blob: 083fff13b3812fb94e5840af0c80dfe8f58911a3 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <unordered_map>
// template <class Key, class T, class Hash, class Pred, class Alloc>
// bool
// operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
// const unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
//
// template <class Key, class T, class Hash, class Pred, class Alloc>
// bool
// operator!=(const unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
// const unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
#include <unordered_map>
#include <string>
#include <cassert>
#include <iterator>
#include "test_macros.h"
#include "min_allocator.h"
#include "test_comparisons.h"
int main(int, char**)
{
{
typedef std::unordered_multimap<int, std::string> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
const C c1(std::begin(a), std::end(a));
const C c2;
assert(testEquality(c1, c2, false));
}
{
typedef std::unordered_multimap<int, std::string> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
const C c1(std::begin(a), std::end(a));
const C c2 = c1;
assert(testEquality(c1, c2, true));
}
{
typedef std::unordered_multimap<int, std::string> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
C c1(std::begin(a), std::end(a));
C c2 = c1;
c2.rehash(30);
assert(testEquality(c1, c2, true));
c2.insert(P(90, "ninety"));
assert(testEquality(c1, c2, false));
c1.insert(P(90, "ninety"));
assert(testEquality(c1, c2, true));
}
{
typedef std::unordered_multimap<int, std::string> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
C c1(std::begin(a), std::end(a));
C c2 = c1;
assert(testEquality(c1, c2, true));
c1.insert(P(70, "seventy 2"));
c2.insert(P(80, "eighty 2"));
assert(testEquality(c1, c2, false));
}
#if TEST_STD_VER >= 11
{
typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>,
min_allocator<std::pair<const int, std::string>>> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
const C c1(std::begin(a), std::end(a));
const C c2;
assert(testEquality(c1, c2, false));
}
{
typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>,
min_allocator<std::pair<const int, std::string>>> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
const C c1(std::begin(a), std::end(a));
const C c2 = c1;
assert(testEquality(c1, c2, true));
}
{
typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>,
min_allocator<std::pair<const int, std::string>>> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
C c1(std::begin(a), std::end(a));
C c2 = c1;
c2.rehash(30);
assert(testEquality(c1, c2, true));
c2.insert(P(90, "ninety"));
assert(testEquality(c1, c2, false));
c1.insert(P(90, "ninety"));
assert(testEquality(c1, c2, true));
}
{
typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>,
min_allocator<std::pair<const int, std::string>>> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(10, "ten"),
P(20, "twenty"),
P(20, "twenty 2"),
P(30, "thirty"),
P(40, "forty"),
P(50, "fifty"),
P(50, "fifty 2"),
P(50, "fifty 3"),
P(60, "sixty"),
P(70, "seventy"),
P(80, "eighty"),
};
C c1(std::begin(a), std::end(a));
C c2 = c1;
assert(testEquality(c1, c2, true));
c1.insert(P(70, "seventy 2"));
c2.insert(P(80, "eighty 2"));
assert(testEquality(c1, c2, false));
}
#endif
// Make sure we take into account the number of times that a key repeats into equality.
{
typedef std::pair<int, char> P;
P a[] = {P(1, 'a'), P(1, 'b'), P(1, 'd'), P(2, 'b')};
P b[] = {P(1, 'a'), P(1, 'b'), P(1, 'b'), P(1, 'd'), P(2, 'b')};
std::unordered_multimap<int, char> c1(std::begin(a), std::end(a));
std::unordered_multimap<int, char> c2(std::begin(b), std::end(b));
assert(testEquality(c1, c2, false));
}
// Make sure we incorporate the values into the equality of the maps.
// If we were to compare only the keys (including how many time each key repeats),
// the following test would fail cause only the values differ.
{
typedef std::pair<int, char> P;
P a[] = {P(1, 'a'), P(1, 'b'), P(1, 'd'), P(2, 'b')};
P b[] = {P(1, 'a'), P(1, 'b'), P(1, 'E'), P(2, 'b')};
// ^ different here
std::unordered_multimap<int, char> c1(std::begin(a), std::end(a));
std::unordered_multimap<int, char> c2(std::begin(b), std::end(b));
assert(testEquality(c1, c2, false));
}
return 0;
}