| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Computes arccos(x). |
| // |
| // The incoming argument is first reduced by noting that arccos(x) is invalid |
| // for abs(x) > 1. |
| // |
| // For denormal and small arguments arccos(x) = pi/2 to machine accuracy. |
| // |
| // Remaining argument ranges are handled as follows: |
| // * For abs(x) <= 0.5 use: |
| // arccos(x) = pi/2 - arcsin(x) = pi/2 - (x + x^3 * R(x^2)) |
| // where R(x^2) is a rational minimax approximation to (arcsin(x) - x)/x^3. |
| // * For abs(x) > 0.5 exploit the identity: |
| // arccos(x) = pi - 2 * arcsin(sqrt(1 - x)/2) |
| // together with the above rational approximation, and reconstruct the terms |
| // carefully. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #if __CLC_FPSIZE == 32 |
| |
| _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) { |
| // Some constants and split constants. |
| const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963705e+00); |
| const __CLC_GENTYPE pi = __CLC_FP_LIT(3.1415926535897933e+00); |
| const __CLC_GENTYPE piby2_head = __CLC_FP_LIT(1.5707963267948965580e+00); |
| const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.12323399573676603587e-17); |
| |
| __CLC_UINTN ux = __CLC_AS_UINTN(x); |
| __CLC_UINTN aux = ux & ~SIGNBIT_SP32; |
| __CLC_INTN xneg = ux != aux; |
| __CLC_INTN xexp = __CLC_AS_INTN(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; |
| __CLC_GENTYPE y = __CLC_AS_GENTYPE(aux); |
| |
| // transform if |x| >= 0.5 |
| __CLC_INTN transform = xexp >= -1; |
| |
| __CLC_GENTYPE y2 = y * y; |
| __CLC_GENTYPE yt = 0.5f * (1.0f - y); |
| __CLC_GENTYPE r = transform ? yt : y2; |
| |
| // Use a rational approximation for [0.0, 0.5] |
| __CLC_GENTYPE a = |
| __clc_mad(r, |
| __clc_mad(r, |
| __clc_mad(r, -0.00396137437848476485201154797087F, |
| -0.0133819288943925804214011424456F), |
| -0.0565298683201845211985026327361F), |
| 0.184161606965100694821398249421F); |
| |
| __CLC_GENTYPE b = __clc_mad(r, -0.836411276854206731913362287293F, |
| 1.10496961524520294485512696706F); |
| __CLC_GENTYPE u = r * MATH_DIVIDE(a, b); |
| |
| __CLC_GENTYPE s = __clc_sqrt(r); |
| y = s; |
| __CLC_GENTYPE s1 = __CLC_AS_GENTYPE(__CLC_AS_UINTN(s) & 0xffff0000); |
| __CLC_GENTYPE c = MATH_DIVIDE(__clc_mad(s1, -s1, r), s + s1); |
| __CLC_GENTYPE rettn = __clc_mad(s + __clc_mad(y, u, -piby2_tail), -2.0f, pi); |
| __CLC_GENTYPE rettp = 2.0F * (s1 + __clc_mad(y, u, c)); |
| __CLC_GENTYPE rett = xneg ? rettn : rettp; |
| __CLC_GENTYPE ret = piby2_head - (x - __clc_mad(x, -u, piby2_tail)); |
| |
| ret = transform ? rett : ret; |
| ret = aux > 0x3f800000U ? __CLC_GENTYPE_NAN : ret; |
| ret = ux == 0x3f800000U ? 0.0f : ret; |
| ret = ux == 0xbf800000U ? pi : ret; |
| ret = xexp < -26 ? piby2 : ret; |
| return ret; |
| } |
| |
| #elif __CLC_FPSIZE == 64 |
| |
| _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) { |
| // 0x400921fb54442d18 |
| const __CLC_GENTYPE pi = __CLC_FP_LIT(3.1415926535897933e+00); |
| // 0x3ff921fb54442d18 |
| const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963267948965580e+00); |
| // 0x3ff921fb54442d18 |
| const __CLC_GENTYPE piby2_head = __CLC_FP_LIT(1.5707963267948965580e+00); |
| // 0x3c91a62633145c07 |
| const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.12323399573676603587e-17); |
| |
| __CLC_GENTYPE y = __clc_fabs(x); |
| __CLC_LONGN xneg = x < __CLC_FP_LIT(0.0); |
| __CLC_INTN xexp = __CLC_CONVERT_INTN( |
| (__CLC_AS_ULONGN(y) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64); |
| |
| // abs(x) >= 0.5 |
| __CLC_LONGN transform = __CLC_CONVERT_LONGN(xexp >= -1); |
| |
| __CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y); |
| __CLC_GENTYPE y2 = y * y; |
| __CLC_GENTYPE r = transform ? rt : y2; |
| |
| // Use a rational approximation for [0.0, 0.5] |
| __CLC_GENTYPE un = __clc_fma( |
| r, |
| __clc_fma( |
| r, |
| __clc_fma(r, |
| __clc_fma(r, |
| __clc_fma(r, 0.0000482901920344786991880522822991, |
| 0.00109242697235074662306043804220), |
| -0.0549989809235685841612020091328), |
| 0.275558175256937652532686256258), |
| -0.445017216867635649900123110649), |
| 0.227485835556935010735943483075); |
| |
| __CLC_GENTYPE ud = __clc_fma( |
| r, |
| __clc_fma(r, |
| __clc_fma(r, |
| __clc_fma(r, 0.105869422087204370341222318533, |
| -0.943639137032492685763471240072), |
| 2.76568859157270989520376345954), |
| -3.28431505720958658909889444194), |
| 1.36491501334161032038194214209); |
| |
| __CLC_GENTYPE u = r * MATH_DIVIDE(un, ud); |
| |
| // Reconstruct acos carefully in transformed region |
| __CLC_GENTYPE s = __clc_sqrt(r); |
| __CLC_GENTYPE ztn = __clc_fma(-2.0, (s + __clc_fma(s, u, -piby2_tail)), pi); |
| |
| __CLC_GENTYPE s1 = |
| __CLC_AS_GENTYPE(__CLC_AS_ULONGN(s) & 0xffffffff00000000UL); |
| __CLC_GENTYPE c = MATH_DIVIDE(__clc_fma(-s1, s1, r), s + s1); |
| __CLC_GENTYPE ztp = 2.0 * (s1 + __clc_fma(s, u, c)); |
| __CLC_GENTYPE zt = xneg ? ztn : ztp; |
| __CLC_GENTYPE z = piby2_head - (x - __clc_fma(-x, u, piby2_tail)); |
| |
| z = transform ? zt : z; |
| |
| z = __CLC_CONVERT_LONGN(xexp < -56) ? piby2 : z; |
| z = __clc_isnan(x) ? __CLC_AS_GENTYPE((__CLC_AS_ULONGN(x) | |
| (__CLC_ULONGN)QNANBITPATT_DP64)) |
| : z; |
| z = x == 1.0 ? 0.0 : z; |
| z = x == -1.0 ? pi : z; |
| |
| return z; |
| } |
| |
| #elif __CLC_FPSIZE == 16 |
| |
| _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) { |
| return __CLC_CONVERT_GENTYPE(__clc_acos(__CLC_CONVERT_FLOATN(x))); |
| } |
| |
| #endif |