blob: e036a998a65bde2e88eb2f58a8ff48005e1a52aa [file] [log] [blame] [edit]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Computes arccos(x).
//
// The incoming argument is first reduced by noting that arccos(x) is invalid
// for abs(x) > 1.
//
// For denormal and small arguments arccos(x) = pi/2 to machine accuracy.
//
// Remaining argument ranges are handled as follows:
// * For abs(x) <= 0.5 use:
// arccos(x) = pi/2 - arcsin(x) = pi/2 - (x + x^3 * R(x^2))
// where R(x^2) is a rational minimax approximation to (arcsin(x) - x)/x^3.
// * For abs(x) > 0.5 exploit the identity:
// arccos(x) = pi - 2 * arcsin(sqrt(1 - x)/2)
// together with the above rational approximation, and reconstruct the terms
// carefully.
//
//===----------------------------------------------------------------------===//
#if __CLC_FPSIZE == 32
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) {
// Some constants and split constants.
const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963705e+00);
const __CLC_GENTYPE pi = __CLC_FP_LIT(3.1415926535897933e+00);
const __CLC_GENTYPE piby2_head = __CLC_FP_LIT(1.5707963267948965580e+00);
const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.12323399573676603587e-17);
__CLC_UINTN ux = __CLC_AS_UINTN(x);
__CLC_UINTN aux = ux & ~SIGNBIT_SP32;
__CLC_INTN xneg = ux != aux;
__CLC_INTN xexp = __CLC_AS_INTN(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
__CLC_GENTYPE y = __CLC_AS_GENTYPE(aux);
// transform if |x| >= 0.5
__CLC_INTN transform = xexp >= -1;
__CLC_GENTYPE y2 = y * y;
__CLC_GENTYPE yt = 0.5f * (1.0f - y);
__CLC_GENTYPE r = transform ? yt : y2;
// Use a rational approximation for [0.0, 0.5]
__CLC_GENTYPE a =
__clc_mad(r,
__clc_mad(r,
__clc_mad(r, -0.00396137437848476485201154797087F,
-0.0133819288943925804214011424456F),
-0.0565298683201845211985026327361F),
0.184161606965100694821398249421F);
__CLC_GENTYPE b = __clc_mad(r, -0.836411276854206731913362287293F,
1.10496961524520294485512696706F);
__CLC_GENTYPE u = r * MATH_DIVIDE(a, b);
__CLC_GENTYPE s = __clc_sqrt(r);
y = s;
__CLC_GENTYPE s1 = __CLC_AS_GENTYPE(__CLC_AS_UINTN(s) & 0xffff0000);
__CLC_GENTYPE c = MATH_DIVIDE(__clc_mad(s1, -s1, r), s + s1);
__CLC_GENTYPE rettn = __clc_mad(s + __clc_mad(y, u, -piby2_tail), -2.0f, pi);
__CLC_GENTYPE rettp = 2.0F * (s1 + __clc_mad(y, u, c));
__CLC_GENTYPE rett = xneg ? rettn : rettp;
__CLC_GENTYPE ret = piby2_head - (x - __clc_mad(x, -u, piby2_tail));
ret = transform ? rett : ret;
ret = aux > 0x3f800000U ? __CLC_GENTYPE_NAN : ret;
ret = ux == 0x3f800000U ? 0.0f : ret;
ret = ux == 0xbf800000U ? pi : ret;
ret = xexp < -26 ? piby2 : ret;
return ret;
}
#elif __CLC_FPSIZE == 64
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) {
// 0x400921fb54442d18
const __CLC_GENTYPE pi = __CLC_FP_LIT(3.1415926535897933e+00);
// 0x3ff921fb54442d18
const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963267948965580e+00);
// 0x3ff921fb54442d18
const __CLC_GENTYPE piby2_head = __CLC_FP_LIT(1.5707963267948965580e+00);
// 0x3c91a62633145c07
const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.12323399573676603587e-17);
__CLC_GENTYPE y = __clc_fabs(x);
__CLC_LONGN xneg = x < __CLC_FP_LIT(0.0);
__CLC_INTN xexp = __CLC_CONVERT_INTN(
(__CLC_AS_ULONGN(y) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
// abs(x) >= 0.5
__CLC_LONGN transform = __CLC_CONVERT_LONGN(xexp >= -1);
__CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y);
__CLC_GENTYPE y2 = y * y;
__CLC_GENTYPE r = transform ? rt : y2;
// Use a rational approximation for [0.0, 0.5]
__CLC_GENTYPE un = __clc_fma(
r,
__clc_fma(
r,
__clc_fma(r,
__clc_fma(r,
__clc_fma(r, 0.0000482901920344786991880522822991,
0.00109242697235074662306043804220),
-0.0549989809235685841612020091328),
0.275558175256937652532686256258),
-0.445017216867635649900123110649),
0.227485835556935010735943483075);
__CLC_GENTYPE ud = __clc_fma(
r,
__clc_fma(r,
__clc_fma(r,
__clc_fma(r, 0.105869422087204370341222318533,
-0.943639137032492685763471240072),
2.76568859157270989520376345954),
-3.28431505720958658909889444194),
1.36491501334161032038194214209);
__CLC_GENTYPE u = r * MATH_DIVIDE(un, ud);
// Reconstruct acos carefully in transformed region
__CLC_GENTYPE s = __clc_sqrt(r);
__CLC_GENTYPE ztn = __clc_fma(-2.0, (s + __clc_fma(s, u, -piby2_tail)), pi);
__CLC_GENTYPE s1 =
__CLC_AS_GENTYPE(__CLC_AS_ULONGN(s) & 0xffffffff00000000UL);
__CLC_GENTYPE c = MATH_DIVIDE(__clc_fma(-s1, s1, r), s + s1);
__CLC_GENTYPE ztp = 2.0 * (s1 + __clc_fma(s, u, c));
__CLC_GENTYPE zt = xneg ? ztn : ztp;
__CLC_GENTYPE z = piby2_head - (x - __clc_fma(-x, u, piby2_tail));
z = transform ? zt : z;
z = __CLC_CONVERT_LONGN(xexp < -56) ? piby2 : z;
z = __clc_isnan(x) ? __CLC_AS_GENTYPE((__CLC_AS_ULONGN(x) |
(__CLC_ULONGN)QNANBITPATT_DP64))
: z;
z = x == 1.0 ? 0.0 : z;
z = x == -1.0 ? pi : z;
return z;
}
#elif __CLC_FPSIZE == 16
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) {
return __CLC_CONVERT_GENTYPE(__clc_acos(__CLC_CONVERT_FLOATN(x)));
}
#endif