blob: e2fd0c8b349046591da857b2068c0c15e9f5aa7c [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03
// <memory>
// unique_ptr
// Test unique_ptr converting move ctor
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
#include "type_id.h"
template <int ID = 0>
struct GenericDeleter {
void operator()(void*) const {}
};
template <int ID = 0>
struct GenericConvertingDeleter {
template <int OID>
GenericConvertingDeleter(GenericConvertingDeleter<OID>) {}
template <int OID>
GenericConvertingDeleter& operator=(GenericConvertingDeleter<OID> const&) {
return *this;
}
void operator()(void*) const {}
};
template <class T, class U>
using EnableIfNotSame = typename std::enable_if<
!std::is_same<typename std::decay<T>::type, typename std::decay<U>::type>::value
>::type;
template <class Templ, class Other>
struct is_specialization;
template <template <int> class Templ, int ID1, class Other>
struct is_specialization<Templ<ID1>, Other> : std::false_type {};
template <template <int> class Templ, int ID1, int ID2>
struct is_specialization<Templ<ID1>, Templ<ID2> > : std::true_type {};
template <class Templ, class Other>
using EnableIfSpecialization = typename std::enable_if<
is_specialization<Templ, typename std::decay<Other>::type >::value
>::type;
template <int ID> struct TrackingDeleter;
template <int ID> struct ConstTrackingDeleter;
template <int ID>
struct TrackingDeleter {
TrackingDeleter() : arg_type(&makeArgumentID<>()) {}
TrackingDeleter(TrackingDeleter const&)
: arg_type(&makeArgumentID<TrackingDeleter const&>()) {}
TrackingDeleter(TrackingDeleter&&)
: arg_type(&makeArgumentID<TrackingDeleter &&>()) {}
template <class T, class = EnableIfSpecialization<TrackingDeleter, T> >
TrackingDeleter(T&&) : arg_type(&makeArgumentID<T&&>()) {}
TrackingDeleter& operator=(TrackingDeleter const&) {
arg_type = &makeArgumentID<TrackingDeleter const&>();
return *this;
}
TrackingDeleter& operator=(TrackingDeleter &&) {
arg_type = &makeArgumentID<TrackingDeleter &&>();
return *this;
}
template <class T, class = EnableIfSpecialization<TrackingDeleter, T> >
TrackingDeleter& operator=(T&&) {
arg_type = &makeArgumentID<T&&>();
return *this;
}
void operator()(void*) const {}
public:
TypeID const* reset() const {
TypeID const* tmp = arg_type;
arg_type = nullptr;
return tmp;
}
mutable TypeID const* arg_type;
};
template <int ID>
struct ConstTrackingDeleter {
ConstTrackingDeleter() : arg_type(&makeArgumentID<>()) {}
ConstTrackingDeleter(ConstTrackingDeleter const&)
: arg_type(&makeArgumentID<ConstTrackingDeleter const&>()) {}
ConstTrackingDeleter(ConstTrackingDeleter&&)
: arg_type(&makeArgumentID<ConstTrackingDeleter &&>()) {}
template <class T, class = EnableIfSpecialization<ConstTrackingDeleter, T> >
ConstTrackingDeleter(T&&) : arg_type(&makeArgumentID<T&&>()) {}
const ConstTrackingDeleter& operator=(ConstTrackingDeleter const&) const {
arg_type = &makeArgumentID<ConstTrackingDeleter const&>();
return *this;
}
const ConstTrackingDeleter& operator=(ConstTrackingDeleter &&) const {
arg_type = &makeArgumentID<ConstTrackingDeleter &&>();
return *this;
}
template <class T, class = EnableIfSpecialization<ConstTrackingDeleter, T> >
const ConstTrackingDeleter& operator=(T&&) const {
arg_type = &makeArgumentID<T&&>();
return *this;
}
void operator()(void*) const {}
public:
TypeID const* reset() const {
TypeID const* tmp = arg_type;
arg_type = nullptr;
return tmp;
}
mutable TypeID const* arg_type;
};
template <class ExpectT, int ID>
bool checkArg(TrackingDeleter<ID> const& d) {
return d.arg_type && *d.arg_type == makeArgumentID<ExpectT>();
}
template <class ExpectT, int ID>
bool checkArg(ConstTrackingDeleter<ID> const& d) {
return d.arg_type && *d.arg_type == makeArgumentID<ExpectT>();
}
template <class From, bool AssignIsConst = false>
struct AssignDeleter {
AssignDeleter() = default;
AssignDeleter(AssignDeleter const&) = default;
AssignDeleter(AssignDeleter&&) = default;
AssignDeleter& operator=(AssignDeleter const&) = delete;
AssignDeleter& operator=(AssignDeleter &&) = delete;
template <class T> AssignDeleter& operator=(T&&) && = delete;
template <class T> AssignDeleter& operator=(T&&) const && = delete;
template <class T, class = typename std::enable_if<
std::is_same<T&&, From>::value && !AssignIsConst
>::type>
AssignDeleter& operator=(T&&) & { return *this; }
template <class T, class = typename std::enable_if<
std::is_same<T&&, From>::value && AssignIsConst
>::type>
const AssignDeleter& operator=(T&&) const & { return *this; }
template <class T>
void operator()(T) const {}
};
template <class VT, class DDest, class DSource>
void doDeleterTest() {
using U1 = std::unique_ptr<VT, DDest>;
using U2 = std::unique_ptr<VT, DSource>;
static_assert(std::is_nothrow_assignable<U1, U2&&>::value, "");
typename std::decay<DDest>::type ddest;
typename std::decay<DSource>::type dsource;
U1 u1(nullptr, ddest);
U2 u2(nullptr, dsource);
u1 = std::move(u2);
}
template <bool IsArray>
void test_sfinae() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
{ // Test that different non-reference deleter types are allowed so long
// as they convert to each other.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
static_assert(std::is_assignable<U1, U2&&>::value, "");
}
{ // Test that different non-reference deleter types are disallowed when
// they cannot convert.
using U1 = std::unique_ptr<VT, GenericDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericDeleter<1> >;
static_assert(!std::is_assignable<U1, U2&&>::value, "");
}
{ // Test that if the deleter assignment is not valid the assignment operator
// SFINAEs.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> const& >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(!std::is_assignable<U1, U2&&>::value, "");
static_assert(!std::is_assignable<U1, U3&&>::value, "");
static_assert(!std::is_assignable<U1, U4&&>::value, "");
static_assert(!std::is_assignable<U1, U5&&>::value, "");
using U1C = std::unique_ptr<const VT, GenericConvertingDeleter<0> const&>;
static_assert(std::is_nothrow_assignable<U1C, U1&&>::value, "");
}
{ // Test that if the deleter assignment is not valid the assignment operator
// SFINAEs.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> & >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(std::is_nothrow_assignable<U1, U2&&>::value, "");
static_assert(std::is_nothrow_assignable<U1, U3&&>::value, "");
static_assert(std::is_nothrow_assignable<U1, U4&&>::value, "");
static_assert(std::is_nothrow_assignable<U1, U5&&>::value, "");
using U1C = std::unique_ptr<const VT, GenericConvertingDeleter<0> &>;
static_assert(std::is_nothrow_assignable<U1C, U1&&>::value, "");
}
{ // Test that non-reference destination deleters can be assigned
// from any source deleter type with a suitable conversion. Including
// reference types.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> const &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> &>;
using U6 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(std::is_assignable<U1, U2&&>::value, "");
static_assert(std::is_assignable<U1, U3&&>::value, "");
static_assert(std::is_assignable<U1, U4&&>::value, "");
static_assert(std::is_assignable<U1, U5&&>::value, "");
static_assert(std::is_assignable<U1, U6&&>::value, "");
}
/////////////////////////////////////////////////////////////////////////////
{
using Del = GenericDeleter<0>;
using AD = AssignDeleter<Del&&>;
using ADC = AssignDeleter<Del&&, /*AllowConstAssign*/true>;
doDeleterTest<VT, AD, Del>();
doDeleterTest<VT, AD&, Del>();
doDeleterTest<VT, ADC const&, Del>();
}
{
using Del = GenericDeleter<0>;
using AD = AssignDeleter<Del&>;
using ADC = AssignDeleter<Del&, /*AllowConstAssign*/true>;
doDeleterTest<VT, AD, Del&>();
doDeleterTest<VT, AD&, Del&>();
doDeleterTest<VT, ADC const&, Del&>();
}
{
using Del = GenericDeleter<0>;
using AD = AssignDeleter<Del const&>;
using ADC = AssignDeleter<Del const&, /*AllowConstAssign*/true>;
doDeleterTest<VT, AD, Del const&>();
doDeleterTest<VT, AD&, Del const&>();
doDeleterTest<VT, ADC const&, Del const&>();
}
}
template <bool IsArray>
void test_noexcept() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
{
typedef std::unique_ptr<const VT> APtr;
typedef std::unique_ptr<VT> BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, CDeleter<const VT> > APtr;
typedef std::unique_ptr<VT, CDeleter<VT> > BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, NCDeleter<const VT>&> APtr;
typedef std::unique_ptr<VT, NCDeleter<const VT>&> BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, const NCConstDeleter<const VT>&> APtr;
typedef std::unique_ptr<VT, const NCConstDeleter<const VT>&> BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
}
template <bool IsArray>
void test_deleter_value_category() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
using TD1 = TrackingDeleter<1>;
using TD2 = TrackingDeleter<2>;
TD1 d1;
TD2 d2;
using CD1 = ConstTrackingDeleter<1>;
using CD2 = ConstTrackingDeleter<2>;
CD1 cd1;
CD2 cd2;
{ // Test non-reference deleter conversions
using U1 = std::unique_ptr<VT, TD1 >;
using U2 = std::unique_ptr<VT, TD2 >;
U1 u1;
U2 u2;
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&&>(u1.get_deleter()));
}
{ // Test assignment to non-const ref
using U1 = std::unique_ptr<VT, TD1& >;
using U2 = std::unique_ptr<VT, TD2 >;
U1 u1(nullptr, d1);
U2 u2;
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&&>(u1.get_deleter()));
}
{ // Test assignment to const&.
using U1 = std::unique_ptr<VT, CD1 const& >;
using U2 = std::unique_ptr<VT, CD2 >;
U1 u1(nullptr, cd1);
U2 u2;
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<CD2&&>(u1.get_deleter()));
}
{ // Test assignment from non-const ref
using U1 = std::unique_ptr<VT, TD1 >;
using U2 = std::unique_ptr<VT, TD2& >;
U1 u1;
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&>(u1.get_deleter()));
}
{ // Test assignment from const ref
using U1 = std::unique_ptr<VT, TD1 >;
using U2 = std::unique_ptr<VT, TD2 const& >;
U1 u1;
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2 const&>(u1.get_deleter()));
}
{ // Test assignment from non-const ref
using U1 = std::unique_ptr<VT, TD1& >;
using U2 = std::unique_ptr<VT, TD2& >;
U1 u1(nullptr, d1);
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&>(u1.get_deleter()));
}
{ // Test assignment from const ref
using U1 = std::unique_ptr<VT, TD1& >;
using U2 = std::unique_ptr<VT, TD2 const& >;
U1 u1(nullptr, d1);
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2 const&>(u1.get_deleter()));
}
{ // Test assignment from non-const ref
using U1 = std::unique_ptr<VT, CD1 const& >;
using U2 = std::unique_ptr<VT, CD2 & >;
U1 u1(nullptr, cd1);
U2 u2(nullptr, cd2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<CD2 &>(u1.get_deleter()));
}
{ // Test assignment from const ref
using U1 = std::unique_ptr<VT, CD1 const& >;
using U2 = std::unique_ptr<VT, CD2 const& >;
U1 u1(nullptr, cd1);
U2 u2(nullptr, cd2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<CD2 const&>(u1.get_deleter()));
}
}
int main(int, char**) {
{
test_sfinae</*IsArray*/false>();
test_noexcept<false>();
test_deleter_value_category<false>();
}
{
test_sfinae</*IsArray*/true>();
test_noexcept<true>();
test_deleter_value_category<true>();
}
return 0;
}