 bits to store the hashes, so we replicate that
uint32_t hash = xxh3_64bits(str) & 0x7fffffff;
auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
assert(offset != stringOffsetMap.end() &&
"Looked-up strings should always exist in section");
return offset->second;
}
// This section is actually emitted as __TEXT,__const by ld64, but clang may
// emit input sections of that name, and LLD doesn't currently support mixing
// synthetic and concat-type OutputSections. To work around this, I've given
// our merged-literals section a different name.
WordLiteralSection::WordLiteralSection()
: SyntheticSection(segment_names::text, section_names::literals) {
align = 16;
}
void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
}
void WordLiteralSection::finalizeContents() {
for (WordLiteralInputSection *isec : inputs) {
// We do all processing of the InputSection here, so it will be effectively
// finalized.
isec->isFinal = true;
const uint8_t *buf = isec->data.data();
switch (sectionType(isec->getFlags())) {
case S_4BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
if (!isec->isLive(off))
continue;
uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
literal4Map.emplace(value, literal4Map.size());
}
break;
}
case S_8BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
if (!isec->isLive(off))
continue;
uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
literal8Map.emplace(value, literal8Map.size());
}
break;
}
case S_16BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
if (!isec->isLive(off))
continue;
UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
literal16Map.emplace(value, literal16Map.size());
}
break;
}
default:
llvm_unreachable("invalid literal section type");
}
}
}
void WordLiteralSection::writeTo(uint8_t *buf) const {
// Note that we don't attempt to do any endianness conversion in addInput(),
// so we don't do it here either -- just write out the original value,
// byte-for-byte.
for (const auto &p : literal16Map)
memcpy(buf + p.second * 16, &p.first, 16);
buf += literal16Map.size() * 16;
for (const auto &p : literal8Map)
memcpy(buf + p.second * 8, &p.first, 8);
buf += literal8Map.size() * 8;
for (const auto &p : literal4Map)
memcpy(buf + p.second * 4, &p.first, 4);
}
ObjCImageInfoSection::ObjCImageInfoSection()
: SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
ObjCImageInfoSection::ImageInfo
ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
ImageInfo info;
ArrayRef<uint8_t> data = file->objCImageInfo;
// The image info struct has the following layout:
// struct {
// uint32_t version;
// uint32_t flags;
// };
if (data.size() < 8) {
warn(toString(file) + ": invalid __objc_imageinfo size");
return info;
}
auto *buf = reinterpret_cast<const uint32_t *>(data.data());
if (read32le(buf) != 0) {
warn(toString(file) + ": invalid __objc_imageinfo version");
return info;
}
uint32_t flags = read32le(buf + 1);
info.swiftVersion = (flags >> 8) & 0xff;
info.hasCategoryClassProperties = flags & 0x40;
return info;
}
static std::string swiftVersionString(uint8_t version) {
switch (version) {
case 1:
return "1.0";
case 2:
return "1.1";
case 3:
return "2.0";
case 4:
return "3.0";
case 5:
return "4.0";
default:
return ("0x" + Twine::utohexstr(version)).str();
}
}
// Validate each object file's __objc_imageinfo and use them to generate the
// image info for the output binary. Only two pieces of info are relevant:
// 1. The Swift version (should be identical across inputs)
// 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
void ObjCImageInfoSection::finalizeContents() {
assert(files.size() != 0); // should have already been checked via isNeeded()
info.hasCategoryClassProperties = true;
const InputFile *firstFile;
for (const InputFile *file : files) {
ImageInfo inputInfo = parseImageInfo(file);
info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
// swiftVersion 0 means no Swift is present, so no version checking required
if (inputInfo.swiftVersion == 0)
continue;
if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
error("Swift version mismatch: " + toString(firstFile) + " has version " +
swiftVersionString(info.swiftVersion) + " but " + toString(file) +
" has version " + swiftVersionString(inputInfo.swiftVersion));
} else {
info.swiftVersion = inputInfo.swiftVersion;
firstFile = file;
}
}
}
void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
flags |= info.swiftVersion << 8;
write32le(buf + 4, flags);
}
InitOffsetsSection::InitOffsetsSection()
: SyntheticSection(segment_names::text, section_names::initOffsets) {
flags = S_INIT_FUNC_OFFSETS;
align = 4; // This section contains 32-bit integers.
}
uint64_t InitOffsetsSection::getSize() const {
size_t count = 0;
for (const ConcatInputSection *isec : sections)
count += isec->relocs.size();
return count * sizeof(uint32_t);
}
void InitOffsetsSection::writeTo(uint8_t *buf) const {
// FIXME: Add function specified by -init when that argument is implemented.
for (ConcatInputSection *isec : sections) {
for (const Reloc &rel : isec->relocs) {
const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
assert(referent && "section relocation should have been rejected");
uint64_t offset = referent->getVA() - in.header->addr;
// FIXME: Can we handle this gracefully?
if (offset > UINT32_MAX)
fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
referent->getName() + " (" + utohexstr(offset) +
") does not fit in 32 bits");
// Entries need to be added in the order they appear in the section, but
// relocations aren't guaranteed to be sorted.
size_t index = rel.offset >> target->p2WordSize;
write32le(&buf[index * sizeof(uint32_t)], offset);
}
buf += isec->relocs.size() * sizeof(uint32_t);
}
}
// The inputs are __mod_init_func sections, which contain pointers to
// initializer functions, therefore all relocations should be of the UNSIGNED
// type. InitOffsetsSection stores offsets, so if the initializer's address is
// not known at link time, stub-indirection has to be used.
void InitOffsetsSection::setUp() {
for (const ConcatInputSection *isec : sections) {
for (const Reloc &rel : isec->relocs) {
RelocAttrs attrs = target->getRelocAttrs(rel.type);
if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
error(isec->getLocation(rel.offset) +
": unsupported relocation type: " + attrs.name);
if (rel.addend != 0)
error(isec->getLocation(rel.offset) +
": relocation addend is not representable in __init_offsets");
if (rel.referent.is<InputSection *>())
error(isec->getLocation(rel.offset) +
": unexpected section relocation");
Symbol *sym = rel.referent.dyn_cast<Symbol *>();
if (auto *undefined = dyn_cast<Undefined>(sym))
treatUndefinedSymbol(*undefined, isec, rel.offset);
if (needsBinding(sym))
in.stubs->addEntry(sym);
}
}
}
ObjCMethListSection::ObjCMethListSection()
: SyntheticSection(segment_names::text, section_names::objcMethList) {
flags = S_ATTR_NO_DEAD_STRIP;
align = relativeOffsetSize;
}
// Go through all input method lists and ensure that we have selrefs for all
// their method names. The selrefs will be needed later by ::writeTo. We need to
// create them early on here to ensure they are processed correctly by the lld
// pipeline.
void ObjCMethListSection::setUp() {
for (const ConcatInputSection *isec : inputs) {
uint32_t structSizeAndFlags = 0, structCount = 0;
readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
uint32_t originalStructSize = structSizeAndFlags & structSizeMask;
// Method name is immediately after header
uint32_t methodNameOff = methodListHeaderSize;
// Loop through all methods, and ensure a selref for each of them exists.
while (methodNameOff < isec->data.size()) {
const Reloc *reloc = isec->getRelocAt(methodNameOff);
assert(reloc && "Relocation expected at method list name slot");
auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
assert(def && "Expected valid Defined at method list name slot");
auto *cisec = cast<CStringInputSection>(def->isec());
assert(cisec && "Expected method name to be in a CStringInputSection");
auto methname = cisec->getStringRefAtOffset(def->value);
if (!ObjCSelRefsHelper::getSelRef(methname))
ObjCSelRefsHelper::makeSelRef(methname);
// Jump to method name offset in next struct
methodNameOff += originalStructSize;
}
}
}
// Calculate section size and final offsets for where InputSection's need to be
// written.
void ObjCMethListSection::finalize() {
// sectionSize will be the total size of the __objc_methlist section
sectionSize = 0;
for (ConcatInputSection *isec : inputs) {
// We can also use sectionSize as write offset for isec
assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) &&
"expected __objc_methlist to be aligned by default with the "
"required section alignment");
isec->outSecOff = sectionSize;
isec->isFinal = true;
uint32_t relativeListSize =
computeRelativeMethodListSize(isec->data.size());
sectionSize += relativeListSize;
// If encoding the method list in relative offset format shrinks the size,
// then we also need to adjust symbol sizes to match the new size. Note that
// on 32bit platforms the size of the method list will remain the same when
// encoded in relative offset format.
if (relativeListSize != isec->data.size()) {
for (Symbol *sym : isec->symbols) {
assert(isa<Defined>(sym) &&
"Unexpected undefined symbol in ObjC method list");
auto *def = cast<Defined>(sym);
// There can be 0-size symbols, check if this is the case and ignore
// them.
if (def->size) {
assert(
def->size == isec->data.size() &&
"Invalid ObjC method list symbol size: expected symbol size to "
"match isec size");
def->size = relativeListSize;
}
}
}
}
}
void ObjCMethListSection::writeTo(uint8_t *bufStart) const {
uint8_t *buf = bufStart;
for (const ConcatInputSection *isec : inputs) {
assert(buf - bufStart == long(isec->outSecOff) &&
"Writing at unexpected offset");
uint32_t writtenSize = writeRelativeMethodList(isec, buf);
buf += writtenSize;
}
assert(buf - bufStart == sectionSize &&
"Written size does not match expected section size");
}
// Check if an InputSection is a method list. To do this we scan the
// InputSection for any symbols who's names match the patterns we expect clang
// to generate for method lists.
bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) {
const char *symPrefixes[] = {objc::symbol_names::classMethods,
objc::symbol_names::instanceMethods,
objc::symbol_names::categoryInstanceMethods,
objc::symbol_names::categoryClassMethods};
if (!isec)
return false;
for (const Symbol *sym : isec->symbols) {
auto *def = dyn_cast_or_null<Defined>(sym);
if (!def)
continue;
for (const char *prefix : symPrefixes) {
if (def->getName().starts_with(prefix)) {
assert(def->size == isec->data.size() &&
"Invalid ObjC method list symbol size: expected symbol size to "
"match isec size");
assert(def->value == 0 &&
"Offset of ObjC method list symbol must be 0");
return true;
}
}
}
return false;
}
// Encode a single relative offset value. The input is the data/symbol at
// (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]).
// 'createSelRef' indicates that we should not directly use the specified
// symbol, but instead get the selRef for the symbol and use that instead.
void ObjCMethListSection::writeRelativeOffsetForIsec(
const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff,
uint32_t &outSecOff, bool useSelRef) const {
const Reloc *reloc = isec->getRelocAt(inSecOff);
assert(reloc && "Relocation expected at __objc_methlist Offset");
auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
assert(def && "Expected all syms in __objc_methlist to be defined");
uint32_t symVA = def->getVA();
if (useSelRef) {
auto *cisec = cast<CStringInputSection>(def->isec());
auto methname = cisec->getStringRefAtOffset(def->value);
ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
assert(selRef && "Expected all selector names to already be already be "
"present in __objc_selrefs");
symVA = selRef->getVA();
assert(selRef->data.size() == sizeof(target->wordSize) &&
"Expected one selref per ConcatInputSection");
}
uint32_t currentVA = isec->getVA() + outSecOff;
uint32_t delta = symVA - currentVA;
write32le(buf + outSecOff, delta);
// Move one pointer forward in the absolute method list
inSecOff += target->wordSize;
// Move one relative offset forward in the relative method list (32 bits)
outSecOff += relativeOffsetSize;
}
// Write a relative method list to buf, return the size of the written
// information
uint32_t
ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec,
uint8_t *buf) const {
// Copy over the header, and add the "this is a relative method list" magic
// value flag
uint32_t structSizeAndFlags = 0, structCount = 0;
readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
// Set the struct size for the relative method list
uint32_t relativeStructSizeAndFlags =
(relativeOffsetSize * pointersPerStruct) & structSizeMask;
// Carry over the old flags from the input struct
relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask;
// Set the relative method list flag
relativeStructSizeAndFlags |= relMethodHeaderFlag;
writeMethodListHeader(buf, relativeStructSizeAndFlags, structCount);
assert(methodListHeaderSize +
(structCount * pointersPerStruct * target->wordSize) ==
isec->data.size() &&
"Invalid computed ObjC method list size");
uint32_t inSecOff = methodListHeaderSize;
uint32_t outSecOff = methodListHeaderSize;
// Go through the method list and encode input absolute pointers as relative
// offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and
// outSecOff
for (uint32_t i = 0; i < structCount; i++) {
// Write the name of the method
writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, true);
// Write the type of the method
writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
// Write reference to the selector of the method
writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
}
// Expecting to have read all the data in the isec
assert(inSecOff == isec->data.size() &&
"Invalid actual ObjC method list size");
assert(
outSecOff == computeRelativeMethodListSize(inSecOff) &&
"Mismatch between input & output size when writing relative method list");
return outSecOff;
}
// Given the size of an ObjC method list InputSection, return the size of the
// method list when encoded in relative offsets format. We can do this without
// decoding the actual data, as it can be directly inferred from the size of the
// isec.
uint32_t ObjCMethListSection::computeRelativeMethodListSize(
uint32_t absoluteMethodListSize) const {
uint32_t oldPointersSize = absoluteMethodListSize - methodListHeaderSize;
uint32_t pointerCount = oldPointersSize / target->wordSize;
assert(((pointerCount % pointersPerStruct) == 0) &&
"__objc_methlist expects method lists to have multiple-of-3 pointers");
uint32_t newPointersSize = pointerCount * relativeOffsetSize;
uint32_t newTotalSize = methodListHeaderSize + newPointersSize;
assert((newTotalSize <= absoluteMethodListSize) &&
"Expected relative method list size to be smaller or equal than "
"original size");
return newTotalSize;
}
// Read a method list header from buf
void ObjCMethListSection::readMethodListHeader(const uint8_t *buf,
uint32_t &structSizeAndFlags,
uint32_t &structCount) const {
structSizeAndFlags = read32le(buf);
structCount = read32le(buf + sizeof(uint32_t));
}
// Write a method list header to buf
void ObjCMethListSection::writeMethodListHeader(uint8_t *buf,
uint32_t structSizeAndFlags,
uint32_t structCount) const {
write32le(buf, structSizeAndFlags);
write32le(buf + sizeof(structSizeAndFlags), structCount);
}
void macho::createSyntheticSymbols() {
auto addHeaderSymbol = [](const char *name) {
symtab->addSynthetic(name, in.header->isec, /*value=*/0,
/*isPrivateExtern=*/true, /*includeInSymtab=*/false,
/*referencedDynamically=*/false);
};
switch (config->outputType) {
// FIXME: Assign the right address value for these symbols
// (rather than 0). But we need to do that after assignAddresses().
case MH_EXECUTE:
// If linking PIE, __mh_execute_header is a defined symbol in
// __TEXT, __text)
// Otherwise, it's an absolute symbol.
if (config->isPic)
symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
else
symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
break;
// The following symbols are N_SECT symbols, even though the header is not
// part of any section and that they are private to the bundle/dylib/object
// they are part of.
case MH_BUNDLE:
addHeaderSymbol("__mh_bundle_header");
break;
case MH_DYLIB:
addHeaderSymbol("__mh_dylib_header");
break;
case MH_DYLINKER:
addHeaderSymbol("__mh_dylinker_header");
break;
case MH_OBJECT:
addHeaderSymbol("__mh_object_header");
break;
default:
llvm_unreachable("unexpected outputType");
break;
}
// The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
// which does e.g. cleanup of static global variables. The ABI document
// says that the pointer can point to any address in one of the dylib's
// segments, but in practice ld64 seems to set it to point to the header,
// so that's what's implemented here.
addHeaderSymbol("___dso_handle");
}
ChainedFixupsSection::ChainedFixupsSection()
: LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
bool ChainedFixupsSection::isNeeded() const {
assert(config->emitChainedFixups);
// dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
// dyld_chained_fixups_header, so we create this section even if there aren't
// any fixups.
return true;
}
static bool needsWeakBind(const Symbol &sym) {
if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
return dysym->isWeakDef();
if (auto *defined = dyn_cast<Defined>(&sym))
return defined->isExternalWeakDef();
return false;
}
void ChainedFixupsSection::addBinding(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
locations.emplace_back(isec, offset);
int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
auto [it, inserted] = bindings.insert(
{{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
if (inserted) {
symtabSize += sym->getName().size() + 1;
hasWeakBind = hasWeakBind || needsWeakBind(*sym);
if (!isInt<23>(outlineAddend))
needsLargeAddend = true;
else if (outlineAddend != 0)
needsAddend = true;
}
}
std::pair<uint32_t, uint8_t>
ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
auto it = bindings.find({sym, outlineAddend});
assert(it != bindings.end() && "binding not found in the imports table");
if (outlineAddend == 0)
return {it->second, addend};
return {it->second, 0};
}
static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal,
bool weakRef, uint32_t nameOffset, int64_t addend) {
switch (format) {
case DYLD_CHAINED_IMPORT: {
auto *import = reinterpret_cast<dyld_chained_import *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
return sizeof(dyld_chained_import);
}
case DYLD_CHAINED_IMPORT_ADDEND: {
auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
import->addend = addend;
return sizeof(dyld_chained_import_addend);
}
case DYLD_CHAINED_IMPORT_ADDEND64: {
auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
import->addend = addend;
return sizeof(dyld_chained_import_addend64);
}
default:
llvm_unreachable("Unknown import format");
}
}
size_t ChainedFixupsSection::SegmentInfo::getSize() const {
assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
pageStarts.back().first * sizeof(uint16_t));
}
size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
segInfo->size = getSize();
segInfo->page_size = target->getPageSize();
// FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
segInfo->pointer_format = DYLD_CHAINED_PTR_64;
segInfo->segment_offset = oseg->addr - in.header->addr;
segInfo->max_valid_pointer = 0; // not used on 64-bit
segInfo->page_count = pageStarts.back().first + 1;
uint16_t *starts = segInfo->page_start;
for (size_t i = 0; i < segInfo->page_count; ++i)
starts[i] = DYLD_CHAINED_PTR_START_NONE;
for (auto [pageIdx, startAddr] : pageStarts)
starts[pageIdx] = startAddr;
return segInfo->size;
}
static size_t importEntrySize(int format) {
switch (format) {
case DYLD_CHAINED_IMPORT:
return sizeof(dyld_chained_import);
case DYLD_CHAINED_IMPORT_ADDEND:
return sizeof(dyld_chained_import_addend);
case DYLD_CHAINED_IMPORT_ADDEND64:
return sizeof(dyld_chained_import_addend64);
default:
llvm_unreachable("Unknown import format");
}
}
// This is step 3 of the algorithm described in the class comment of
// ChainedFixupsSection.
//
// LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
// * A dyld_chained_fixups_header
// * A dyld_chained_starts_in_image
// * One dyld_chained_starts_in_segment per segment
// * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
// dyld_chained_import_addend64)
// * Names of imported symbols
void ChainedFixupsSection::writeTo(uint8_t *buf) const {
auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
header->fixups_version = 0;
header->imports_count = bindings.size();
header->imports_format = importFormat;
header->symbols_format = 0;
buf += alignTo<8>(sizeof(*header));
auto curOffset = [&buf, &header]() -> uint32_t {
return buf - reinterpret_cast<uint8_t *>(header);
};
header->starts_offset = curOffset();
auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
imageInfo->seg_count = outputSegments.size();
uint32_t *segStarts = imageInfo->seg_info_offset;
// dyld_chained_starts_in_image ends in a flexible array member containing an
// uint32_t for each segment. Leave room for it, and fill it via segStarts.
buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
outputSegments.size() * sizeof(uint32_t));
// Initialize all offsets to 0, which indicates that the segment does not have
// fixups. Those that do have them will be filled in below.
for (size_t i = 0; i < outputSegments.size(); ++i)
segStarts[i] = 0;
for (const SegmentInfo &seg : fixupSegments) {
segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
buf += seg.writeTo(buf);
}
// Write imports table.
header->imports_offset = curOffset();
uint64_t nameOffset = 0;
for (auto [import, idx] : bindings) {
const Symbol &sym = *import.first;
int16_t libOrdinal = needsWeakBind(sym)
? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP
: ordinalForSymbol(sym);
buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(),
nameOffset, import.second);
nameOffset += sym.getName().size() + 1;
}
// Write imported symbol names.
header->symbols_offset = curOffset();
for (auto [import, idx] : bindings) {
StringRef name = import.first->getName();
memcpy(buf, name.data(), name.size());
buf += name.size() + 1; // account for null terminator
}
assert(curOffset() == getRawSize());
}
// This is step 2 of the algorithm described in the class comment of
// ChainedFixupsSection.
void ChainedFixupsSection::finalizeContents() {
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
assert(config->emitChainedFixups);
if (!isUInt<32>(symtabSize))
error("cannot encode chained fixups: imported symbols table size " +
Twine(symtabSize) + " exceeds 4 GiB");
if (needsLargeAddend || !isUInt<23>(symtabSize))
importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
else if (needsAddend)
importFormat = DYLD_CHAINED_IMPORT_ADDEND;
else
importFormat = DYLD_CHAINED_IMPORT;
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
llvm::sort(locations, [](const Location &a, const Location &b) {
const OutputSegment *segA = a.isec->parent->parent;
const OutputSegment *segB = b.isec->parent->parent;
if (segA == segB)
return a.offset < b.offset;
return segA->addr < segB->addr;
});
auto sameSegment = [](const Location &a, const Location &b) {
return a.isec->parent->parent == b.isec->parent->parent;
};
const uint64_t pageSize = target->getPageSize();
for (size_t i = 0, count = locations.size(); i < count;) {
const Location &firstLoc = locations[i];
fixupSegments.emplace_back(firstLoc.isec->parent->parent);
while (i < count && sameSegment(locations[i], firstLoc)) {
uint32_t pageIdx = locations[i].offset / pageSize;
fixupSegments.back().pageStarts.emplace_back(
pageIdx, locations[i].offset % pageSize);
++i;
while (i < count && sameSegment(locations[i], firstLoc) &&
locations[i].offset / pageSize == pageIdx)
++i;
}
}
// Compute expected encoded size.
size = alignTo<8>(sizeof(dyld_chained_fixups_header));
size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
outputSegments.size() * sizeof(uint32_t));
for (const SegmentInfo &seg : fixupSegments)
size += seg.getSize();
size += importEntrySize(importFormat) * bindings.size();
size += symtabSize;
}
template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);