blob: 3d9200746926360557056c3c4ee046aaa89fb5f6 [file] [log] [blame]
//===- LTO.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LTO.h"
#include "Config.h"
#include "InputFiles.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/Args.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Filesystem.h"
#include "lld/Common/Strings.h"
#include "lld/Common/TargetOptionsCommandFlags.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/LTO/Config.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Caching.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cstddef>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
static std::string getThinLTOOutputFile(StringRef modulePath) {
return lto::getThinLTOOutputFile(modulePath, config->thinLTOPrefixReplaceOld,
config->thinLTOPrefixReplaceNew);
}
static lto::Config createConfig() {
lto::Config c;
// LLD supports the new relocations and address-significance tables.
c.Options = initTargetOptionsFromCodeGenFlags();
c.Options.EmitAddrsig = true;
for (StringRef C : config->mllvmOpts)
c.MllvmArgs.emplace_back(C.str());
// Always emit a section per function/datum with LTO.
c.Options.FunctionSections = true;
c.Options.DataSections = true;
c.Options.BBAddrMap = config->ltoBBAddrMap;
// Check if basic block sections must be used.
// Allowed values for --lto-basic-block-sections are "all", "labels",
// "<file name specifying basic block ids>", or none. This is the equivalent
// of -fbasic-block-sections= flag in clang.
if (!config->ltoBasicBlockSections.empty()) {
if (config->ltoBasicBlockSections == "all") {
c.Options.BBSections = BasicBlockSection::All;
} else if (config->ltoBasicBlockSections == "labels") {
c.Options.BBSections = BasicBlockSection::Labels;
} else if (config->ltoBasicBlockSections == "none") {
c.Options.BBSections = BasicBlockSection::None;
} else {
ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
MemoryBuffer::getFile(config->ltoBasicBlockSections.str());
if (!MBOrErr) {
error("cannot open " + config->ltoBasicBlockSections + ":" +
MBOrErr.getError().message());
} else {
c.Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
}
c.Options.BBSections = BasicBlockSection::List;
}
}
c.Options.UniqueBasicBlockSectionNames =
config->ltoUniqueBasicBlockSectionNames;
if (auto relocModel = getRelocModelFromCMModel())
c.RelocModel = *relocModel;
else if (config->relocatable)
c.RelocModel = std::nullopt;
else if (config->isPic)
c.RelocModel = Reloc::PIC_;
else
c.RelocModel = Reloc::Static;
c.CodeModel = getCodeModelFromCMModel();
c.DisableVerify = config->disableVerify;
c.DiagHandler = diagnosticHandler;
c.OptLevel = config->ltoo;
c.CPU = getCPUStr();
c.MAttrs = getMAttrs();
c.CGOptLevel = config->ltoCgo;
c.PTO.LoopVectorization = c.OptLevel > 1;
c.PTO.SLPVectorization = c.OptLevel > 1;
// Set up a custom pipeline if we've been asked to.
c.OptPipeline = std::string(config->ltoNewPmPasses);
c.AAPipeline = std::string(config->ltoAAPipeline);
// Set up optimization remarks if we've been asked to.
c.RemarksFilename = std::string(config->optRemarksFilename);
c.RemarksPasses = std::string(config->optRemarksPasses);
c.RemarksWithHotness = config->optRemarksWithHotness;
c.RemarksHotnessThreshold = config->optRemarksHotnessThreshold;
c.RemarksFormat = std::string(config->optRemarksFormat);
// Set up output file to emit statistics.
c.StatsFile = std::string(config->optStatsFilename);
c.SampleProfile = std::string(config->ltoSampleProfile);
for (StringRef pluginFn : config->passPlugins)
c.PassPlugins.push_back(std::string(pluginFn));
c.DebugPassManager = config->ltoDebugPassManager;
c.DwoDir = std::string(config->dwoDir);
c.HasWholeProgramVisibility = config->ltoWholeProgramVisibility;
c.ValidateAllVtablesHaveTypeInfos =
config->ltoValidateAllVtablesHaveTypeInfos;
c.AllVtablesHaveTypeInfos = ctx.ltoAllVtablesHaveTypeInfos;
c.AlwaysEmitRegularLTOObj = !config->ltoObjPath.empty();
for (const llvm::StringRef &name : config->thinLTOModulesToCompile)
c.ThinLTOModulesToCompile.emplace_back(name);
c.TimeTraceEnabled = config->timeTraceEnabled;
c.TimeTraceGranularity = config->timeTraceGranularity;
c.CSIRProfile = std::string(config->ltoCSProfileFile);
c.RunCSIRInstr = config->ltoCSProfileGenerate;
c.PGOWarnMismatch = config->ltoPGOWarnMismatch;
if (config->emitLLVM) {
c.PostInternalizeModuleHook = [](size_t task, const Module &m) {
if (std::unique_ptr<raw_fd_ostream> os =
openLTOOutputFile(config->outputFile))
WriteBitcodeToFile(m, *os, false);
return false;
};
}
if (config->ltoEmitAsm) {
c.CGFileType = CodeGenFileType::AssemblyFile;
c.Options.MCOptions.AsmVerbose = true;
}
if (!config->saveTempsArgs.empty())
checkError(c.addSaveTemps(config->outputFile.str() + ".",
/*UseInputModulePath*/ true,
config->saveTempsArgs));
return c;
}
BitcodeCompiler::BitcodeCompiler() {
// Initialize indexFile.
if (!config->thinLTOIndexOnlyArg.empty())
indexFile = openFile(config->thinLTOIndexOnlyArg);
// Initialize ltoObj.
lto::ThinBackend backend;
auto onIndexWrite = [&](StringRef s) { thinIndices.erase(s); };
if (config->thinLTOIndexOnly) {
backend = lto::createWriteIndexesThinBackend(
std::string(config->thinLTOPrefixReplaceOld),
std::string(config->thinLTOPrefixReplaceNew),
std::string(config->thinLTOPrefixReplaceNativeObject),
config->thinLTOEmitImportsFiles, indexFile.get(), onIndexWrite);
} else {
backend = lto::createInProcessThinBackend(
llvm::heavyweight_hardware_concurrency(config->thinLTOJobs),
onIndexWrite, config->thinLTOEmitIndexFiles,
config->thinLTOEmitImportsFiles);
}
constexpr llvm::lto::LTO::LTOKind ltoModes[3] =
{llvm::lto::LTO::LTOKind::LTOK_UnifiedThin,
llvm::lto::LTO::LTOKind::LTOK_UnifiedRegular,
llvm::lto::LTO::LTOKind::LTOK_Default};
ltoObj = std::make_unique<lto::LTO>(
createConfig(), backend, config->ltoPartitions,
ltoModes[config->ltoKind]);
// Initialize usedStartStop.
if (ctx.bitcodeFiles.empty())
return;
for (Symbol *sym : symtab.getSymbols()) {
if (sym->isPlaceholder())
continue;
StringRef s = sym->getName();
for (StringRef prefix : {"__start_", "__stop_"})
if (s.starts_with(prefix))
usedStartStop.insert(s.substr(prefix.size()));
}
}
BitcodeCompiler::~BitcodeCompiler() = default;
void BitcodeCompiler::add(BitcodeFile &f) {
lto::InputFile &obj = *f.obj;
bool isExec = !config->shared && !config->relocatable;
if (config->thinLTOEmitIndexFiles)
thinIndices.insert(obj.getName());
ArrayRef<Symbol *> syms = f.getSymbols();
ArrayRef<lto::InputFile::Symbol> objSyms = obj.symbols();
std::vector<lto::SymbolResolution> resols(syms.size());
// Provide a resolution to the LTO API for each symbol.
for (size_t i = 0, e = syms.size(); i != e; ++i) {
Symbol *sym = syms[i];
const lto::InputFile::Symbol &objSym = objSyms[i];
lto::SymbolResolution &r = resols[i];
// Ideally we shouldn't check for SF_Undefined but currently IRObjectFile
// reports two symbols for module ASM defined. Without this check, lld
// flags an undefined in IR with a definition in ASM as prevailing.
// Once IRObjectFile is fixed to report only one symbol this hack can
// be removed.
r.Prevailing = !objSym.isUndefined() && sym->file == &f;
// We ask LTO to preserve following global symbols:
// 1) All symbols when doing relocatable link, so that them can be used
// for doing final link.
// 2) Symbols that are used in regular objects.
// 3) C named sections if we have corresponding __start_/__stop_ symbol.
// 4) Symbols that are defined in bitcode files and used for dynamic
// linking.
// 5) Symbols that will be referenced after linker wrapping is performed.
r.VisibleToRegularObj = config->relocatable || sym->isUsedInRegularObj ||
sym->referencedAfterWrap ||
(r.Prevailing && sym->includeInDynsym()) ||
usedStartStop.count(objSym.getSectionName());
// Identify symbols exported dynamically, and that therefore could be
// referenced by a shared library not visible to the linker.
r.ExportDynamic =
sym->computeBinding() != STB_LOCAL &&
(config->exportDynamic || sym->exportDynamic || sym->inDynamicList);
const auto *dr = dyn_cast<Defined>(sym);
r.FinalDefinitionInLinkageUnit =
(isExec || sym->visibility() != STV_DEFAULT) && dr &&
// Skip absolute symbols from ELF objects, otherwise PC-rel relocations
// will be generated by for them, triggering linker errors.
// Symbol section is always null for bitcode symbols, hence the check
// for isElf(). Skip linker script defined symbols as well: they have
// no File defined.
!(dr->section == nullptr &&
(sym->file->isInternal() || sym->file->isElf()));
if (r.Prevailing)
Undefined(ctx.internalFile, StringRef(), STB_GLOBAL, STV_DEFAULT,
sym->type)
.overwrite(*sym);
// We tell LTO to not apply interprocedural optimization for wrapped
// (with --wrap) symbols because otherwise LTO would inline them while
// their values are still not final.
r.LinkerRedefined = sym->scriptDefined;
}
checkError(ltoObj->add(std::move(f.obj), resols));
}
// If LazyObjFile has not been added to link, emit empty index files.
// This is needed because this is what GNU gold plugin does and we have a
// distributed build system that depends on that behavior.
static void thinLTOCreateEmptyIndexFiles() {
DenseSet<StringRef> linkedBitCodeFiles;
for (BitcodeFile *f : ctx.bitcodeFiles)
linkedBitCodeFiles.insert(f->getName());
for (BitcodeFile *f : ctx.lazyBitcodeFiles) {
if (!f->lazy)
continue;
if (linkedBitCodeFiles.contains(f->getName()))
continue;
std::string path =
replaceThinLTOSuffix(getThinLTOOutputFile(f->obj->getName()));
std::unique_ptr<raw_fd_ostream> os = openFile(path + ".thinlto.bc");
if (!os)
continue;
ModuleSummaryIndex m(/*HaveGVs*/ false);
m.setSkipModuleByDistributedBackend();
writeIndexToFile(m, *os);
if (config->thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
}
// Merge all the bitcode files we have seen, codegen the result
// and return the resulting ObjectFile(s).
std::vector<InputFile *> BitcodeCompiler::compile() {
unsigned maxTasks = ltoObj->getMaxTasks();
buf.resize(maxTasks);
files.resize(maxTasks);
filenames.resize(maxTasks);
// The --thinlto-cache-dir option specifies the path to a directory in which
// to cache native object files for ThinLTO incremental builds. If a path was
// specified, configure LTO to use it as the cache directory.
FileCache cache;
if (!config->thinLTOCacheDir.empty())
cache = check(localCache("ThinLTO", "Thin", config->thinLTOCacheDir,
[&](size_t task, const Twine &moduleName,
std::unique_ptr<MemoryBuffer> mb) {
files[task] = std::move(mb);
filenames[task] = moduleName.str();
}));
if (!ctx.bitcodeFiles.empty())
checkError(ltoObj->run(
[&](size_t task, const Twine &moduleName) {
buf[task].first = moduleName.str();
return std::make_unique<CachedFileStream>(
std::make_unique<raw_svector_ostream>(buf[task].second));
},
cache));
// Emit empty index files for non-indexed files but not in single-module mode.
if (config->thinLTOModulesToCompile.empty()) {
for (StringRef s : thinIndices) {
std::string path = getThinLTOOutputFile(s);
openFile(path + ".thinlto.bc");
if (config->thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
}
if (config->thinLTOEmitIndexFiles)
thinLTOCreateEmptyIndexFiles();
if (config->thinLTOIndexOnly) {
if (!config->ltoObjPath.empty())
saveBuffer(buf[0].second, config->ltoObjPath);
// ThinLTO with index only option is required to generate only the index
// files. After that, we exit from linker and ThinLTO backend runs in a
// distributed environment.
if (indexFile)
indexFile->close();
return {};
}
if (!config->thinLTOCacheDir.empty())
pruneCache(config->thinLTOCacheDir, config->thinLTOCachePolicy, files);
if (!config->ltoObjPath.empty()) {
saveBuffer(buf[0].second, config->ltoObjPath);
for (unsigned i = 1; i != maxTasks; ++i)
saveBuffer(buf[i].second, config->ltoObjPath + Twine(i));
}
bool savePrelink = config->saveTempsArgs.contains("prelink");
std::vector<InputFile *> ret;
const char *ext = config->ltoEmitAsm ? ".s" : ".o";
for (unsigned i = 0; i != maxTasks; ++i) {
StringRef bitcodeFilePath;
StringRef objBuf;
if (files[i]) {
// When files[i] is not null, we get the native relocatable file from the
// cache. filenames[i] contains the original BitcodeFile's identifier.
objBuf = files[i]->getBuffer();
bitcodeFilePath = filenames[i];
} else {
// Get the native relocatable file after in-process LTO compilation.
objBuf = buf[i].second;
bitcodeFilePath = buf[i].first;
}
if (objBuf.empty())
continue;
// If the input bitcode file is path/to/x.o and -o specifies a.out, the
// corresponding native relocatable file path will look like:
// path/to/a.out.lto.x.o.
StringRef ltoObjName;
if (bitcodeFilePath == "ld-temp.o") {
ltoObjName =
saver().save(Twine(config->outputFile) + ".lto" +
(i == 0 ? Twine("") : Twine('.') + Twine(i)) + ext);
} else {
StringRef directory = sys::path::parent_path(bitcodeFilePath);
// For an archive member, which has an identifier like "d/a.a(coll.o at
// 8)" (see BitcodeFile::BitcodeFile), use the filename; otherwise, use
// the stem (d/a.o => a).
StringRef baseName = bitcodeFilePath.ends_with(")")
? sys::path::filename(bitcodeFilePath)
: sys::path::stem(bitcodeFilePath);
StringRef outputFileBaseName = sys::path::filename(config->outputFile);
SmallString<256> path;
sys::path::append(path, directory,
outputFileBaseName + ".lto." + baseName + ext);
sys::path::remove_dots(path, true);
ltoObjName = saver().save(path.str());
}
if (savePrelink || config->ltoEmitAsm)
saveBuffer(buf[i].second, ltoObjName);
if (!config->ltoEmitAsm)
ret.push_back(createObjFile(MemoryBufferRef(objBuf, ltoObjName)));
}
return ret;
}