blob: f0a92da8777e1378b7a8babc7e3a4f673e41a07f [file] [log] [blame]
//===- SymbolTable.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "InputFiles.h"
#include "InputSection.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/Demangle/Demangle.h"
using namespace llvm;
using namespace lld;
using namespace lld::macho;
Symbol *SymbolTable::find(CachedHashStringRef cachedName) {
auto it = symMap.find(cachedName);
if (it == symMap.end())
return nullptr;
return symVector[it->second];
}
std::pair<Symbol *, bool> SymbolTable::insert(StringRef name,
const InputFile *file) {
auto p = symMap.insert({CachedHashStringRef(name), (int)symVector.size()});
Symbol *sym;
if (!p.second) {
// Name already present in the symbol table.
sym = symVector[p.first->second];
} else {
// Name is a new symbol.
sym = reinterpret_cast<Symbol *>(make<SymbolUnion>());
symVector.push_back(sym);
}
sym->isUsedInRegularObj |= !file || isa<ObjFile>(file);
return {sym, p.second};
}
namespace {
struct DuplicateSymbolDiag {
// Pair containing source location and source file
const std::pair<std::string, std::string> src1;
const std::pair<std::string, std::string> src2;
const Symbol *sym;
DuplicateSymbolDiag(const std::pair<std::string, std::string> src1,
const std::pair<std::string, std::string> src2,
const Symbol *sym)
: src1(src1), src2(src2), sym(sym) {}
};
SmallVector<DuplicateSymbolDiag> dupSymDiags;
} // namespace
// Move symbols at \p fromOff in \p fromIsec into \p toIsec, unless that symbol
// is \p skip.
static void transplantSymbolsAtOffset(InputSection *fromIsec,
InputSection *toIsec, Defined *skip,
uint64_t fromOff, uint64_t toOff) {
// Ensure the symbols will still be in address order after our insertions.
auto insertIt = llvm::upper_bound(toIsec->symbols, toOff,
[](uint64_t off, const Symbol *s) {
return cast<Defined>(s)->value < off;
});
llvm::erase_if(fromIsec->symbols, [&](Symbol *s) {
auto *d = cast<Defined>(s);
if (d->value != fromOff)
return false;
if (d != skip) {
// This repeated insertion will be quadratic unless insertIt is the end
// iterator. However, that is typically the case for files that have
// .subsections_via_symbols set.
insertIt = toIsec->symbols.insert(insertIt, d);
d->originalIsec = toIsec;
d->value = toOff;
// We don't want to have more than one unwindEntry at a given address, so
// drop the redundant ones. We We can safely drop the unwindEntries of
// the symbols in fromIsec since we will be adding another unwindEntry as
// we finish parsing toIsec's file. (We can assume that toIsec has its
// own unwindEntry because of the ODR.)
d->originalUnwindEntry = nullptr;
}
return true;
});
}
Defined *SymbolTable::addDefined(StringRef name, InputFile *file,
InputSection *isec, uint64_t value,
uint64_t size, bool isWeakDef,
bool isPrivateExtern,
bool isReferencedDynamically, bool noDeadStrip,
bool isWeakDefCanBeHidden) {
bool overridesWeakDef = false;
auto [s, wasInserted] = insert(name, file);
assert(!file || !isa<BitcodeFile>(file) || !isec);
if (!wasInserted) {
if (auto *defined = dyn_cast<Defined>(s)) {
if (isWeakDef) {
// See further comment in createDefined() in InputFiles.cpp
if (defined->isWeakDef()) {
defined->privateExtern &= isPrivateExtern;
defined->weakDefCanBeHidden &= isWeakDefCanBeHidden;
defined->referencedDynamically |= isReferencedDynamically;
defined->noDeadStrip |= noDeadStrip;
}
if (auto concatIsec = dyn_cast_or_null<ConcatInputSection>(isec)) {
concatIsec->wasCoalesced = true;
// Any local symbols that alias the coalesced symbol should be moved
// into the prevailing section. Note that we have sorted the symbols
// in ObjFile::parseSymbols() such that extern weak symbols appear
// last, so we don't need to worry about subsequent symbols being
// added to an already-coalesced section.
if (defined->isec())
transplantSymbolsAtOffset(concatIsec, defined->isec(),
/*skip=*/nullptr, value, defined->value);
}
return defined;
}
if (defined->isWeakDef()) {
if (auto concatIsec =
dyn_cast_or_null<ConcatInputSection>(defined->isec())) {
concatIsec->wasCoalesced = true;
if (isec)
transplantSymbolsAtOffset(concatIsec, isec, defined, defined->value,
value);
}
} else {
std::string srcLoc1 = defined->getSourceLocation();
std::string srcLoc2 = isec ? isec->getSourceLocation(value) : "";
std::string srcFile1 = toString(defined->getFile());
std::string srcFile2 = toString(file);
dupSymDiags.push_back({make_pair(srcLoc1, srcFile1),
make_pair(srcLoc2, srcFile2), defined});
}
} else if (auto *dysym = dyn_cast<DylibSymbol>(s)) {
overridesWeakDef = !isWeakDef && dysym->isWeakDef();
dysym->unreference();
} else if (auto *undef = dyn_cast<Undefined>(s)) {
if (undef->wasBitcodeSymbol) {
auto objFile = dyn_cast<ObjFile>(file);
if (!objFile) {
// The file must be a native object file, as opposed to potentially
// being another bitcode file. A situation arises when some symbols
// are defined thru `module asm` and thus they are not present in the
// bitcode's symbol table. Consider bitcode modules `A`, `B`, and `C`.
// LTO compiles only `A` and `C`, since there's no explicit symbol
// reference to `B` other than a symbol from `A` via `module asm`.
// After LTO is finished, the missing symbol now appears in the
// resulting object file for `A`, which prematurely resolves another
// prevailing symbol with `B` that hasn't been compiled, instead of
// the resulting object for `C`. Consequently, an incorrect
// relocation is generated for the prevailing symbol.
assert(isa<BitcodeFile>(file) && "Bitcode file is expected.");
std::string message =
"The pending prevailing symbol(" + name.str() +
") in the bitcode file(" + toString(undef->getFile()) +
") is overridden by a non-native object (from bitcode): " +
toString(file);
error(message);
} else if (!objFile->builtFromBitcode) {
// Ideally, this should be an object file compiled from a bitcode
// file. However, this might not hold true if a LC linker option is
// used. In case LTO internalizes a prevailing hidden weak symbol,
// there's a situation where an unresolved prevailing symbol might be
// linked with the corresponding one from a native library, which is
// loaded later after LTO. Although this could potentially result in
// an ODR violation, we choose to permit this scenario as a warning.
std::string message = "The pending prevailing symbol(" + name.str() +
") in the bitcode file(" +
toString(undef->getFile()) +
") is overridden by a post-processed native "
"object (from native archive): " +
toString(file);
warn(message);
} else {
// Preserve the original bitcode file name (instead of using the
// object file name).
file = undef->getFile();
}
}
}
// Defined symbols take priority over other types of symbols, so in case
// of a name conflict, we fall through to the replaceSymbol() call below.
}
// With -flat_namespace, all extern symbols in dylibs are interposable.
// FIXME: Add support for `-interposable` (PR53680).
bool interposable = config->namespaceKind == NamespaceKind::flat &&
config->outputType != MachO::MH_EXECUTE &&
!isPrivateExtern;
Defined *defined = replaceSymbol<Defined>(
s, name, file, isec, value, size, isWeakDef, /*isExternal=*/true,
isPrivateExtern, /*includeInSymtab=*/true, isReferencedDynamically,
noDeadStrip, overridesWeakDef, isWeakDefCanBeHidden, interposable);
return defined;
}
Defined *SymbolTable::aliasDefined(Defined *src, StringRef target,
InputFile *newFile, bool makePrivateExtern) {
bool isPrivateExtern = makePrivateExtern || src->privateExtern;
return addDefined(target, newFile, src->isec(), src->value, src->size,
src->isWeakDef(), isPrivateExtern,
src->referencedDynamically, src->noDeadStrip,
src->weakDefCanBeHidden);
}
Symbol *SymbolTable::addUndefined(StringRef name, InputFile *file,
bool isWeakRef) {
auto [s, wasInserted] = insert(name, file);
RefState refState = isWeakRef ? RefState::Weak : RefState::Strong;
if (wasInserted)
replaceSymbol<Undefined>(s, name, file, refState,
/*wasBitcodeSymbol=*/false);
else if (auto *lazy = dyn_cast<LazyArchive>(s))
lazy->fetchArchiveMember();
else if (isa<LazyObject>(s))
extract(*s->getFile(), s->getName());
else if (auto *dynsym = dyn_cast<DylibSymbol>(s))
dynsym->reference(refState);
else if (auto *undefined = dyn_cast<Undefined>(s))
undefined->refState = std::max(undefined->refState, refState);
return s;
}
Symbol *SymbolTable::addCommon(StringRef name, InputFile *file, uint64_t size,
uint32_t align, bool isPrivateExtern) {
auto [s, wasInserted] = insert(name, file);
if (!wasInserted) {
if (auto *common = dyn_cast<CommonSymbol>(s)) {
if (size < common->size)
return s;
} else if (isa<Defined>(s)) {
return s;
}
// Common symbols take priority over all non-Defined symbols, so in case of
// a name conflict, we fall through to the replaceSymbol() call below.
}
replaceSymbol<CommonSymbol>(s, name, file, size, align, isPrivateExtern);
return s;
}
Symbol *SymbolTable::addDylib(StringRef name, DylibFile *file, bool isWeakDef,
bool isTlv) {
auto [s, wasInserted] = insert(name, file);
RefState refState = RefState::Unreferenced;
if (!wasInserted) {
if (auto *defined = dyn_cast<Defined>(s)) {
if (isWeakDef && !defined->isWeakDef())
defined->overridesWeakDef = true;
} else if (auto *undefined = dyn_cast<Undefined>(s)) {
refState = undefined->refState;
} else if (auto *dysym = dyn_cast<DylibSymbol>(s)) {
refState = dysym->getRefState();
}
}
bool isDynamicLookup = file == nullptr;
if (wasInserted || isa<Undefined>(s) ||
(isa<DylibSymbol>(s) &&
((!isWeakDef && s->isWeakDef()) ||
(!isDynamicLookup && cast<DylibSymbol>(s)->isDynamicLookup())))) {
if (auto *dynsym = dyn_cast<DylibSymbol>(s))
dynsym->unreference();
replaceSymbol<DylibSymbol>(s, file, name, isWeakDef, refState, isTlv);
}
return s;
}
Symbol *SymbolTable::addDynamicLookup(StringRef name) {
return addDylib(name, /*file=*/nullptr, /*isWeakDef=*/false, /*isTlv=*/false);
}
Symbol *SymbolTable::addLazyArchive(StringRef name, ArchiveFile *file,
const object::Archive::Symbol &sym) {
auto [s, wasInserted] = insert(name, file);
if (wasInserted) {
replaceSymbol<LazyArchive>(s, file, sym);
} else if (isa<Undefined>(s)) {
file->fetch(sym);
} else if (auto *dysym = dyn_cast<DylibSymbol>(s)) {
if (dysym->isWeakDef()) {
if (dysym->getRefState() != RefState::Unreferenced)
file->fetch(sym);
else
replaceSymbol<LazyArchive>(s, file, sym);
}
}
return s;
}
Symbol *SymbolTable::addLazyObject(StringRef name, InputFile &file) {
auto [s, wasInserted] = insert(name, &file);
if (wasInserted) {
replaceSymbol<LazyObject>(s, file, name);
} else if (isa<Undefined>(s)) {
extract(file, name);
} else if (auto *dysym = dyn_cast<DylibSymbol>(s)) {
if (dysym->isWeakDef()) {
if (dysym->getRefState() != RefState::Unreferenced)
extract(file, name);
else
replaceSymbol<LazyObject>(s, file, name);
}
}
return s;
}
Defined *SymbolTable::addSynthetic(StringRef name, InputSection *isec,
uint64_t value, bool isPrivateExtern,
bool includeInSymtab,
bool referencedDynamically) {
assert(!isec || !isec->getFile()); // See makeSyntheticInputSection().
Defined *s = addDefined(name, /*file=*/nullptr, isec, value, /*size=*/0,
/*isWeakDef=*/false, isPrivateExtern,
referencedDynamically, /*noDeadStrip=*/false,
/*isWeakDefCanBeHidden=*/false);
s->includeInSymtab = includeInSymtab;
return s;
}
enum class Boundary {
Start,
End,
};
static Defined *createBoundarySymbol(const Undefined &sym) {
return symtab->addSynthetic(
sym.getName(), /*isec=*/nullptr, /*value=*/-1, /*isPrivateExtern=*/true,
/*includeInSymtab=*/false, /*referencedDynamically=*/false);
}
static void handleSectionBoundarySymbol(const Undefined &sym, StringRef segSect,
Boundary which) {
auto [segName, sectName] = segSect.split('$');
// Attach the symbol to any InputSection that will end up in the right
// OutputSection -- it doesn't matter which one we pick.
// Don't bother looking through inputSections for a matching
// ConcatInputSection -- we need to create ConcatInputSection for
// non-existing sections anyways, and that codepath works even if we should
// already have a ConcatInputSection with the right name.
OutputSection *osec = nullptr;
// This looks for __TEXT,__cstring etc.
for (SyntheticSection *ssec : syntheticSections)
if (ssec->segname == segName && ssec->name == sectName) {
osec = ssec->isec->parent;
break;
}
if (!osec) {
ConcatInputSection *isec = makeSyntheticInputSection(segName, sectName);
// This runs after markLive() and is only called for Undefineds that are
// live. Marking the isec live ensures an OutputSection is created that the
// start/end symbol can refer to.
assert(sym.isLive());
assert(isec->live);
// This runs after gatherInputSections(), so need to explicitly set parent
// and add to inputSections.
osec = isec->parent = ConcatOutputSection::getOrCreateForInput(isec);
inputSections.push_back(isec);
}
if (which == Boundary::Start)
osec->sectionStartSymbols.push_back(createBoundarySymbol(sym));
else
osec->sectionEndSymbols.push_back(createBoundarySymbol(sym));
}
static void handleSegmentBoundarySymbol(const Undefined &sym, StringRef segName,
Boundary which) {
OutputSegment *seg = getOrCreateOutputSegment(segName);
if (which == Boundary::Start)
seg->segmentStartSymbols.push_back(createBoundarySymbol(sym));
else
seg->segmentEndSymbols.push_back(createBoundarySymbol(sym));
}
// Try to find a definition for an undefined symbol.
// Returns true if a definition was found and no diagnostics are needed.
static bool recoverFromUndefinedSymbol(const Undefined &sym) {
// Handle start/end symbols.
StringRef name = sym.getName();
if (name.consume_front("section$start$")) {
handleSectionBoundarySymbol(sym, name, Boundary::Start);
return true;
}
if (name.consume_front("section$end$")) {
handleSectionBoundarySymbol(sym, name, Boundary::End);
return true;
}
if (name.consume_front("segment$start$")) {
handleSegmentBoundarySymbol(sym, name, Boundary::Start);
return true;
}
if (name.consume_front("segment$end$")) {
handleSegmentBoundarySymbol(sym, name, Boundary::End);
return true;
}
// Leave dtrace symbols, since we will handle them when we do the relocation
if (name.starts_with("___dtrace_"))
return true;
// Handle -U.
if (config->explicitDynamicLookups.count(sym.getName())) {
symtab->addDynamicLookup(sym.getName());
return true;
}
// Handle -undefined.
if (config->undefinedSymbolTreatment ==
UndefinedSymbolTreatment::dynamic_lookup ||
config->undefinedSymbolTreatment == UndefinedSymbolTreatment::suppress) {
symtab->addDynamicLookup(sym.getName());
return true;
}
// We do not return true here, as we still need to print diagnostics.
if (config->undefinedSymbolTreatment == UndefinedSymbolTreatment::warning)
symtab->addDynamicLookup(sym.getName());
return false;
}
namespace {
struct UndefinedDiag {
struct SectionAndOffset {
const InputSection *isec;
uint64_t offset;
};
std::vector<SectionAndOffset> codeReferences;
std::vector<std::string> otherReferences;
};
MapVector<const Undefined *, UndefinedDiag> undefs;
} // namespace
void macho::reportPendingDuplicateSymbols() {
for (const auto &duplicate : dupSymDiags) {
if (!config->deadStripDuplicates || duplicate.sym->isLive()) {
std::string message =
"duplicate symbol: " + toString(*duplicate.sym) + "\n>>> defined in ";
if (!duplicate.src1.first.empty())
message += duplicate.src1.first + "\n>>> ";
message += duplicate.src1.second + "\n>>> defined in ";
if (!duplicate.src2.first.empty())
message += duplicate.src2.first + "\n>>> ";
error(message + duplicate.src2.second);
}
}
}
// Check whether the definition name def is a mangled function name that matches
// the reference name ref.
static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
llvm::ItaniumPartialDemangler d;
std::string name = def.str();
if (d.partialDemangle(name.c_str()))
return false;
char *buf = d.getFunctionName(nullptr, nullptr);
if (!buf)
return false;
bool ret = ref == buf;
free(buf);
return ret;
}
// Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
// the suggested symbol, which is either in the symbol table, or in the same
// file of sym.
static const Symbol *getAlternativeSpelling(const Undefined &sym,
std::string &preHint,
std::string &postHint) {
DenseMap<StringRef, const Symbol *> map;
if (sym.getFile() && sym.getFile()->kind() == InputFile::ObjKind) {
// Build a map of local defined symbols.
for (const Symbol *s : sym.getFile()->symbols)
if (auto *defined = dyn_cast_or_null<Defined>(s))
if (!defined->isExternal())
map.try_emplace(s->getName(), s);
}
auto suggest = [&](StringRef newName) -> const Symbol * {
// If defined locally.
if (const Symbol *s = map.lookup(newName))
return s;
// If in the symbol table and not undefined.
if (const Symbol *s = symtab->find(newName))
if (dyn_cast<Undefined>(s) == nullptr)
return s;
return nullptr;
};
// This loop enumerates all strings of Levenshtein distance 1 as typo
// correction candidates and suggests the one that exists as a non-undefined
// symbol.
StringRef name = sym.getName();
for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
// Insert a character before name[i].
std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
for (char c = '0'; c <= 'z'; ++c) {
newName[i] = c;
if (const Symbol *s = suggest(newName))
return s;
}
if (i == e)
break;
// Substitute name[i].
newName = std::string(name);
for (char c = '0'; c <= 'z'; ++c) {
newName[i] = c;
if (const Symbol *s = suggest(newName))
return s;
}
// Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
// common.
if (i + 1 < e) {
newName[i] = name[i + 1];
newName[i + 1] = name[i];
if (const Symbol *s = suggest(newName))
return s;
}
// Delete name[i].
newName = (name.substr(0, i) + name.substr(i + 1)).str();
if (const Symbol *s = suggest(newName))
return s;
}
// Case mismatch, e.g. Foo vs FOO.
for (auto &it : map)
if (name.equals_insensitive(it.first))
return it.second;
for (Symbol *sym : symtab->getSymbols())
if (dyn_cast<Undefined>(sym) == nullptr &&
name.equals_insensitive(sym->getName()))
return sym;
// The reference may be a mangled name while the definition is not. Suggest a
// missing extern "C".
if (name.starts_with("__Z")) {
std::string buf = name.str();
llvm::ItaniumPartialDemangler d;
if (!d.partialDemangle(buf.c_str()))
if (char *buf = d.getFunctionName(nullptr, nullptr)) {
const Symbol *s = suggest((Twine("_") + buf).str());
free(buf);
if (s) {
preHint = ": extern \"C\" ";
return s;
}
}
} else {
StringRef nameWithoutUnderscore = name;
nameWithoutUnderscore.consume_front("_");
const Symbol *s = nullptr;
for (auto &it : map)
if (canSuggestExternCForCXX(nameWithoutUnderscore, it.first)) {
s = it.second;
break;
}
if (!s)
for (Symbol *sym : symtab->getSymbols())
if (canSuggestExternCForCXX(nameWithoutUnderscore, sym->getName())) {
s = sym;
break;
}
if (s) {
preHint = " to declare ";
postHint = " as extern \"C\"?";
return s;
}
}
return nullptr;
}
static void reportUndefinedSymbol(const Undefined &sym,
const UndefinedDiag &locations,
bool correctSpelling) {
std::string message = "undefined symbol";
if (config->archMultiple)
message += (" for arch " + getArchitectureName(config->arch())).str();
message += ": " + toString(sym);
const size_t maxUndefinedReferences = 3;
size_t i = 0;
for (const std::string &loc : locations.otherReferences) {
if (i >= maxUndefinedReferences)
break;
message += "\n>>> referenced by " + loc;
++i;
}
for (const UndefinedDiag::SectionAndOffset &loc : locations.codeReferences) {
if (i >= maxUndefinedReferences)
break;
message += "\n>>> referenced by ";
std::string src = loc.isec->getSourceLocation(loc.offset);
if (!src.empty())
message += src + "\n>>> ";
message += loc.isec->getLocation(loc.offset);
++i;
}
size_t totalReferences =
locations.otherReferences.size() + locations.codeReferences.size();
if (totalReferences > i)
message +=
("\n>>> referenced " + Twine(totalReferences - i) + " more times")
.str();
if (correctSpelling) {
std::string preHint = ": ", postHint;
if (const Symbol *corrected =
getAlternativeSpelling(sym, preHint, postHint)) {
message +=
"\n>>> did you mean" + preHint + toString(*corrected) + postHint;
if (corrected->getFile())
message += "\n>>> defined in: " + toString(corrected->getFile());
}
}
if (config->undefinedSymbolTreatment == UndefinedSymbolTreatment::error)
error(message);
else if (config->undefinedSymbolTreatment ==
UndefinedSymbolTreatment::warning)
warn(message);
else
assert(false && "diagnostics make sense for -undefined error|warning only");
}
void macho::reportPendingUndefinedSymbols() {
// Enable spell corrector for the first 2 diagnostics.
for (const auto &[i, undef] : llvm::enumerate(undefs))
reportUndefinedSymbol(*undef.first, undef.second, i < 2);
// This function is called multiple times during execution. Clear the printed
// diagnostics to avoid printing the same things again the next time.
undefs.clear();
}
void macho::treatUndefinedSymbol(const Undefined &sym, StringRef source) {
if (recoverFromUndefinedSymbol(sym))
return;
undefs[&sym].otherReferences.push_back(source.str());
}
void macho::treatUndefinedSymbol(const Undefined &sym, const InputSection *isec,
uint64_t offset) {
if (recoverFromUndefinedSymbol(sym))
return;
undefs[&sym].codeReferences.push_back({isec, offset});
}
std::unique_ptr<SymbolTable> macho::symtab;