blob: 49fd979bd0a55cf1de6d3e4bcfec80da9d8c2f70 [file] [log] [blame]
//===- LoongArch.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "OutputSections.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class LoongArch final : public TargetInfo {
public:
LoongArch();
uint32_t calcEFlags() const override;
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
RelType getDynRel(RelType type) const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
bool usesOnlyLowPageBits(RelType type) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
bool relaxOnce(int pass) const override;
void finalizeRelax(int passes) const override;
};
} // end anonymous namespace
enum Op {
SUB_W = 0x00110000,
SUB_D = 0x00118000,
BREAK = 0x002a0000,
SRLI_W = 0x00448000,
SRLI_D = 0x00450000,
ADDI_W = 0x02800000,
ADDI_D = 0x02c00000,
ANDI = 0x03400000,
PCADDU12I = 0x1c000000,
LD_W = 0x28800000,
LD_D = 0x28c00000,
JIRL = 0x4c000000,
};
enum Reg {
R_ZERO = 0,
R_RA = 1,
R_TP = 2,
R_T0 = 12,
R_T1 = 13,
R_T2 = 14,
R_T3 = 15,
};
// Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences
// like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i`
// produces a PC-relative intermediate value with the lowest 12 bits zeroed (the
// "page") for the next instruction to add in the "page offset". (`pcalau12i`
// stands for something like "PC ALigned Add Upper that starts from the 12th
// bit, Immediate".)
//
// Here a "page" is in fact just another way to refer to the 12-bit range
// allowed by the immediate field of the addi/ld/st instructions, and not
// related to the system or the kernel's actual page size. The semantics happen
// to match the AArch64 `adrp`, so the concept of "page" is borrowed here.
static uint64_t getLoongArchPage(uint64_t p) {
return p & ~static_cast<uint64_t>(0xfff);
}
static uint32_t lo12(uint32_t val) { return val & 0xfff; }
// Calculate the adjusted page delta between dest and PC.
uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) {
// Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d
// + lu52i.d`, they must be adjacent so that we can infer the PC of
// `pcalau12i` when calculating the page delta for the other two instructions
// (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit
// complicated. Just use psABI recommended algorithm.
uint64_t pcalau12i_pc;
switch (type) {
case R_LARCH_PCALA64_LO20:
case R_LARCH_GOT64_PC_LO20:
case R_LARCH_TLS_IE64_PC_LO20:
pcalau12i_pc = pc - 8;
break;
case R_LARCH_PCALA64_HI12:
case R_LARCH_GOT64_PC_HI12:
case R_LARCH_TLS_IE64_PC_HI12:
pcalau12i_pc = pc - 12;
break;
default:
pcalau12i_pc = pc;
break;
}
uint64_t result = getLoongArchPage(dest) - getLoongArchPage(pcalau12i_pc);
if (dest & 0x800)
result += 0x1000 - 0x1'0000'0000;
if (result & 0x8000'0000)
result += 0x1'0000'0000;
return result;
}
static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) {
return op | d | (j << 5) | (k << 10);
}
// Extract bits v[begin:end], where range is inclusive.
static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) {
return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end;
}
static uint32_t setD5k16(uint32_t insn, uint32_t imm) {
uint32_t immLo = extractBits(imm, 15, 0);
uint32_t immHi = extractBits(imm, 20, 16);
return (insn & 0xfc0003e0) | (immLo << 10) | immHi;
}
static uint32_t setD10k16(uint32_t insn, uint32_t imm) {
uint32_t immLo = extractBits(imm, 15, 0);
uint32_t immHi = extractBits(imm, 25, 16);
return (insn & 0xfc000000) | (immLo << 10) | immHi;
}
static uint32_t setJ20(uint32_t insn, uint32_t imm) {
return (insn & 0xfe00001f) | (extractBits(imm, 19, 0) << 5);
}
static uint32_t setK12(uint32_t insn, uint32_t imm) {
return (insn & 0xffc003ff) | (extractBits(imm, 11, 0) << 10);
}
static uint32_t setK16(uint32_t insn, uint32_t imm) {
return (insn & 0xfc0003ff) | (extractBits(imm, 15, 0) << 10);
}
static bool isJirl(uint32_t insn) {
return (insn & 0xfc000000) == JIRL;
}
LoongArch::LoongArch() {
// The LoongArch ISA itself does not have a limit on page sizes. According to
// the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is
// 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to
// "unlimited".
// However, practically the maximum usable page size is constrained by the
// kernel implementation, and 64KiB is the biggest non-huge page size
// supported by Linux as of v6.4. The most widespread page size in use,
// though, is 16KiB.
defaultCommonPageSize = 16384;
defaultMaxPageSize = 65536;
write32le(trapInstr.data(), BREAK); // break 0
copyRel = R_LARCH_COPY;
pltRel = R_LARCH_JUMP_SLOT;
relativeRel = R_LARCH_RELATIVE;
iRelativeRel = R_LARCH_IRELATIVE;
if (config->is64) {
symbolicRel = R_LARCH_64;
tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64;
tlsOffsetRel = R_LARCH_TLS_DTPREL64;
tlsGotRel = R_LARCH_TLS_TPREL64;
} else {
symbolicRel = R_LARCH_32;
tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32;
tlsOffsetRel = R_LARCH_TLS_DTPREL32;
tlsGotRel = R_LARCH_TLS_TPREL32;
}
gotRel = symbolicRel;
// .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map
gotPltHeaderEntriesNum = 2;
pltHeaderSize = 32;
pltEntrySize = 16;
ipltEntrySize = 16;
}
static uint32_t getEFlags(const InputFile *f) {
if (config->is64)
return cast<ObjFile<ELF64LE>>(f)->getObj().getHeader().e_flags;
return cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags;
}
static bool inputFileHasCode(const InputFile *f) {
for (const auto *sec : f->getSections())
if (sec && sec->flags & SHF_EXECINSTR)
return true;
return false;
}
uint32_t LoongArch::calcEFlags() const {
// If there are only binary input files (from -b binary), use a
// value of 0 for the ELF header flags.
if (ctx.objectFiles.empty())
return 0;
uint32_t target = 0;
const InputFile *targetFile;
for (const InputFile *f : ctx.objectFiles) {
// Do not enforce ABI compatibility if the input file does not contain code.
// This is useful for allowing linkage with data-only object files produced
// with tools like objcopy, that have zero e_flags.
if (!inputFileHasCode(f))
continue;
// Take the first non-zero e_flags as the reference.
uint32_t flags = getEFlags(f);
if (target == 0 && flags != 0) {
target = flags;
targetFile = f;
}
if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) !=
(target & EF_LOONGARCH_ABI_MODIFIER_MASK))
error(toString(f) +
": cannot link object files with different ABI from " +
toString(targetFile));
// We cannot process psABI v1.x / object ABI v0 files (containing stack
// relocations), unlike ld.bfd.
//
// Instead of blindly accepting every v0 object and only failing at
// relocation processing time, just disallow interlink altogether. We
// don't expect significant usage of object ABI v0 in the wild (the old
// world may continue using object ABI v0 for a while, but as it's not
// binary-compatible with the upstream i.e. new-world ecosystem, it's not
// being considered here).
//
// There are briefly some new-world systems with object ABI v0 binaries too.
// It is because these systems were built before the new ABI was finalized.
// These are not supported either due to the extremely small number of them,
// and the few impacted users are advised to simply rebuild world or
// reinstall a recent system.
if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1)
error(toString(f) + ": unsupported object file ABI version");
}
return target;
}
int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const {
switch (type) {
default:
internalLinkerError(getErrorLocation(buf),
"cannot read addend for relocation " + toString(type));
return 0;
case R_LARCH_32:
case R_LARCH_TLS_DTPMOD32:
case R_LARCH_TLS_DTPREL32:
case R_LARCH_TLS_TPREL32:
return SignExtend64<32>(read32le(buf));
case R_LARCH_64:
case R_LARCH_TLS_DTPMOD64:
case R_LARCH_TLS_DTPREL64:
case R_LARCH_TLS_TPREL64:
return read64le(buf);
case R_LARCH_RELATIVE:
case R_LARCH_IRELATIVE:
return config->is64 ? read64le(buf) : read32le(buf);
case R_LARCH_NONE:
case R_LARCH_JUMP_SLOT:
// These relocations are defined as not having an implicit addend.
return 0;
}
}
void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const {
if (config->is64)
write64le(buf, in.plt->getVA());
else
write32le(buf, in.plt->getVA());
}
void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
if (config->writeAddends) {
if (config->is64)
write64le(buf, s.getVA());
else
write32le(buf, s.getVA());
}
}
void LoongArch::writePltHeader(uint8_t *buf) const {
// The LoongArch PLT is currently structured just like that of RISCV.
// Annoyingly, this means the PLT is still using `pcaddu12i` to perform
// PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`),
// in contrast to the AArch64-like page-offset scheme with `pcalau12i` that
// is used everywhere else involving PC-relative operations in the LoongArch
// ELF psABI v2.00.
//
// The `pcrel_{hi20,lo12}` operators are illustrative only and not really
// supported by LoongArch assemblers.
//
// pcaddu12i $t2, %pcrel_hi20(.got.plt)
// sub.[wd] $t1, $t1, $t3
// ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve
// addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0]
// addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt)
// srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0]
// ld.[wd] $t0, $t0, Wordsize ; t0 = link_map
// jr $t3
uint32_t offset = in.gotPlt->getVA() - in.plt->getVA();
uint32_t sub = config->is64 ? SUB_D : SUB_W;
uint32_t ld = config->is64 ? LD_D : LD_W;
uint32_t addi = config->is64 ? ADDI_D : ADDI_W;
uint32_t srli = config->is64 ? SRLI_D : SRLI_W;
write32le(buf + 0, insn(PCADDU12I, R_T2, hi20(offset), 0));
write32le(buf + 4, insn(sub, R_T1, R_T1, R_T3));
write32le(buf + 8, insn(ld, R_T3, R_T2, lo12(offset)));
write32le(buf + 12, insn(addi, R_T1, R_T1, lo12(-target->pltHeaderSize - 12)));
write32le(buf + 16, insn(addi, R_T0, R_T2, lo12(offset)));
write32le(buf + 20, insn(srli, R_T1, R_T1, config->is64 ? 1 : 2));
write32le(buf + 24, insn(ld, R_T0, R_T0, config->wordsize));
write32le(buf + 28, insn(JIRL, R_ZERO, R_T3, 0));
}
void LoongArch::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
// See the comment in writePltHeader for reason why pcaddu12i is used instead
// of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days.
//
// pcaddu12i $t3, %pcrel_hi20(f@.got.plt)
// ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt)
// jirl $t1, $t3, 0
// nop
uint32_t offset = sym.getGotPltVA() - pltEntryAddr;
write32le(buf + 0, insn(PCADDU12I, R_T3, hi20(offset), 0));
write32le(buf + 4,
insn(config->is64 ? LD_D : LD_W, R_T3, R_T3, lo12(offset)));
write32le(buf + 8, insn(JIRL, R_T1, R_T3, 0));
write32le(buf + 12, insn(ANDI, R_ZERO, R_ZERO, 0));
}
RelType LoongArch::getDynRel(RelType type) const {
return type == target->symbolicRel ? type
: static_cast<RelType>(R_LARCH_NONE);
}
RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_LARCH_NONE:
case R_LARCH_MARK_LA:
case R_LARCH_MARK_PCREL:
return R_NONE;
case R_LARCH_32:
case R_LARCH_64:
case R_LARCH_ABS_HI20:
case R_LARCH_ABS_LO12:
case R_LARCH_ABS64_LO20:
case R_LARCH_ABS64_HI12:
return R_ABS;
case R_LARCH_PCALA_LO12:
// We could just R_ABS, but the JIRL instruction reuses the relocation type
// for a different purpose. The questionable usage is part of glibc 2.37
// libc_nonshared.a [1], which is linked into user programs, so we have to
// work around it for a while, even if a new relocation type may be
// introduced in the future [2].
//
// [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a
// [2]: https://github.com/loongson/la-abi-specs/pull/3
return isJirl(read32le(loc)) ? R_PLT : R_ABS;
case R_LARCH_TLS_DTPREL32:
case R_LARCH_TLS_DTPREL64:
return R_DTPREL;
case R_LARCH_TLS_TPREL32:
case R_LARCH_TLS_TPREL64:
case R_LARCH_TLS_LE_HI20:
case R_LARCH_TLS_LE_LO12:
case R_LARCH_TLS_LE64_LO20:
case R_LARCH_TLS_LE64_HI12:
return R_TPREL;
case R_LARCH_ADD6:
case R_LARCH_ADD8:
case R_LARCH_ADD16:
case R_LARCH_ADD32:
case R_LARCH_ADD64:
case R_LARCH_SUB6:
case R_LARCH_SUB8:
case R_LARCH_SUB16:
case R_LARCH_SUB32:
case R_LARCH_SUB64:
// The LoongArch add/sub relocs behave like the RISCV counterparts; reuse
// the RelExpr to avoid code duplication.
return R_RISCV_ADD;
case R_LARCH_32_PCREL:
case R_LARCH_64_PCREL:
case R_LARCH_PCREL20_S2:
return R_PC;
case R_LARCH_B16:
case R_LARCH_B21:
case R_LARCH_B26:
case R_LARCH_CALL36:
return R_PLT_PC;
case R_LARCH_GOT_PC_HI20:
case R_LARCH_GOT64_PC_LO20:
case R_LARCH_GOT64_PC_HI12:
case R_LARCH_TLS_IE_PC_HI20:
case R_LARCH_TLS_IE64_PC_LO20:
case R_LARCH_TLS_IE64_PC_HI12:
return R_LOONGARCH_GOT_PAGE_PC;
case R_LARCH_GOT_PC_LO12:
case R_LARCH_TLS_IE_PC_LO12:
return R_LOONGARCH_GOT;
case R_LARCH_TLS_LD_PC_HI20:
case R_LARCH_TLS_GD_PC_HI20:
return R_LOONGARCH_TLSGD_PAGE_PC;
case R_LARCH_PCALA_HI20:
// Why not R_LOONGARCH_PAGE_PC, majority of references don't go through PLT
// anyway so why waste time checking only to get everything relaxed back to
// it?
//
// This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want
// both the HI20 and LO12 to potentially refer to the PLT. But in reality
// the HI20 reloc appears earlier, and the relocs don't contain enough
// information to let us properly resolve semantics per symbol.
// Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20
// relocs, hence it is nearly impossible to 100% accurately determine each
// HI20's "flavor" without taking big performance hits, in the presence of
// edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far
// apart that relationship is not certain anymore), and programmer mistakes
// (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3).
//
// Ideally we would scan in an extra pass for all LO12s on JIRL, then mark
// every HI20 reloc referring to the same symbol differently; this is not
// feasible with the current function signature of getRelExpr that doesn't
// allow for such inter-pass state.
//
// So, unfortunately we have to again workaround this quirk the same way as
// BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only
// relaxing back to R_LOONGARCH_PAGE_PC if it's known not so at a later
// stage.
return R_LOONGARCH_PLT_PAGE_PC;
case R_LARCH_PCALA64_LO20:
case R_LARCH_PCALA64_HI12:
return R_LOONGARCH_PAGE_PC;
case R_LARCH_GOT_HI20:
case R_LARCH_GOT_LO12:
case R_LARCH_GOT64_LO20:
case R_LARCH_GOT64_HI12:
case R_LARCH_TLS_IE_HI20:
case R_LARCH_TLS_IE_LO12:
case R_LARCH_TLS_IE64_LO20:
case R_LARCH_TLS_IE64_HI12:
return R_GOT;
case R_LARCH_TLS_LD_HI20:
return R_TLSLD_GOT;
case R_LARCH_TLS_GD_HI20:
return R_TLSGD_GOT;
case R_LARCH_RELAX:
return config->relax ? R_RELAX_HINT : R_NONE;
case R_LARCH_ALIGN:
return R_RELAX_HINT;
// Other known relocs that are explicitly unimplemented:
//
// - psABI v1 relocs that need a stateful stack machine to work, and not
// required when implementing psABI v2;
// - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the
// two GNU vtable-related relocs).
//
// [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
bool LoongArch::usesOnlyLowPageBits(RelType type) const {
switch (type) {
default:
return false;
case R_LARCH_PCALA_LO12:
case R_LARCH_GOT_LO12:
case R_LARCH_GOT_PC_LO12:
case R_LARCH_TLS_IE_PC_LO12:
return true;
}
}
void LoongArch::relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
switch (rel.type) {
case R_LARCH_32_PCREL:
checkInt(loc, val, 32, rel);
[[fallthrough]];
case R_LARCH_32:
case R_LARCH_TLS_DTPREL32:
write32le(loc, val);
return;
case R_LARCH_64:
case R_LARCH_TLS_DTPREL64:
case R_LARCH_64_PCREL:
write64le(loc, val);
return;
case R_LARCH_PCREL20_S2:
checkInt(loc, val, 22, rel);
checkAlignment(loc, val, 4, rel);
write32le(loc, setJ20(read32le(loc), val >> 2));
return;
case R_LARCH_B16:
checkInt(loc, val, 18, rel);
checkAlignment(loc, val, 4, rel);
write32le(loc, setK16(read32le(loc), val >> 2));
return;
case R_LARCH_B21:
checkInt(loc, val, 23, rel);
checkAlignment(loc, val, 4, rel);
write32le(loc, setD5k16(read32le(loc), val >> 2));
return;
case R_LARCH_B26:
checkInt(loc, val, 28, rel);
checkAlignment(loc, val, 4, rel);
write32le(loc, setD10k16(read32le(loc), val >> 2));
return;
case R_LARCH_CALL36: {
// This relocation is designed for adjacent pcaddu18i+jirl pairs that
// are patched in one time. Because of sign extension of these insns'
// immediate fields, the relocation range is [-128G - 0x20000, +128G -
// 0x20000) (of course must be 4-byte aligned).
if (((int64_t)val + 0x20000) != llvm::SignExtend64(val + 0x20000, 38))
reportRangeError(loc, rel, Twine(val), llvm::minIntN(38) - 0x20000,
llvm::maxIntN(38) - 0x20000);
checkAlignment(loc, val, 4, rel);
// Since jirl performs sign extension on the offset immediate, adds (1<<17)
// to original val to get the correct hi20.
uint32_t hi20 = extractBits(val + (1 << 17), 37, 18);
// Despite the name, the lower part is actually 18 bits with 4-byte aligned.
uint32_t lo16 = extractBits(val, 17, 2);
write32le(loc, setJ20(read32le(loc), hi20));
write32le(loc + 4, setK16(read32le(loc + 4), lo16));
return;
}
// Relocs intended for `addi`, `ld` or `st`.
case R_LARCH_PCALA_LO12:
// We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12
// on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes
// removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly
// its immediate slot width is different too (16, not 12).
// In this case, process like an R_LARCH_B16, but without overflow checking
// and only taking the value's lowest 12 bits.
if (isJirl(read32le(loc))) {
checkAlignment(loc, val, 4, rel);
val = SignExtend64<12>(val);
write32le(loc, setK16(read32le(loc), val >> 2));
return;
}
[[fallthrough]];
case R_LARCH_ABS_LO12:
case R_LARCH_GOT_PC_LO12:
case R_LARCH_GOT_LO12:
case R_LARCH_TLS_LE_LO12:
case R_LARCH_TLS_IE_PC_LO12:
case R_LARCH_TLS_IE_LO12:
write32le(loc, setK12(read32le(loc), extractBits(val, 11, 0)));
return;
// Relocs intended for `lu12i.w` or `pcalau12i`.
case R_LARCH_ABS_HI20:
case R_LARCH_PCALA_HI20:
case R_LARCH_GOT_PC_HI20:
case R_LARCH_GOT_HI20:
case R_LARCH_TLS_LE_HI20:
case R_LARCH_TLS_IE_PC_HI20:
case R_LARCH_TLS_IE_HI20:
case R_LARCH_TLS_LD_PC_HI20:
case R_LARCH_TLS_LD_HI20:
case R_LARCH_TLS_GD_PC_HI20:
case R_LARCH_TLS_GD_HI20:
write32le(loc, setJ20(read32le(loc), extractBits(val, 31, 12)));
return;
// Relocs intended for `lu32i.d`.
case R_LARCH_ABS64_LO20:
case R_LARCH_PCALA64_LO20:
case R_LARCH_GOT64_PC_LO20:
case R_LARCH_GOT64_LO20:
case R_LARCH_TLS_LE64_LO20:
case R_LARCH_TLS_IE64_PC_LO20:
case R_LARCH_TLS_IE64_LO20:
write32le(loc, setJ20(read32le(loc), extractBits(val, 51, 32)));
return;
// Relocs intended for `lu52i.d`.
case R_LARCH_ABS64_HI12:
case R_LARCH_PCALA64_HI12:
case R_LARCH_GOT64_PC_HI12:
case R_LARCH_GOT64_HI12:
case R_LARCH_TLS_LE64_HI12:
case R_LARCH_TLS_IE64_PC_HI12:
case R_LARCH_TLS_IE64_HI12:
write32le(loc, setK12(read32le(loc), extractBits(val, 63, 52)));
return;
case R_LARCH_ADD6:
*loc = (*loc & 0xc0) | ((*loc + val) & 0x3f);
return;
case R_LARCH_ADD8:
*loc += val;
return;
case R_LARCH_ADD16:
write16le(loc, read16le(loc) + val);
return;
case R_LARCH_ADD32:
write32le(loc, read32le(loc) + val);
return;
case R_LARCH_ADD64:
write64le(loc, read64le(loc) + val);
return;
case R_LARCH_SUB6:
*loc = (*loc & 0xc0) | ((*loc - val) & 0x3f);
return;
case R_LARCH_SUB8:
*loc -= val;
return;
case R_LARCH_SUB16:
write16le(loc, read16le(loc) - val);
return;
case R_LARCH_SUB32:
write32le(loc, read32le(loc) - val);
return;
case R_LARCH_SUB64:
write64le(loc, read64le(loc) - val);
return;
case R_LARCH_MARK_LA:
case R_LARCH_MARK_PCREL:
// no-op
return;
case R_LARCH_RELAX:
return; // Ignored (for now)
default:
llvm_unreachable("unknown relocation");
}
}
static bool relax(InputSection &sec) {
const uint64_t secAddr = sec.getVA();
const MutableArrayRef<Relocation> relocs = sec.relocs();
auto &aux = *sec.relaxAux;
bool changed = false;
ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors);
uint64_t delta = 0;
std::fill_n(aux.relocTypes.get(), relocs.size(), R_LARCH_NONE);
aux.writes.clear();
for (auto [i, r] : llvm::enumerate(relocs)) {
const uint64_t loc = secAddr + r.offset - delta;
uint32_t &cur = aux.relocDeltas[i], remove = 0;
switch (r.type) {
case R_LARCH_ALIGN: {
const uint64_t addend =
r.sym->isUndefined() ? Log2_64(r.addend) + 1 : r.addend;
const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4;
const uint64_t align = 1ULL << (addend & 0xff);
const uint64_t maxBytes = addend >> 8;
const uint64_t off = loc & (align - 1);
const uint64_t curBytes = off == 0 ? 0 : align - off;
// All bytes beyond the alignment boundary should be removed.
// If emit bytes more than max bytes to emit, remove all.
if (maxBytes != 0 && curBytes > maxBytes)
remove = allBytes;
else
remove = allBytes - curBytes;
// If we can't satisfy this alignment, we've found a bad input.
if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) {
errorOrWarn(getErrorLocation((const uint8_t *)loc) +
"insufficient padding bytes for " + lld::toString(r.type) +
": " + Twine(allBytes) + " bytes available for " +
"requested alignment of " + Twine(align) + " bytes");
remove = 0;
}
break;
}
}
// For all anchors whose offsets are <= r.offset, they are preceded by
// the previous relocation whose `relocDeltas` value equals `delta`.
// Decrease their st_value and update their st_size.
for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(1)) {
if (sa[0].end)
sa[0].d->size = sa[0].offset - delta - sa[0].d->value;
else
sa[0].d->value = sa[0].offset - delta;
}
delta += remove;
if (delta != cur) {
cur = delta;
changed = true;
}
}
for (const SymbolAnchor &a : sa) {
if (a.end)
a.d->size = a.offset - delta - a.d->value;
else
a.d->value = a.offset - delta;
}
// Inform assignAddresses that the size has changed.
if (!isUInt<32>(delta))
fatal("section size decrease is too large: " + Twine(delta));
sec.bytesDropped = delta;
return changed;
}
// When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in
// the absence of a linker script. For call and load/store R_LARCH_RELAX, code
// shrinkage may reduce displacement and make more relocations eligible for
// relaxation. Code shrinkage may increase displacement to a call/load/store
// target at a higher fixed address, invalidating an earlier relaxation. Any
// change in section sizes can have cascading effect and require another
// relaxation pass.
bool LoongArch::relaxOnce(int pass) const {
if (config->relocatable)
return false;
if (pass == 0)
initSymbolAnchors();
SmallVector<InputSection *, 0> storage;
bool changed = false;
for (OutputSection *osec : outputSections) {
if (!(osec->flags & SHF_EXECINSTR))
continue;
for (InputSection *sec : getInputSections(*osec, storage))
changed |= relax(*sec);
}
return changed;
}
void LoongArch::finalizeRelax(int passes) const {
log("relaxation passes: " + Twine(passes));
SmallVector<InputSection *, 0> storage;
for (OutputSection *osec : outputSections) {
if (!(osec->flags & SHF_EXECINSTR))
continue;
for (InputSection *sec : getInputSections(*osec, storage)) {
RelaxAux &aux = *sec->relaxAux;
if (!aux.relocDeltas)
continue;
MutableArrayRef<Relocation> rels = sec->relocs();
ArrayRef<uint8_t> old = sec->content();
size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1];
uint8_t *p = context().bAlloc.Allocate<uint8_t>(newSize);
uint64_t offset = 0;
int64_t delta = 0;
sec->content_ = p;
sec->size = newSize;
sec->bytesDropped = 0;
// Update section content: remove NOPs for R_LARCH_ALIGN and rewrite
// instructions for relaxed relocations.
for (size_t i = 0, e = rels.size(); i != e; ++i) {
uint32_t remove = aux.relocDeltas[i] - delta;
delta = aux.relocDeltas[i];
if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE)
continue;
// Copy from last location to the current relocated location.
const Relocation &r = rels[i];
uint64_t size = r.offset - offset;
memcpy(p, old.data() + offset, size);
p += size;
offset = r.offset + remove;
}
memcpy(p, old.data() + offset, old.size() - offset);
// Subtract the previous relocDeltas value from the relocation offset.
// For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease
// their r_offset by the same delta.
delta = 0;
for (size_t i = 0, e = rels.size(); i != e;) {
uint64_t cur = rels[i].offset;
do {
rels[i].offset -= delta;
if (aux.relocTypes[i] != R_LARCH_NONE)
rels[i].type = aux.relocTypes[i];
} while (++i != e && rels[i].offset == cur);
delta = aux.relocDeltas[i - 1];
}
}
}
}
TargetInfo *elf::getLoongArchTargetInfo() {
static LoongArch target;
return &target;
}