| //===- ARM.cpp ------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/Object/ELF.h" |
| #include "llvm/Support/Endian.h" |
| |
| using namespace llvm; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| class ARM final : public TargetInfo { |
| public: |
| ARM(); |
| uint32_t calcEFlags() const override; |
| RelExpr getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const override; |
| RelType getDynRel(RelType type) const override; |
| int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| void addPltSymbols(InputSection &isec, uint64_t off) const override; |
| void addPltHeaderSymbols(InputSection &isd) const override; |
| bool needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| uint64_t branchAddr, const Symbol &s, |
| int64_t a) const override; |
| uint32_t getThunkSectionSpacing() const override; |
| bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; |
| void relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| }; |
| } // namespace |
| |
| ARM::ARM() { |
| copyRel = R_ARM_COPY; |
| relativeRel = R_ARM_RELATIVE; |
| iRelativeRel = R_ARM_IRELATIVE; |
| gotRel = R_ARM_GLOB_DAT; |
| pltRel = R_ARM_JUMP_SLOT; |
| symbolicRel = R_ARM_ABS32; |
| tlsGotRel = R_ARM_TLS_TPOFF32; |
| tlsModuleIndexRel = R_ARM_TLS_DTPMOD32; |
| tlsOffsetRel = R_ARM_TLS_DTPOFF32; |
| pltHeaderSize = 32; |
| pltEntrySize = 16; |
| ipltEntrySize = 16; |
| trapInstr = {0xd4, 0xd4, 0xd4, 0xd4}; |
| needsThunks = true; |
| defaultMaxPageSize = 65536; |
| } |
| |
| uint32_t ARM::calcEFlags() const { |
| // The ABIFloatType is used by loaders to detect the floating point calling |
| // convention. |
| uint32_t abiFloatType = 0; |
| if (config->armVFPArgs == ARMVFPArgKind::Base || |
| config->armVFPArgs == ARMVFPArgKind::Default) |
| abiFloatType = EF_ARM_ABI_FLOAT_SOFT; |
| else if (config->armVFPArgs == ARMVFPArgKind::VFP) |
| abiFloatType = EF_ARM_ABI_FLOAT_HARD; |
| |
| // We don't currently use any features incompatible with EF_ARM_EABI_VER5, |
| // but we don't have any firm guarantees of conformance. Linux AArch64 |
| // kernels (as of 2016) require an EABI version to be set. |
| return EF_ARM_EABI_VER5 | abiFloatType; |
| } |
| |
| RelExpr ARM::getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const { |
| switch (type) { |
| case R_ARM_ABS32: |
| case R_ARM_MOVW_ABS_NC: |
| case R_ARM_MOVT_ABS: |
| case R_ARM_THM_MOVW_ABS_NC: |
| case R_ARM_THM_MOVT_ABS: |
| return R_ABS; |
| case R_ARM_THM_JUMP8: |
| case R_ARM_THM_JUMP11: |
| return R_PC; |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_PREL31: |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| case R_ARM_THM_CALL: |
| return R_PLT_PC; |
| case R_ARM_GOTOFF32: |
| // (S + A) - GOT_ORG |
| return R_GOTREL; |
| case R_ARM_GOT_BREL: |
| // GOT(S) + A - GOT_ORG |
| return R_GOT_OFF; |
| case R_ARM_GOT_PREL: |
| case R_ARM_TLS_IE32: |
| // GOT(S) + A - P |
| return R_GOT_PC; |
| case R_ARM_SBREL32: |
| return R_ARM_SBREL; |
| case R_ARM_TARGET1: |
| return config->target1Rel ? R_PC : R_ABS; |
| case R_ARM_TARGET2: |
| if (config->target2 == Target2Policy::Rel) |
| return R_PC; |
| if (config->target2 == Target2Policy::Abs) |
| return R_ABS; |
| return R_GOT_PC; |
| case R_ARM_TLS_GD32: |
| return R_TLSGD_PC; |
| case R_ARM_TLS_LDM32: |
| return R_TLSLD_PC; |
| case R_ARM_TLS_LDO32: |
| return R_DTPREL; |
| case R_ARM_BASE_PREL: |
| // B(S) + A - P |
| // FIXME: currently B(S) assumed to be .got, this may not hold for all |
| // platforms. |
| return R_GOTONLY_PC; |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_REL32: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| return R_PC; |
| case R_ARM_ALU_PC_G0: |
| case R_ARM_ALU_PC_G0_NC: |
| case R_ARM_ALU_PC_G1: |
| case R_ARM_ALU_PC_G1_NC: |
| case R_ARM_ALU_PC_G2: |
| case R_ARM_LDR_PC_G0: |
| case R_ARM_LDR_PC_G1: |
| case R_ARM_LDR_PC_G2: |
| case R_ARM_LDRS_PC_G0: |
| case R_ARM_LDRS_PC_G1: |
| case R_ARM_LDRS_PC_G2: |
| case R_ARM_THM_ALU_PREL_11_0: |
| case R_ARM_THM_PC8: |
| case R_ARM_THM_PC12: |
| return R_ARM_PCA; |
| case R_ARM_MOVW_BREL_NC: |
| case R_ARM_MOVW_BREL: |
| case R_ARM_MOVT_BREL: |
| case R_ARM_THM_MOVW_BREL_NC: |
| case R_ARM_THM_MOVW_BREL: |
| case R_ARM_THM_MOVT_BREL: |
| return R_ARM_SBREL; |
| case R_ARM_NONE: |
| return R_NONE; |
| case R_ARM_TLS_LE32: |
| return R_TPREL; |
| case R_ARM_V4BX: |
| // V4BX is just a marker to indicate there's a "bx rN" instruction at the |
| // given address. It can be used to implement a special linker mode which |
| // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and |
| // not ARMv4 output, we can just ignore it. |
| return R_NONE; |
| default: |
| error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + |
| ") against symbol " + toString(s)); |
| return R_NONE; |
| } |
| } |
| |
| RelType ARM::getDynRel(RelType type) const { |
| if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel)) |
| return R_ARM_ABS32; |
| return R_ARM_NONE; |
| } |
| |
| void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const { |
| write32le(buf, in.plt->getVA()); |
| } |
| |
| void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| // An ARM entry is the address of the ifunc resolver function. |
| write32le(buf, s.getVA()); |
| } |
| |
| // Long form PLT Header that does not have any restrictions on the displacement |
| // of the .plt from the .plt.got. |
| static void writePltHeaderLong(uint8_t *buf) { |
| const uint8_t pltData[] = { |
| 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! |
| 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 |
| 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr |
| 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] |
| 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 |
| 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary |
| 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary |
| 0xd4, 0xd4, 0xd4, 0xd4}; |
| memcpy(buf, pltData, sizeof(pltData)); |
| uint64_t gotPlt = in.gotPlt->getVA(); |
| uint64_t l1 = in.plt->getVA() + 8; |
| write32le(buf + 16, gotPlt - l1 - 8); |
| } |
| |
| // The default PLT header requires the .plt.got to be within 128 Mb of the |
| // .plt in the positive direction. |
| void ARM::writePltHeader(uint8_t *buf) const { |
| // Use a similar sequence to that in writePlt(), the difference is the calling |
| // conventions mean we use lr instead of ip. The PLT entry is responsible for |
| // saving lr on the stack, the dynamic loader is responsible for reloading |
| // it. |
| const uint32_t pltData[] = { |
| 0xe52de004, // L1: str lr, [sp,#-4]! |
| 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4) |
| 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4) |
| 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4) |
| }; |
| |
| uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4; |
| if (!llvm::isUInt<27>(offset)) { |
| // We cannot encode the Offset, use the long form. |
| writePltHeaderLong(buf); |
| return; |
| } |
| write32le(buf + 0, pltData[0]); |
| write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff)); |
| write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff)); |
| write32le(buf + 12, pltData[3] | (offset & 0xfff)); |
| memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary |
| memcpy(buf + 20, trapInstr.data(), 4); |
| memcpy(buf + 24, trapInstr.data(), 4); |
| memcpy(buf + 28, trapInstr.data(), 4); |
| } |
| |
| void ARM::addPltHeaderSymbols(InputSection &isec) const { |
| addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec); |
| addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec); |
| } |
| |
| // Long form PLT entries that do not have any restrictions on the displacement |
| // of the .plt from the .plt.got. |
| static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr, |
| uint64_t pltEntryAddr) { |
| const uint8_t pltData[] = { |
| 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 |
| 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc |
| 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] |
| 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 |
| }; |
| memcpy(buf, pltData, sizeof(pltData)); |
| uint64_t l1 = pltEntryAddr + 4; |
| write32le(buf + 12, gotPltEntryAddr - l1 - 8); |
| } |
| |
| // The default PLT entries require the .plt.got to be within 128 Mb of the |
| // .plt in the positive direction. |
| void ARM::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| // The PLT entry is similar to the example given in Appendix A of ELF for |
| // the Arm Architecture. Instead of using the Group Relocations to find the |
| // optimal rotation for the 8-bit immediate used in the add instructions we |
| // hard code the most compact rotations for simplicity. This saves a load |
| // instruction over the long plt sequences. |
| const uint32_t pltData[] = { |
| 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8 |
| 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8 |
| 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8 |
| }; |
| |
| uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8; |
| if (!llvm::isUInt<27>(offset)) { |
| // We cannot encode the Offset, use the long form. |
| writePltLong(buf, sym.getGotPltVA(), pltEntryAddr); |
| return; |
| } |
| write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff)); |
| write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff)); |
| write32le(buf + 8, pltData[2] | (offset & 0xfff)); |
| memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary |
| } |
| |
| void ARM::addPltSymbols(InputSection &isec, uint64_t off) const { |
| addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec); |
| addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec); |
| } |
| |
| bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| uint64_t branchAddr, const Symbol &s, |
| int64_t a) const { |
| // If S is an undefined weak symbol and does not have a PLT entry then it |
| // will be resolved as a branch to the next instruction. |
| if (s.isUndefWeak() && !s.isInPlt()) |
| return false; |
| // A state change from ARM to Thumb and vice versa must go through an |
| // interworking thunk if the relocation type is not R_ARM_CALL or |
| // R_ARM_THM_CALL. |
| switch (type) { |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_JUMP24: |
| // Source is ARM, all PLT entries are ARM so no interworking required. |
| // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb). |
| if (s.isFunc() && expr == R_PC && (s.getVA() & 1)) |
| return true; |
| LLVM_FALLTHROUGH; |
| case R_ARM_CALL: { |
| uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); |
| return !inBranchRange(type, branchAddr, dst + a); |
| } |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| // Source is Thumb, all PLT entries are ARM so interworking is required. |
| // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM). |
| if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0)) |
| return true; |
| LLVM_FALLTHROUGH; |
| case R_ARM_THM_CALL: { |
| uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA(); |
| return !inBranchRange(type, branchAddr, dst + a); |
| } |
| } |
| return false; |
| } |
| |
| uint32_t ARM::getThunkSectionSpacing() const { |
| // The placing of pre-created ThunkSections is controlled by the value |
| // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to |
| // place the ThunkSection such that all branches from the InputSections |
| // prior to the ThunkSection can reach a Thunk placed at the end of the |
| // ThunkSection. Graphically: |
| // | up to thunkSectionSpacing .text input sections | |
| // | ThunkSection | |
| // | up to thunkSectionSpacing .text input sections | |
| // | ThunkSection | |
| |
| // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This |
| // is to match the most common expected case of a Thumb 2 encoded BL, BLX or |
| // B.W: |
| // ARM B, BL, BLX range +/- 32MiB |
| // Thumb B.W, BL, BLX range +/- 16MiB |
| // Thumb B<cc>.W range +/- 1MiB |
| // If a branch cannot reach a pre-created ThunkSection a new one will be |
| // created so we can handle the rare cases of a Thumb 2 conditional branch. |
| // We intentionally use a lower size for thunkSectionSpacing than the maximum |
| // branch range so the end of the ThunkSection is more likely to be within |
| // range of the branch instruction that is furthest away. The value we shorten |
| // thunkSectionSpacing by is set conservatively to allow us to create 16,384 |
| // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to |
| // one of the Thunks going out of range. |
| |
| // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch |
| // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except |
| // ARMv6T2) the range is +/- 4MiB. |
| |
| return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000 |
| : 0x400000 - 0x7500; |
| } |
| |
| bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { |
| if ((dst & 0x1) == 0) |
| // Destination is ARM, if ARM caller then Src is already 4-byte aligned. |
| // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure |
| // destination will be 4 byte aligned. |
| src &= ~0x3; |
| else |
| // Bit 0 == 1 denotes Thumb state, it is not part of the range. |
| dst &= ~0x1; |
| |
| int64_t offset = dst - src; |
| switch (type) { |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_JUMP24: |
| case R_ARM_CALL: |
| return llvm::isInt<26>(offset); |
| case R_ARM_THM_JUMP19: |
| return llvm::isInt<21>(offset); |
| case R_ARM_THM_JUMP24: |
| case R_ARM_THM_CALL: |
| return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset) |
| : llvm::isInt<23>(offset); |
| default: |
| return true; |
| } |
| } |
| |
| // Helper to produce message text when LLD detects that a CALL relocation to |
| // a non STT_FUNC symbol that may result in incorrect interworking between ARM |
| // or Thumb. |
| static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) { |
| assert(!s.isFunc()); |
| const ErrorPlace place = getErrorPlace(loc); |
| std::string hint; |
| if (!place.srcLoc.empty()) |
| hint = "; " + place.srcLoc; |
| if (s.isSection()) { |
| // Section symbols must be defined and in a section. Users cannot change |
| // the type. Use the section name as getName() returns an empty string. |
| warn(place.loc + "branch and link relocation: " + toString(relt) + |
| " to STT_SECTION symbol " + cast<Defined>(s).section->name + |
| " ; interworking not performed" + hint); |
| } else { |
| // Warn with hint on how to alter the symbol type. |
| warn(getErrorLocation(loc) + "branch and link relocation: " + |
| toString(relt) + " to non STT_FUNC symbol: " + s.getName() + |
| " interworking not performed; consider using directive '.type " + |
| s.getName() + |
| ", %function' to give symbol type STT_FUNC if interworking between " |
| "ARM and Thumb is required" + |
| hint); |
| } |
| } |
| |
| // Rotate a 32-bit unsigned value right by a specified amt of bits. |
| static uint32_t rotr32(uint32_t val, uint32_t amt) { |
| assert(amt < 32 && "Invalid rotate amount"); |
| return (val >> amt) | (val << ((32 - amt) & 31)); |
| } |
| |
| static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group, |
| uint32_t val) { |
| uint32_t rem, lz; |
| do { |
| lz = llvm::countLeadingZeros(val) & ~1; |
| rem = val; |
| if (lz == 32) // implies rem == 0 |
| break; |
| val &= 0xffffff >> lz; |
| } while (group--); |
| return {rem, lz}; |
| } |
| |
| static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val, |
| int group, bool check) { |
| // ADD/SUB (immediate) add = bit23, sub = bit22 |
| // immediate field carries is a 12-bit modified immediate, made up of a 4-bit |
| // even rotate right and an 8-bit immediate. |
| uint32_t opcode = 0x00800000; |
| if (val >> 63) { |
| opcode = 0x00400000; |
| val = -val; |
| } |
| uint32_t imm, lz; |
| std::tie(imm, lz) = getRemAndLZForGroup(group, val); |
| uint32_t rot = 0; |
| if (lz < 24) { |
| imm = rotr32(imm, 24 - lz); |
| rot = (lz + 8) << 7; |
| } |
| if (check && imm > 0xff) |
| error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() + |
| " for relocation " + toString(rel.type)); |
| write32le(loc, (read32le(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff)); |
| } |
| |
| static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val, |
| int group) { |
| // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a |
| // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear |
| // bottom bit to recover S + A - P. |
| if (rel.sym->isFunc()) |
| val &= ~0x1; |
| // LDR (literal) u = bit23 |
| uint32_t opcode = 0x00800000; |
| if (val >> 63) { |
| opcode = 0x0; |
| val = -val; |
| } |
| uint32_t imm = getRemAndLZForGroup(group, val).first; |
| checkUInt(loc, imm, 12, rel); |
| write32le(loc, (read32le(loc) & 0xff7ff000) | opcode | imm); |
| } |
| |
| static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val, |
| int group) { |
| // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a |
| // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear |
| // bottom bit to recover S + A - P. |
| if (rel.sym->isFunc()) |
| val &= ~0x1; |
| // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 |
| uint32_t opcode = 0x00800000; |
| if (val >> 63) { |
| opcode = 0x0; |
| val = -val; |
| } |
| uint32_t imm = getRemAndLZForGroup(group, val).first; |
| checkUInt(loc, imm, 8, rel); |
| write32le(loc, (read32le(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) | |
| (imm & 0xf)); |
| } |
| |
| void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| switch (rel.type) { |
| case R_ARM_ABS32: |
| case R_ARM_BASE_PREL: |
| case R_ARM_GOTOFF32: |
| case R_ARM_GOT_BREL: |
| case R_ARM_GOT_PREL: |
| case R_ARM_REL32: |
| case R_ARM_RELATIVE: |
| case R_ARM_SBREL32: |
| case R_ARM_TARGET1: |
| case R_ARM_TARGET2: |
| case R_ARM_TLS_GD32: |
| case R_ARM_TLS_IE32: |
| case R_ARM_TLS_LDM32: |
| case R_ARM_TLS_LDO32: |
| case R_ARM_TLS_LE32: |
| case R_ARM_TLS_TPOFF32: |
| case R_ARM_TLS_DTPOFF32: |
| write32le(loc, val); |
| break; |
| case R_ARM_PREL31: |
| checkInt(loc, val, 31, rel); |
| write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000)); |
| break; |
| case R_ARM_CALL: { |
| // R_ARM_CALL is used for BL and BLX instructions, for symbols of type |
| // STT_FUNC we choose whether to write a BL or BLX depending on the |
| // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is |
| // not of type STT_FUNC then we must preserve the original instruction. |
| // PLT entries are always ARM state so we know we don't need to interwork. |
| assert(rel.sym); // R_ARM_CALL is always reached via relocate(). |
| bool bit0Thumb = val & 1; |
| bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000; |
| // lld 10.0 and before always used bit0Thumb when deciding to write a BLX |
| // even when type not STT_FUNC. |
| if (!rel.sym->isFunc() && isBlx != bit0Thumb) |
| stateChangeWarning(loc, rel.type, *rel.sym); |
| if (rel.sym->isFunc() ? bit0Thumb : isBlx) { |
| // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' |
| checkInt(loc, val, 26, rel); |
| write32le(loc, 0xfa000000 | // opcode |
| ((val & 2) << 23) | // H |
| ((val >> 2) & 0x00ffffff)); // imm24 |
| break; |
| } |
| // BLX (always unconditional) instruction to an ARM Target, select an |
| // unconditional BL. |
| write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff)); |
| // fall through as BL encoding is shared with B |
| } |
| LLVM_FALLTHROUGH; |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| checkInt(loc, val, 26, rel); |
| write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff)); |
| break; |
| case R_ARM_THM_JUMP8: |
| // We do a 9 bit check because val is right-shifted by 1 bit. |
| checkInt(loc, val, 9, rel); |
| write16le(loc, (read32le(loc) & 0xff00) | ((val >> 1) & 0x00ff)); |
| break; |
| case R_ARM_THM_JUMP11: |
| // We do a 12 bit check because val is right-shifted by 1 bit. |
| checkInt(loc, val, 12, rel); |
| write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff)); |
| break; |
| case R_ARM_THM_JUMP19: |
| // Encoding T3: Val = S:J2:J1:imm6:imm11:0 |
| checkInt(loc, val, 21, rel); |
| write16le(loc, |
| (read16le(loc) & 0xfbc0) | // opcode cond |
| ((val >> 10) & 0x0400) | // S |
| ((val >> 12) & 0x003f)); // imm6 |
| write16le(loc + 2, |
| 0x8000 | // opcode |
| ((val >> 8) & 0x0800) | // J2 |
| ((val >> 5) & 0x2000) | // J1 |
| ((val >> 1) & 0x07ff)); // imm11 |
| break; |
| case R_ARM_THM_CALL: { |
| // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type |
| // STT_FUNC we choose whether to write a BL or BLX depending on the |
| // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is |
| // not of type STT_FUNC then we must preserve the original instruction. |
| // PLT entries are always ARM state so we know we need to interwork. |
| assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate(). |
| bool bit0Thumb = val & 1; |
| bool isBlx = (read16le(loc + 2) & 0x1000) == 0; |
| // lld 10.0 and before always used bit0Thumb when deciding to write a BLX |
| // even when type not STT_FUNC. PLT entries generated by LLD are always ARM. |
| if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb) |
| stateChangeWarning(loc, rel.type, *rel.sym); |
| if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) { |
| // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As |
| // the BLX instruction may only be two byte aligned. This must be done |
| // before overflow check. |
| val = alignTo(val, 4); |
| write16le(loc + 2, read16le(loc + 2) & ~0x1000); |
| } else { |
| write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12); |
| } |
| if (!config->armJ1J2BranchEncoding) { |
| // Older Arm architectures do not support R_ARM_THM_JUMP24 and have |
| // different encoding rules and range due to J1 and J2 always being 1. |
| checkInt(loc, val, 23, rel); |
| write16le(loc, |
| 0xf000 | // opcode |
| ((val >> 12) & 0x07ff)); // imm11 |
| write16le(loc + 2, |
| (read16le(loc + 2) & 0xd000) | // opcode |
| 0x2800 | // J1 == J2 == 1 |
| ((val >> 1) & 0x07ff)); // imm11 |
| break; |
| } |
| } |
| // Fall through as rest of encoding is the same as B.W |
| LLVM_FALLTHROUGH; |
| case R_ARM_THM_JUMP24: |
| // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 |
| checkInt(loc, val, 25, rel); |
| write16le(loc, |
| 0xf000 | // opcode |
| ((val >> 14) & 0x0400) | // S |
| ((val >> 12) & 0x03ff)); // imm10 |
| write16le(loc + 2, |
| (read16le(loc + 2) & 0xd000) | // opcode |
| (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1 |
| (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2 |
| ((val >> 1) & 0x07ff)); // imm11 |
| break; |
| case R_ARM_MOVW_ABS_NC: |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVW_BREL_NC: |
| write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) | |
| (val & 0x0fff)); |
| break; |
| case R_ARM_MOVT_ABS: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_MOVT_BREL: |
| write32le(loc, (read32le(loc) & ~0x000f0fff) | |
| (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff)); |
| break; |
| case R_ARM_THM_MOVT_ABS: |
| case R_ARM_THM_MOVT_PREL: |
| case R_ARM_THM_MOVT_BREL: |
| // Encoding T1: A = imm4:i:imm3:imm8 |
| write16le(loc, |
| 0xf2c0 | // opcode |
| ((val >> 17) & 0x0400) | // i |
| ((val >> 28) & 0x000f)); // imm4 |
| write16le(loc + 2, |
| (read16le(loc + 2) & 0x8f00) | // opcode |
| ((val >> 12) & 0x7000) | // imm3 |
| ((val >> 16) & 0x00ff)); // imm8 |
| break; |
| case R_ARM_THM_MOVW_ABS_NC: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVW_BREL_NC: |
| // Encoding T3: A = imm4:i:imm3:imm8 |
| write16le(loc, |
| 0xf240 | // opcode |
| ((val >> 1) & 0x0400) | // i |
| ((val >> 12) & 0x000f)); // imm4 |
| write16le(loc + 2, |
| (read16le(loc + 2) & 0x8f00) | // opcode |
| ((val << 4) & 0x7000) | // imm3 |
| (val & 0x00ff)); // imm8 |
| break; |
| case R_ARM_ALU_PC_G0: |
| encodeAluGroup(loc, rel, val, 0, true); |
| break; |
| case R_ARM_ALU_PC_G0_NC: |
| encodeAluGroup(loc, rel, val, 0, false); |
| break; |
| case R_ARM_ALU_PC_G1: |
| encodeAluGroup(loc, rel, val, 1, true); |
| break; |
| case R_ARM_ALU_PC_G1_NC: |
| encodeAluGroup(loc, rel, val, 1, false); |
| break; |
| case R_ARM_ALU_PC_G2: |
| encodeAluGroup(loc, rel, val, 2, true); |
| break; |
| case R_ARM_LDR_PC_G0: |
| encodeLdrGroup(loc, rel, val, 0); |
| break; |
| case R_ARM_LDR_PC_G1: |
| encodeLdrGroup(loc, rel, val, 1); |
| break; |
| case R_ARM_LDR_PC_G2: |
| encodeLdrGroup(loc, rel, val, 2); |
| break; |
| case R_ARM_LDRS_PC_G0: |
| encodeLdrsGroup(loc, rel, val, 0); |
| break; |
| case R_ARM_LDRS_PC_G1: |
| encodeLdrsGroup(loc, rel, val, 1); |
| break; |
| case R_ARM_LDRS_PC_G2: |
| encodeLdrsGroup(loc, rel, val, 2); |
| break; |
| case R_ARM_THM_ALU_PREL_11_0: { |
| // ADR encoding T2 (sub), T3 (add) i:imm3:imm8 |
| int64_t imm = val; |
| uint16_t sub = 0; |
| if (imm < 0) { |
| imm = -imm; |
| sub = 0x00a0; |
| } |
| checkUInt(loc, imm, 12, rel); |
| write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1); |
| write16le(loc + 2, |
| (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff)); |
| break; |
| } |
| case R_ARM_THM_PC8: |
| // ADR and LDR literal encoding T1 positive offset only imm8:00 |
| // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a |
| // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear |
| // bottom bit to recover S + A - Pa. |
| if (rel.sym->isFunc()) |
| val &= ~0x1; |
| checkUInt(loc, val, 10, rel); |
| checkAlignment(loc, val, 4, rel); |
| write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2); |
| break; |
| case R_ARM_THM_PC12: { |
| // LDR (literal) encoding T2, add = (U == '1') imm12 |
| // imm12 is unsigned |
| // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a |
| // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear |
| // bottom bit to recover S + A - Pa. |
| if (rel.sym->isFunc()) |
| val &= ~0x1; |
| int64_t imm12 = val; |
| uint16_t u = 0x0080; |
| if (imm12 < 0) { |
| imm12 = -imm12; |
| u = 0; |
| } |
| checkUInt(loc, imm12, 12, rel); |
| write16le(loc, read16le(loc) | u); |
| write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12); |
| break; |
| } |
| default: |
| llvm_unreachable("unknown relocation"); |
| } |
| } |
| |
| int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| switch (type) { |
| default: |
| internalLinkerError(getErrorLocation(buf), |
| "cannot read addend for relocation " + toString(type)); |
| return 0; |
| case R_ARM_ABS32: |
| case R_ARM_BASE_PREL: |
| case R_ARM_GLOB_DAT: |
| case R_ARM_GOTOFF32: |
| case R_ARM_GOT_BREL: |
| case R_ARM_GOT_PREL: |
| case R_ARM_IRELATIVE: |
| case R_ARM_REL32: |
| case R_ARM_RELATIVE: |
| case R_ARM_SBREL32: |
| case R_ARM_TARGET1: |
| case R_ARM_TARGET2: |
| case R_ARM_TLS_DTPMOD32: |
| case R_ARM_TLS_DTPOFF32: |
| case R_ARM_TLS_GD32: |
| case R_ARM_TLS_IE32: |
| case R_ARM_TLS_LDM32: |
| case R_ARM_TLS_LE32: |
| case R_ARM_TLS_LDO32: |
| case R_ARM_TLS_TPOFF32: |
| return SignExtend64<32>(read32le(buf)); |
| case R_ARM_PREL31: |
| return SignExtend64<31>(read32le(buf)); |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| return SignExtend64<26>(read32le(buf) << 2); |
| case R_ARM_THM_JUMP8: |
| return SignExtend64<9>(read16le(buf) << 1); |
| case R_ARM_THM_JUMP11: |
| return SignExtend64<12>(read16le(buf) << 1); |
| case R_ARM_THM_JUMP19: { |
| // Encoding T3: A = S:J2:J1:imm10:imm6:0 |
| uint16_t hi = read16le(buf); |
| uint16_t lo = read16le(buf + 2); |
| return SignExtend64<20>(((hi & 0x0400) << 10) | // S |
| ((lo & 0x0800) << 8) | // J2 |
| ((lo & 0x2000) << 5) | // J1 |
| ((hi & 0x003f) << 12) | // imm6 |
| ((lo & 0x07ff) << 1)); // imm11:0 |
| } |
| case R_ARM_THM_CALL: |
| if (!config->armJ1J2BranchEncoding) { |
| // Older Arm architectures do not support R_ARM_THM_JUMP24 and have |
| // different encoding rules and range due to J1 and J2 always being 1. |
| uint16_t hi = read16le(buf); |
| uint16_t lo = read16le(buf + 2); |
| return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11 |
| ((lo & 0x7ff) << 1)); // imm11:0 |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| case R_ARM_THM_JUMP24: { |
| // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 |
| // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) |
| uint16_t hi = read16le(buf); |
| uint16_t lo = read16le(buf + 2); |
| return SignExtend64<24>(((hi & 0x0400) << 14) | // S |
| (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1 |
| (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2 |
| ((hi & 0x003ff) << 12) | // imm0 |
| ((lo & 0x007ff) << 1)); // imm11:0 |
| } |
| // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and |
| // MOVT is in the range -32768 <= A < 32768 |
| case R_ARM_MOVW_ABS_NC: |
| case R_ARM_MOVT_ABS: |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_MOVW_BREL_NC: |
| case R_ARM_MOVT_BREL: { |
| uint64_t val = read32le(buf) & 0x000f0fff; |
| return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff)); |
| } |
| case R_ARM_THM_MOVW_ABS_NC: |
| case R_ARM_THM_MOVT_ABS: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| case R_ARM_THM_MOVW_BREL_NC: |
| case R_ARM_THM_MOVT_BREL: { |
| // Encoding T3: A = imm4:i:imm3:imm8 |
| uint16_t hi = read16le(buf); |
| uint16_t lo = read16le(buf + 2); |
| return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4 |
| ((hi & 0x0400) << 1) | // i |
| ((lo & 0x7000) >> 4) | // imm3 |
| (lo & 0x00ff)); // imm8 |
| } |
| case R_ARM_ALU_PC_G0: |
| case R_ARM_ALU_PC_G0_NC: |
| case R_ARM_ALU_PC_G1: |
| case R_ARM_ALU_PC_G1_NC: |
| case R_ARM_ALU_PC_G2: { |
| // 12-bit immediate is a modified immediate made up of a 4-bit even |
| // right rotation and 8-bit constant. After the rotation the value |
| // is zero-extended. When bit 23 is set the instruction is an add, when |
| // bit 22 is set it is a sub. |
| uint32_t instr = read32le(buf); |
| uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2); |
| return (instr & 0x00400000) ? -val : val; |
| } |
| case R_ARM_LDR_PC_G0: |
| case R_ARM_LDR_PC_G1: |
| case R_ARM_LDR_PC_G2: { |
| // ADR (literal) add = bit23, sub = bit22 |
| // LDR (literal) u = bit23 unsigned imm12 |
| bool u = read32le(buf) & 0x00800000; |
| uint32_t imm12 = read32le(buf) & 0xfff; |
| return u ? imm12 : -imm12; |
| } |
| case R_ARM_LDRS_PC_G0: |
| case R_ARM_LDRS_PC_G1: |
| case R_ARM_LDRS_PC_G2: { |
| // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8 |
| uint32_t opcode = read32le(buf); |
| bool u = opcode & 0x00800000; |
| uint32_t imm4l = opcode & 0xf; |
| uint32_t imm4h = (opcode & 0xf00) >> 4; |
| return u ? (imm4h | imm4l) : -(imm4h | imm4l); |
| } |
| case R_ARM_THM_ALU_PREL_11_0: { |
| // Thumb2 ADR, which is an alias for a sub or add instruction with an |
| // unsigned immediate. |
| // ADR encoding T2 (sub), T3 (add) i:imm3:imm8 |
| uint16_t hi = read16le(buf); |
| uint16_t lo = read16le(buf + 2); |
| uint64_t imm = (hi & 0x0400) << 1 | // i |
| (lo & 0x7000) >> 4 | // imm3 |
| (lo & 0x00ff); // imm8 |
| // For sub, addend is negative, add is positive. |
| return (hi & 0x00f0) ? -imm : imm; |
| } |
| case R_ARM_THM_PC8: |
| // ADR and LDR (literal) encoding T1 |
| // From ELF for the ARM Architecture the initial signed addend is formed |
| // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4) |
| // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff |
| return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4; |
| case R_ARM_THM_PC12: { |
| // LDR (literal) encoding T2, add = (U == '1') imm12 |
| bool u = read16le(buf) & 0x0080; |
| uint64_t imm12 = read16le(buf + 2) & 0x0fff; |
| return u ? imm12 : -imm12; |
| } |
| case R_ARM_NONE: |
| case R_ARM_V4BX: |
| case R_ARM_JUMP_SLOT: |
| // These relocations are defined as not having an implicit addend. |
| return 0; |
| } |
| } |
| |
| TargetInfo *elf::getARMTargetInfo() { |
| static ARM target; |
| return ⌖ |
| } |