blob: c158162ba6238e3f43adeb83c96519f63e6ff979 [file] [log] [blame]
//===-- strtofloat_fuzz.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Fuzzing test for llvm-libc atof implementation.
///
//===----------------------------------------------------------------------===//
#include "src/stdlib/atof.h"
#include "src/stdlib/strtod.h"
#include "src/stdlib/strtof.h"
#include "src/stdlib/strtold.h"
#include "src/__support/FPUtil/FPBits.h"
#include "hdr/math_macros.h"
#include <stddef.h>
#include <stdint.h>
#include "utils/MPFRWrapper/mpfr_inc.h"
using LIBC_NAMESPACE::fputil::FPBits;
// This function calculates the effective precision for a given float type and
// exponent. Subnormals have a lower effective precision since they don't
// necessarily use all of the bits of the mantissa.
template <typename F> inline constexpr int effective_precision(int exponent) {
const int full_precision = FPBits<F>::FRACTION_LEN + 1;
// This is intended to be 0 when the exponent is the lowest normal and
// increase as the exponent's magnitude increases.
const int bits_below_normal = (-exponent) - (FPBits<F>::EXP_BIAS - 1);
// The precision should be the normal, full precision, minus the bits lost
// by this being a subnormal, minus one for the implicit leading one.
const int bits_if_subnormal = full_precision - bits_below_normal - 1;
if (bits_below_normal >= 0) {
return bits_if_subnormal;
}
return full_precision;
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
// const char newstr[] = "123";
// data = reinterpret_cast<const uint8_t *>(newstr);
// size = sizeof(newstr);
uint8_t *container = new uint8_t[size + 1];
if (!container)
__builtin_trap();
size_t i;
for (i = 0; i < size; ++i) {
// MPFR's strtofr uses "@" as a base-independent exponent symbol
if (data[i] != '@')
container[i] = data[i];
else {
container[i] = '#';
}
}
container[size] = '\0'; // Add null terminator to container.
const char *str_ptr = reinterpret_cast<const char *>(container);
char *out_ptr = nullptr;
size_t base = 0;
// This is just used to determine the base and precision.
mpfr_t result;
mpfr_init2(result, 256);
mpfr_t bin_result;
mpfr_init2(bin_result, 256);
mpfr_strtofr(result, str_ptr, &out_ptr, 0 /* base */, MPFR_RNDN);
ptrdiff_t result_strlen = out_ptr - str_ptr;
mpfr_strtofr(bin_result, str_ptr, &out_ptr, 2 /* base */, MPFR_RNDN);
ptrdiff_t bin_result_strlen = out_ptr - str_ptr;
long double bin_result_ld = mpfr_get_ld(bin_result, MPFR_RNDN);
long double result_ld = mpfr_get_ld(result, MPFR_RNDN);
// This detects if mpfr's strtofr selected a base of 2, which libc does not
// support. If a base 2 decoding is detected, it is replaced by a base 10
// decoding.
if ((bin_result_ld != 0.0 || bin_result_strlen == result_strlen) &&
bin_result_ld == result_ld) {
mpfr_strtofr(result, str_ptr, &out_ptr, 10 /* base */, MPFR_RNDN);
result_strlen = out_ptr - str_ptr;
base = 10;
}
auto result_exp = mpfr_get_exp(result);
mpfr_clear(result);
mpfr_clear(bin_result);
// These must be calculated with the correct precision, and not any more, to
// prevent numbers like 66336650.00...01 (many zeroes) from causing an issue.
// 66336650 is exactly between two float values (66336652 and 66336648) so the
// correct float result for 66336650.00...01 is rounding up to 66336652. The
// correct double is instead 66336650, which when converted to float is
// rounded down to 66336648. This means we have to compare against the correct
// precision to get the correct result.
// TODO: Add support for other rounding modes.
int float_precision = effective_precision<float>(result_exp);
if (float_precision >= 2) {
mpfr_t mpfr_float;
mpfr_init2(mpfr_float, float_precision);
mpfr_strtofr(mpfr_float, str_ptr, &out_ptr, base, MPFR_RNDN);
float volatile float_result = mpfr_get_flt(mpfr_float, MPFR_RNDN);
auto volatile strtof_result = LIBC_NAMESPACE::strtof(str_ptr, &out_ptr);
ptrdiff_t strtof_strlen = out_ptr - str_ptr;
if (result_strlen != strtof_strlen)
__builtin_trap();
// If any result is NaN, all of them should be NaN. We can't use the usual
// comparisons because NaN != NaN.
if (isnan(float_result) ^ isnan(strtof_result))
__builtin_trap();
if (!isnan(float_result) && float_result != strtof_result)
__builtin_trap();
mpfr_clear(mpfr_float);
}
int double_precision = effective_precision<double>(result_exp);
if (double_precision >= 2) {
mpfr_t mpfr_double;
mpfr_init2(mpfr_double, double_precision);
mpfr_strtofr(mpfr_double, str_ptr, &out_ptr, base, MPFR_RNDN);
double volatile double_result = mpfr_get_d(mpfr_double, MPFR_RNDN);
auto volatile strtod_result = LIBC_NAMESPACE::strtod(str_ptr, &out_ptr);
auto volatile atof_result = LIBC_NAMESPACE::atof(str_ptr);
ptrdiff_t strtod_strlen = out_ptr - str_ptr;
if (result_strlen != strtod_strlen)
__builtin_trap();
if (isnan(double_result) ^ isnan(strtod_result) ||
isnan(double_result) ^ isnan(atof_result))
__builtin_trap();
if (!isnan(double_result) &&
(double_result != strtod_result || double_result != atof_result))
__builtin_trap();
mpfr_clear(mpfr_double);
}
int long_double_precision = effective_precision<long double>(result_exp);
if (long_double_precision >= 2) {
mpfr_t mpfr_long_double;
mpfr_init2(mpfr_long_double, long_double_precision);
mpfr_strtofr(mpfr_long_double, str_ptr, &out_ptr, base, MPFR_RNDN);
long double volatile long_double_result =
mpfr_get_ld(mpfr_long_double, MPFR_RNDN);
auto volatile strtold_result = LIBC_NAMESPACE::strtold(str_ptr, &out_ptr);
ptrdiff_t strtold_strlen = out_ptr - str_ptr;
if (result_strlen != strtold_strlen)
__builtin_trap();
if (isnan(long_double_result) ^ isnan(strtold_result))
__builtin_trap();
if (!isnan(long_double_result) && long_double_result != strtold_result)
__builtin_trap();
mpfr_clear(mpfr_long_double);
}
delete[] container;
return 0;
}