blob: 3e0d06f96415725c847cd78308e0e5f07e9408c3 [file] [log] [blame]
//===-- Implementation of mktime function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/time/mktime.h"
#include "src/__support/common.h"
#include "src/time/time_utils.h"
#include <limits.h>
namespace __llvm_libc {
using __llvm_libc::time_utils::TimeConstants;
// Returns number of years from (1, year).
static constexpr int64_t getNumOfLeapYearsBefore(int64_t year) {
return (year / 4) - (year / 100) + (year / 400);
}
// Returns True if year is a leap year.
static constexpr bool isLeapYear(const int64_t year) {
return (((year) % 4) == 0 && (((year) % 100) != 0 || ((year) % 400) == 0));
}
static int64_t computeRemainingYears(int64_t daysPerYears,
int64_t quotientYears,
int64_t *remainingDays) {
int64_t years = *remainingDays / daysPerYears;
if (years == quotientYears)
years--;
*remainingDays -= years * daysPerYears;
return years;
}
// Update the "tm" structure's year, month, etc. members from seconds.
// "total_seconds" is the number of seconds since January 1st, 1970.
//
// First, divide "total_seconds" by the number of seconds in a day to get the
// number of days since Jan 1 1970. The remainder will be used to calculate the
// number of Hours, Minutes and Seconds.
//
// Then, adjust that number of days by a constant to be the number of days
// since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This
// makes it easier to count how many leap years have passed using division.
//
// While calculating numbers of years in the days, the following algorithm
// subdivides the days into the number of 400 years, the number of 100 years and
// the number of 4 years. These numbers of cycle years are used in calculating
// leap day. This is similar to the algorithm used in getNumOfLeapYearsBefore()
// and isLeapYear(). Then compute the total number of years in days from these
// subdivided units.
//
// Compute the number of months from the remaining days. Finally, adjust years
// to be 1900 and months to be from January.
static int64_t updateFromSeconds(int64_t total_seconds, struct tm *tm) {
// Days in month starting from March in the year 2000.
static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31,
30, 31, 30, 31, 31, 29};
if (sizeof(time_t) == 4) {
if (total_seconds < 0x80000000)
return time_utils::OutOfRange();
if (total_seconds > 0x7FFFFFFF)
return time_utils::OutOfRange();
} else {
if (total_seconds <
INT_MIN * static_cast<int64_t>(
TimeConstants::NumberOfSecondsInLeapYear) ||
total_seconds > INT_MAX * static_cast<int64_t>(
TimeConstants::NumberOfSecondsInLeapYear))
return time_utils::OutOfRange();
}
int64_t seconds = total_seconds - TimeConstants::SecondsUntil2000MarchFirst;
int64_t days = seconds / TimeConstants::SecondsPerDay;
int64_t remainingSeconds = seconds % TimeConstants::SecondsPerDay;
if (remainingSeconds < 0) {
remainingSeconds += TimeConstants::SecondsPerDay;
days--;
}
int64_t wday = (TimeConstants::WeekDayOf2000MarchFirst + days) %
TimeConstants::DaysPerWeek;
if (wday < 0)
wday += TimeConstants::DaysPerWeek;
// Compute the number of 400 year cycles.
int64_t numOfFourHundredYearCycles = days / TimeConstants::DaysPer400Years;
int64_t remainingDays = days % TimeConstants::DaysPer400Years;
if (remainingDays < 0) {
remainingDays += TimeConstants::DaysPer400Years;
numOfFourHundredYearCycles--;
}
// The reminder number of years after computing number of
// "four hundred year cycles" will be 4 hundred year cycles or less in 400
// years.
int64_t numOfHundredYearCycles =
computeRemainingYears(TimeConstants::DaysPer100Years, 4, &remainingDays);
// The reminder number of years after computing number of
// "hundred year cycles" will be 25 four year cycles or less in 100 years.
int64_t numOfFourYearCycles =
computeRemainingYears(TimeConstants::DaysPer4Years, 25, &remainingDays);
// The reminder number of years after computing number of "four year cycles"
// will be 4 one year cycles or less in 4 years.
int64_t remainingYears = computeRemainingYears(
TimeConstants::DaysPerNonLeapYear, 4, &remainingDays);
// Calculate number of years from year 2000.
int64_t years = remainingYears + 4 * numOfFourYearCycles +
100 * numOfHundredYearCycles +
400LL * numOfFourHundredYearCycles;
int leapDay =
!remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles);
int64_t yday = remainingDays + 31 + 28 + leapDay;
if (yday >= TimeConstants::DaysPerNonLeapYear + leapDay)
yday -= TimeConstants::DaysPerNonLeapYear + leapDay;
int64_t months = 0;
while (daysInMonth[months] <= remainingDays) {
remainingDays -= daysInMonth[months];
months++;
}
if (months >= TimeConstants::MonthsPerYear - 2) {
months -= TimeConstants::MonthsPerYear;
years++;
}
if (years > INT_MAX || years < INT_MIN)
return time_utils::OutOfRange();
// All the data (years, month and remaining days) was calculated from
// March, 2000. Thus adjust the data to be from January, 1900.
tm->tm_year = years + 2000 - TimeConstants::TimeYearBase;
tm->tm_mon = months + 2;
tm->tm_mday = remainingDays + 1;
tm->tm_wday = wday;
tm->tm_yday = yday;
tm->tm_hour = remainingSeconds / TimeConstants::SecondsPerHour;
tm->tm_min = remainingSeconds / TimeConstants::SecondsPerMin %
TimeConstants::SecondsPerMin;
tm->tm_sec = remainingSeconds % TimeConstants::SecondsPerMin;
return 0;
}
LLVM_LIBC_FUNCTION(time_t, mktime, (struct tm * tm_out)) {
// Unlike most C Library functions, mktime doesn't just die on bad input.
// TODO(rtenneti); Handle leap seconds.
int64_t tmYearFromBase = tm_out->tm_year + TimeConstants::TimeYearBase;
// 32-bit end-of-the-world is 03:14:07 UTC on 19 January 2038.
if (sizeof(time_t) == 4 &&
tmYearFromBase >= TimeConstants::EndOf32BitEpochYear) {
if (tmYearFromBase > TimeConstants::EndOf32BitEpochYear)
return time_utils::OutOfRange();
if (tm_out->tm_mon > 0)
return time_utils::OutOfRange();
if (tm_out->tm_mday > 19)
return time_utils::OutOfRange();
if (tm_out->tm_hour > 3)
return time_utils::OutOfRange();
if (tm_out->tm_min > 14)
return time_utils::OutOfRange();
if (tm_out->tm_sec > 7)
return time_utils::OutOfRange();
}
// Years are ints. A 32-bit year will fit into a 64-bit time_t.
// A 64-bit year will not.
static_assert(sizeof(int) == 4,
"ILP64 is unimplemented. This implementation requires "
"32-bit integers.");
// Calculate number of months and years from tm_mon.
int64_t month = tm_out->tm_mon;
if (month < 0 || month >= TimeConstants::MonthsPerYear - 1) {
int64_t years = month / 12;
month %= 12;
if (month < 0) {
years--;
month += 12;
}
tmYearFromBase += years;
}
bool tmYearIsLeap = isLeapYear(tmYearFromBase);
// Calculate total number of days based on the month and the day (tm_mday).
int64_t totalDays = tm_out->tm_mday - 1;
for (int64_t i = 0; i < month; ++i)
totalDays += TimeConstants::NonLeapYearDaysInMonth[i];
// Add one day if it is a leap year and the month is after February.
if (tmYearIsLeap && month > 1)
totalDays++;
// Calculate total numbers of days based on the year.
totalDays += (tmYearFromBase - TimeConstants::EpochYear) *
TimeConstants::DaysPerNonLeapYear;
if (tmYearFromBase >= TimeConstants::EpochYear) {
totalDays += getNumOfLeapYearsBefore(tmYearFromBase - 1) -
getNumOfLeapYearsBefore(TimeConstants::EpochYear);
} else if (tmYearFromBase >= 1) {
totalDays -= getNumOfLeapYearsBefore(TimeConstants::EpochYear) -
getNumOfLeapYearsBefore(tmYearFromBase - 1);
} else {
// Calculate number of leap years until 0th year.
totalDays -= getNumOfLeapYearsBefore(TimeConstants::EpochYear) -
getNumOfLeapYearsBefore(0);
if (tmYearFromBase <= 0) {
totalDays -= 1; // Subtract 1 for 0th year.
// Calculate number of leap years until -1 year
if (tmYearFromBase < 0) {
totalDays -= getNumOfLeapYearsBefore(-tmYearFromBase) -
getNumOfLeapYearsBefore(1);
}
}
}
// TODO(rtenneti): Need to handle timezone and update of tm_isdst.
int64_t seconds = tm_out->tm_sec +
tm_out->tm_min * TimeConstants::SecondsPerMin +
tm_out->tm_hour * TimeConstants::SecondsPerHour +
totalDays * TimeConstants::SecondsPerDay;
// Update the tm structure's year, month, day, etc. from seconds.
if (updateFromSeconds(seconds, tm_out) < 0)
return time_utils::OutOfRange();
return static_cast<time_t>(seconds);
}
} // namespace __llvm_libc