blob: e192676394c9654f0f69ffcba33ef25dacf86723 [file] [log] [blame]
//===- ARM64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Arch/ARM64Common.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "mach-o/compact_unwind_encoding.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
namespace {
struct ARM64 : ARM64Common {
ARM64();
void writeStub(uint8_t *buf, const Symbol &, uint64_t) const override;
void writeStubHelperHeader(uint8_t *buf) const override;
void writeStubHelperEntry(uint8_t *buf, const Symbol &,
uint64_t entryAddr) const override;
void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
uint64_t &stubOffset, uint64_t selrefVA,
Symbol *objcMsgSend) const override;
void populateThunk(InputSection *thunk, Symbol *funcSym) override;
void applyOptimizationHints(uint8_t *, const ObjFile &) const override;
};
} // namespace
// Random notes on reloc types:
// ADDEND always pairs with BRANCH26, PAGE21, or PAGEOFF12
// POINTER_TO_GOT: ld64 supports a 4-byte pc-relative form as well as an 8-byte
// absolute version of this relocation. The semantics of the absolute relocation
// are weird -- it results in the value of the GOT slot being written, instead
// of the address. Let's not support it unless we find a real-world use case.
static constexpr std::array<RelocAttrs, 11> relocAttrsArray{{
#define B(x) RelocAttrBits::x
{"UNSIGNED",
B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)},
{"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)},
{"BRANCH26", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)},
{"PAGE21", B(PCREL) | B(EXTERN) | B(BYTE4)},
{"PAGEOFF12", B(ABSOLUTE) | B(EXTERN) | B(BYTE4)},
{"GOT_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(GOT) | B(BYTE4)},
{"GOT_LOAD_PAGEOFF12",
B(ABSOLUTE) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)},
{"POINTER_TO_GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)},
{"TLVP_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(TLV) | B(BYTE4)},
{"TLVP_LOAD_PAGEOFF12",
B(ABSOLUTE) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)},
{"ADDEND", B(ADDEND)},
#undef B
}};
static constexpr uint32_t stubCode[] = {
0x90000010, // 00: adrp x16, __la_symbol_ptr@page
0xf9400210, // 04: ldr x16, [x16, __la_symbol_ptr@pageoff]
0xd61f0200, // 08: br x16
};
void ARM64::writeStub(uint8_t *buf8, const Symbol &sym,
uint64_t pointerVA) const {
::writeStub(buf8, stubCode, sym, pointerVA);
}
static constexpr uint32_t stubHelperHeaderCode[] = {
0x90000011, // 00: adrp x17, _dyld_private@page
0x91000231, // 04: add x17, x17, _dyld_private@pageoff
0xa9bf47f0, // 08: stp x16/x17, [sp, #-16]!
0x90000010, // 0c: adrp x16, dyld_stub_binder@page
0xf9400210, // 10: ldr x16, [x16, dyld_stub_binder@pageoff]
0xd61f0200, // 14: br x16
};
void ARM64::writeStubHelperHeader(uint8_t *buf8) const {
::writeStubHelperHeader<LP64>(buf8, stubHelperHeaderCode);
}
static constexpr uint32_t stubHelperEntryCode[] = {
0x18000050, // 00: ldr w16, l0
0x14000000, // 04: b stubHelperHeader
0x00000000, // 08: l0: .long 0
};
void ARM64::writeStubHelperEntry(uint8_t *buf8, const Symbol &sym,
uint64_t entryVA) const {
::writeStubHelperEntry(buf8, stubHelperEntryCode, sym, entryVA);
}
static constexpr uint32_t objcStubsFastCode[] = {
0x90000001, // adrp x1, __objc_selrefs@page
0xf9400021, // ldr x1, [x1, @selector("foo")@pageoff]
0x90000010, // adrp x16, _got@page
0xf9400210, // ldr x16, [x16, _objc_msgSend@pageoff]
0xd61f0200, // br x16
0xd4200020, // brk #0x1
0xd4200020, // brk #0x1
0xd4200020, // brk #0x1
};
static constexpr uint32_t objcStubsSmallCode[] = {
0x90000001, // adrp x1, __objc_selrefs@page
0xf9400021, // ldr x1, [x1, @selector("foo")@pageoff]
0x14000000, // b _objc_msgSend
};
void ARM64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
uint64_t &stubOffset, uint64_t selrefVA,
Symbol *objcMsgSend) const {
uint64_t objcMsgSendAddr;
uint64_t objcStubSize;
uint64_t objcMsgSendIndex;
if (config->objcStubsMode == ObjCStubsMode::fast) {
objcStubSize = target->objcStubsFastSize;
objcMsgSendAddr = in.got->addr;
objcMsgSendIndex = objcMsgSend->gotIndex;
::writeObjCMsgSendFastStub<LP64>(buf, objcStubsFastCode, sym, stubsAddr,
stubOffset, selrefVA, objcMsgSendAddr,
objcMsgSendIndex);
} else {
assert(config->objcStubsMode == ObjCStubsMode::small);
objcStubSize = target->objcStubsSmallSize;
if (auto *d = dyn_cast<Defined>(objcMsgSend)) {
objcMsgSendAddr = d->getVA();
objcMsgSendIndex = 0;
} else {
objcMsgSendAddr = in.stubs->addr;
objcMsgSendIndex = objcMsgSend->stubsIndex;
}
::writeObjCMsgSendSmallStub<LP64>(buf, objcStubsSmallCode, sym, stubsAddr,
stubOffset, selrefVA, objcMsgSendAddr,
objcMsgSendIndex);
}
stubOffset += objcStubSize;
}
// A thunk is the relaxed variation of stubCode. We don't need the
// extra indirection through a lazy pointer because the target address
// is known at link time.
static constexpr uint32_t thunkCode[] = {
0x90000010, // 00: adrp x16, <thunk.ptr>@page
0x91000210, // 04: add x16, [x16,<thunk.ptr>@pageoff]
0xd61f0200, // 08: br x16
};
void ARM64::populateThunk(InputSection *thunk, Symbol *funcSym) {
thunk->align = 4;
thunk->data = {reinterpret_cast<const uint8_t *>(thunkCode),
sizeof(thunkCode)};
thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGEOFF12,
/*pcrel=*/false, /*length=*/2,
/*offset=*/4, /*addend=*/0,
/*referent=*/funcSym);
thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGE21,
/*pcrel=*/true, /*length=*/2,
/*offset=*/0, /*addend=*/0,
/*referent=*/funcSym);
}
ARM64::ARM64() : ARM64Common(LP64()) {
cpuType = CPU_TYPE_ARM64;
cpuSubtype = CPU_SUBTYPE_ARM64_ALL;
stubSize = sizeof(stubCode);
thunkSize = sizeof(thunkCode);
objcStubsFastSize = sizeof(objcStubsFastCode);
objcStubsFastAlignment = 32;
objcStubsSmallSize = sizeof(objcStubsSmallCode);
objcStubsSmallAlignment = 4;
// Branch immediate is two's complement 26 bits, which is implicitly
// multiplied by 4 (since all functions are 4-aligned: The branch range
// is -4*(2**(26-1))..4*(2**(26-1) - 1).
backwardBranchRange = 128 * 1024 * 1024;
forwardBranchRange = backwardBranchRange - 4;
modeDwarfEncoding = UNWIND_ARM64_MODE_DWARF;
subtractorRelocType = ARM64_RELOC_SUBTRACTOR;
unsignedRelocType = ARM64_RELOC_UNSIGNED;
stubHelperHeaderSize = sizeof(stubHelperHeaderCode);
stubHelperEntrySize = sizeof(stubHelperEntryCode);
relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()};
}
namespace {
struct Adrp {
uint32_t destRegister;
int64_t addend;
};
struct Add {
uint8_t destRegister;
uint8_t srcRegister;
uint32_t addend;
};
enum ExtendType { ZeroExtend = 1, Sign64 = 2, Sign32 = 3 };
struct Ldr {
uint8_t destRegister;
uint8_t baseRegister;
uint8_t p2Size;
bool isFloat;
ExtendType extendType;
int64_t offset;
};
} // namespace
static bool parseAdrp(uint32_t insn, Adrp &adrp) {
if ((insn & 0x9f000000) != 0x90000000)
return false;
adrp.destRegister = insn & 0x1f;
uint64_t immHi = (insn >> 5) & 0x7ffff;
uint64_t immLo = (insn >> 29) & 0x3;
adrp.addend = SignExtend64<21>(immLo | (immHi << 2)) * 4096;
return true;
}
static bool parseAdd(uint32_t insn, Add &add) {
if ((insn & 0xffc00000) != 0x91000000)
return false;
add.destRegister = insn & 0x1f;
add.srcRegister = (insn >> 5) & 0x1f;
add.addend = (insn >> 10) & 0xfff;
return true;
}
static bool parseLdr(uint32_t insn, Ldr &ldr) {
ldr.destRegister = insn & 0x1f;
ldr.baseRegister = (insn >> 5) & 0x1f;
uint8_t size = insn >> 30;
uint8_t opc = (insn >> 22) & 3;
if ((insn & 0x3fc00000) == 0x39400000) {
// LDR (immediate), LDRB (immediate), LDRH (immediate)
ldr.p2Size = size;
ldr.extendType = ZeroExtend;
ldr.isFloat = false;
} else if ((insn & 0x3f800000) == 0x39800000) {
// LDRSB (immediate), LDRSH (immediate), LDRSW (immediate)
ldr.p2Size = size;
ldr.extendType = static_cast<ExtendType>(opc);
ldr.isFloat = false;
} else if ((insn & 0x3f400000) == 0x3d400000) {
// LDR (immediate, SIMD&FP)
ldr.extendType = ZeroExtend;
ldr.isFloat = true;
if (opc == 1)
ldr.p2Size = size;
else if (size == 0 && opc == 3)
ldr.p2Size = 4;
else
return false;
} else {
return false;
}
ldr.offset = ((insn >> 10) & 0xfff) << ldr.p2Size;
return true;
}
static bool isValidAdrOffset(int32_t delta) { return isInt<21>(delta); }
static void writeAdr(void *loc, uint32_t dest, int32_t delta) {
assert(isValidAdrOffset(delta));
uint32_t opcode = 0x10000000;
uint32_t immHi = (delta & 0x001ffffc) << 3;
uint32_t immLo = (delta & 0x00000003) << 29;
write32le(loc, opcode | immHi | immLo | dest);
}
static void writeNop(void *loc) { write32le(loc, 0xd503201f); }
static bool isLiteralLdrEligible(const Ldr &ldr) {
return ldr.p2Size > 1 && isShiftedInt<19, 2>(ldr.offset);
}
static void writeLiteralLdr(void *loc, const Ldr &ldr) {
assert(isLiteralLdrEligible(ldr));
uint32_t imm19 = (ldr.offset / 4 & maskTrailingOnes<uint32_t>(19)) << 5;
uint32_t opcode;
switch (ldr.p2Size) {
case 2:
if (ldr.isFloat)
opcode = 0x1c000000;
else
opcode = ldr.extendType == Sign64 ? 0x98000000 : 0x18000000;
break;
case 3:
opcode = ldr.isFloat ? 0x5c000000 : 0x58000000;
break;
case 4:
opcode = 0x9c000000;
break;
default:
llvm_unreachable("Invalid literal ldr size");
}
write32le(loc, opcode | imm19 | ldr.destRegister);
}
static bool isImmediateLdrEligible(const Ldr &ldr) {
// Note: We deviate from ld64's behavior, which converts to immediate loads
// only if ldr.offset < 4096, even though the offset is divided by the load's
// size in the 12-bit immediate operand. Only the unsigned offset variant is
// supported.
uint32_t size = 1 << ldr.p2Size;
return ldr.offset >= 0 && (ldr.offset % size) == 0 &&
isUInt<12>(ldr.offset >> ldr.p2Size);
}
static void writeImmediateLdr(void *loc, const Ldr &ldr) {
assert(isImmediateLdrEligible(ldr));
uint32_t opcode = 0x39000000;
if (ldr.isFloat) {
opcode |= 0x04000000;
assert(ldr.extendType == ZeroExtend);
}
opcode |= ldr.destRegister;
opcode |= ldr.baseRegister << 5;
uint8_t size, opc;
if (ldr.p2Size == 4) {
size = 0;
opc = 3;
} else {
opc = ldr.extendType;
size = ldr.p2Size;
}
uint32_t immBits = ldr.offset >> ldr.p2Size;
write32le(loc, opcode | (immBits << 10) | (opc << 22) | (size << 30));
}
// Transforms a pair of adrp+add instructions into an adr instruction if the
// target is within the +/- 1 MiB range allowed by the adr's 21 bit signed
// immediate offset.
//
// adrp xN, _foo@PAGE
// add xM, xN, _foo@PAGEOFF
// ->
// adr xM, _foo
// nop
static void applyAdrpAdd(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins1 = read32le(buf + offset1);
uint32_t ins2 = read32le(buf + offset2);
Adrp adrp;
Add add;
if (!parseAdrp(ins1, adrp) || !parseAdd(ins2, add))
return;
if (adrp.destRegister != add.srcRegister)
return;
uint64_t addr1 = isec->getVA() + offset1;
uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
int64_t delta = referent - addr1;
if (!isValidAdrOffset(delta))
return;
writeAdr(buf + offset1, add.destRegister, delta);
writeNop(buf + offset2);
}
// Transforms two adrp instructions into a single adrp if their referent
// addresses are located on the same 4096 byte page.
//
// adrp xN, _foo@PAGE
// adrp xN, _bar@PAGE
// ->
// adrp xN, _foo@PAGE
// nop
static void applyAdrpAdrp(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins1 = read32le(buf + offset1);
uint32_t ins2 = read32le(buf + offset2);
Adrp adrp1, adrp2;
if (!parseAdrp(ins1, adrp1) || !parseAdrp(ins2, adrp2))
return;
if (adrp1.destRegister != adrp2.destRegister)
return;
uint64_t page1 = pageBits(offset1 + isec->getVA()) + adrp1.addend;
uint64_t page2 = pageBits(offset2 + isec->getVA()) + adrp2.addend;
if (page1 != page2)
return;
writeNop(buf + offset2);
}
// Transforms a pair of adrp+ldr (immediate) instructions into an ldr (literal)
// load from a PC-relative address if it is 4-byte aligned and within +/- 1 MiB,
// as ldr can encode a signed 19-bit offset that gets multiplied by 4.
//
// adrp xN, _foo@PAGE
// ldr xM, [xN, _foo@PAGEOFF]
// ->
// nop
// ldr xM, _foo
static void applyAdrpLdr(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins1 = read32le(buf + offset1);
uint32_t ins2 = read32le(buf + offset2);
Adrp adrp;
Ldr ldr;
if (!parseAdrp(ins1, adrp) || !parseLdr(ins2, ldr))
return;
if (adrp.destRegister != ldr.baseRegister)
return;
uint64_t addr1 = isec->getVA() + offset1;
uint64_t addr2 = isec->getVA() + offset2;
uint64_t referent = pageBits(addr1) + adrp.addend + ldr.offset;
ldr.offset = referent - addr2;
if (!isLiteralLdrEligible(ldr))
return;
writeNop(buf + offset1);
writeLiteralLdr(buf + offset2, ldr);
}
// GOT loads are emitted by the compiler as a pair of adrp and ldr instructions,
// but they may be changed to adrp+add by relaxGotLoad(). This hint performs
// the AdrpLdr or AdrpAdd transformation depending on whether it was relaxed.
static void applyAdrpLdrGot(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins2 = read32le(buf + offset2);
Add add;
Ldr ldr;
if (parseAdd(ins2, add))
applyAdrpAdd(buf, isec, offset1, offset2);
else if (parseLdr(ins2, ldr))
applyAdrpLdr(buf, isec, offset1, offset2);
}
// Optimizes an adrp+add+ldr sequence used for loading from a local symbol's
// address by loading directly if it's close enough, or to an adrp(p)+ldr
// sequence if it's not.
//
// adrp x0, _foo@PAGE
// add x1, x0, _foo@PAGEOFF
// ldr x2, [x1, #off]
static void applyAdrpAddLdr(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2,
uint64_t offset3) {
uint32_t ins1 = read32le(buf + offset1);
Adrp adrp;
if (!parseAdrp(ins1, adrp))
return;
uint32_t ins2 = read32le(buf + offset2);
Add add;
if (!parseAdd(ins2, add))
return;
uint32_t ins3 = read32le(buf + offset3);
Ldr ldr;
if (!parseLdr(ins3, ldr))
return;
if (adrp.destRegister != add.srcRegister)
return;
if (add.destRegister != ldr.baseRegister)
return;
// Load from the target address directly.
// nop
// nop
// ldr x2, [_foo + #off]
uint64_t addr1 = isec->getVA() + offset1;
uint64_t addr3 = isec->getVA() + offset3;
uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
Ldr literalLdr = ldr;
literalLdr.offset += referent - addr3;
if (isLiteralLdrEligible(literalLdr)) {
writeNop(buf + offset1);
writeNop(buf + offset2);
writeLiteralLdr(buf + offset3, literalLdr);
return;
}
// Load the target address into a register and load from there indirectly.
// adr x1, _foo
// nop
// ldr x2, [x1, #off]
int64_t adrOffset = referent - addr1;
if (isValidAdrOffset(adrOffset)) {
writeAdr(buf + offset1, ldr.baseRegister, adrOffset);
// Note: ld64 moves the offset into the adr instruction for AdrpAddLdr, but
// not for AdrpLdrGotLdr. Its effect is the same either way.
writeNop(buf + offset2);
return;
}
// Move the target's page offset into the ldr's immediate offset.
// adrp x0, _foo@PAGE
// nop
// ldr x2, [x0, _foo@PAGEOFF + #off]
Ldr immediateLdr = ldr;
immediateLdr.baseRegister = adrp.destRegister;
immediateLdr.offset += add.addend;
if (isImmediateLdrEligible(immediateLdr)) {
writeNop(buf + offset2);
writeImmediateLdr(buf + offset3, immediateLdr);
return;
}
}
// Relaxes a GOT-indirect load.
// If the referenced symbol is external and its GOT entry is within +/- 1 MiB,
// the GOT entry can be loaded with a single literal ldr instruction.
// If the referenced symbol is local and thus has been relaxed to adrp+add+ldr,
// we perform the AdrpAddLdr transformation.
static void applyAdrpLdrGotLdr(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2,
uint64_t offset3) {
uint32_t ins2 = read32le(buf + offset2);
Add add;
Ldr ldr2;
if (parseAdd(ins2, add)) {
applyAdrpAddLdr(buf, isec, offset1, offset2, offset3);
} else if (parseLdr(ins2, ldr2)) {
// adrp x1, _foo@GOTPAGE
// ldr x2, [x1, _foo@GOTPAGEOFF]
// ldr x3, [x2, #off]
uint32_t ins1 = read32le(buf + offset1);
Adrp adrp;
if (!parseAdrp(ins1, adrp))
return;
uint32_t ins3 = read32le(buf + offset3);
Ldr ldr3;
if (!parseLdr(ins3, ldr3))
return;
if (ldr2.baseRegister != adrp.destRegister)
return;
if (ldr3.baseRegister != ldr2.destRegister)
return;
// Loads from the GOT must be pointer sized.
if (ldr2.p2Size != 3 || ldr2.isFloat)
return;
uint64_t addr1 = isec->getVA() + offset1;
uint64_t addr2 = isec->getVA() + offset2;
uint64_t referent = pageBits(addr1) + adrp.addend + ldr2.offset;
// Load the GOT entry's address directly.
// nop
// ldr x2, _foo@GOTPAGE + _foo@GOTPAGEOFF
// ldr x3, [x2, #off]
Ldr literalLdr = ldr2;
literalLdr.offset = referent - addr2;
if (isLiteralLdrEligible(literalLdr)) {
writeNop(buf + offset1);
writeLiteralLdr(buf + offset2, literalLdr);
}
}
}
static uint64_t readValue(const uint8_t *&ptr, const uint8_t *end) {
unsigned int n = 0;
uint64_t value = decodeULEB128(ptr, &n, end);
ptr += n;
return value;
}
template <typename Callback>
static void forEachHint(ArrayRef<uint8_t> data, Callback callback) {
std::array<uint64_t, 3> args;
for (const uint8_t *p = data.begin(), *end = data.end(); p < end;) {
uint64_t type = readValue(p, end);
if (type == 0)
break;
uint64_t argCount = readValue(p, end);
// All known LOH types as of 2022-09 have 3 or fewer arguments; skip others.
if (argCount > 3) {
for (unsigned i = 0; i < argCount; ++i)
readValue(p, end);
continue;
}
for (unsigned i = 0; i < argCount; ++i)
args[i] = readValue(p, end);
callback(type, ArrayRef<uint64_t>(args.data(), argCount));
}
}
// On RISC architectures like arm64, materializing a memory address generally
// takes multiple instructions. If the referenced symbol is located close enough
// in memory, fewer instructions are needed.
//
// Linker optimization hints record where addresses are computed. After
// addresses have been assigned, if possible, we change them to a shorter
// sequence of instructions. The size of the binary is not modified; the
// eliminated instructions are replaced with NOPs. This still leads to faster
// code as the CPU can skip over NOPs quickly.
//
// LOHs are specified by the LC_LINKER_OPTIMIZATION_HINTS load command, which
// points to a sequence of ULEB128-encoded numbers. Each entry specifies a
// transformation kind, and 2 or 3 addresses where the instructions are located.
void ARM64::applyOptimizationHints(uint8_t *outBuf, const ObjFile &obj) const {
ArrayRef<uint8_t> data = obj.getOptimizationHints();
if (data.empty())
return;
const ConcatInputSection *section = nullptr;
uint64_t sectionAddr = 0;
uint8_t *buf = nullptr;
auto findSection = [&](uint64_t addr) {
if (section && addr >= sectionAddr &&
addr < sectionAddr + section->getSize())
return true;
if (obj.sections.empty())
return false;
auto secIt = std::prev(llvm::upper_bound(
obj.sections, addr,
[](uint64_t off, const Section *sec) { return off < sec->addr; }));
const Section *sec = *secIt;
if (sec->subsections.empty())
return false;
auto subsecIt = std::prev(llvm::upper_bound(
sec->subsections, addr - sec->addr,
[](uint64_t off, Subsection subsec) { return off < subsec.offset; }));
const Subsection &subsec = *subsecIt;
const ConcatInputSection *isec =
dyn_cast_or_null<ConcatInputSection>(subsec.isec);
if (!isec || isec->shouldOmitFromOutput())
return false;
section = isec;
sectionAddr = subsec.offset + sec->addr;
buf = outBuf + section->outSecOff + section->parent->fileOff;
return true;
};
auto isValidOffset = [&](uint64_t offset) {
if (offset < sectionAddr || offset >= sectionAddr + section->getSize()) {
error(toString(&obj) +
": linker optimization hint spans multiple sections");
return false;
}
return true;
};
bool hasAdrpAdrp = false;
forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
if (kind == LOH_ARM64_ADRP_ADRP) {
hasAdrpAdrp = true;
return;
}
if (!findSection(args[0]))
return;
switch (kind) {
case LOH_ARM64_ADRP_ADD:
if (isValidOffset(args[1]))
applyAdrpAdd(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr);
break;
case LOH_ARM64_ADRP_LDR:
if (isValidOffset(args[1]))
applyAdrpLdr(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr);
break;
case LOH_ARM64_ADRP_LDR_GOT:
if (isValidOffset(args[1]))
applyAdrpLdrGot(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr);
break;
case LOH_ARM64_ADRP_ADD_LDR:
if (isValidOffset(args[1]) && isValidOffset(args[2]))
applyAdrpAddLdr(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr, args[2] - sectionAddr);
break;
case LOH_ARM64_ADRP_LDR_GOT_LDR:
if (isValidOffset(args[1]) && isValidOffset(args[2]))
applyAdrpLdrGotLdr(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr, args[2] - sectionAddr);
break;
case LOH_ARM64_ADRP_ADD_STR:
case LOH_ARM64_ADRP_LDR_GOT_STR:
// TODO: Implement these
break;
}
});
if (!hasAdrpAdrp)
return;
// AdrpAdrp optimization hints are performed in a second pass because they
// might interfere with other transformations. For instance, consider the
// following input:
//
// adrp x0, _foo@PAGE
// add x1, x0, _foo@PAGEOFF
// adrp x0, _bar@PAGE
// add x2, x0, _bar@PAGEOFF
//
// If we perform the AdrpAdrp relaxation first, we get:
//
// adrp x0, _foo@PAGE
// add x1, x0, _foo@PAGEOFF
// nop
// add x2, x0, _bar@PAGEOFF
//
// If we then apply AdrpAdd to the first two instructions, the add will have a
// garbage value in x0:
//
// adr x1, _foo
// nop
// nop
// add x2, x0, _bar@PAGEOFF
forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
if (kind != LOH_ARM64_ADRP_ADRP)
return;
if (!findSection(args[0]))
return;
if (isValidOffset(args[1]))
applyAdrpAdrp(buf, section, args[0] - sectionAddr, args[1] - sectionAddr);
});
}
TargetInfo *macho::createARM64TargetInfo() {
static ARM64 t;
return &t;
}