blob: d0f0ee23ada8d7dce822c741dbd68eab5c430ca4 [file] [log] [blame]
//===-- Utility class to test different flavors of [l|ll]round --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H
#define LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"
#include "utils/MPFRWrapper/MPFRUtils.h"
#include <errno.h>
#include <math.h>
namespace mpfr = __llvm_libc::testing::mpfr;
static constexpr int ROUNDING_MODES[4] = {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO,
FE_TONEAREST};
template <typename F, typename I, bool TestModes = false>
class RoundToIntegerTestTemplate : public __llvm_libc::testing::Test {
public:
typedef I (*RoundToIntegerFunc)(F);
private:
using FPBits = __llvm_libc::fputil::FPBits<F>;
using UIntType = typename FPBits::UIntType;
const F zero = F(__llvm_libc::fputil::FPBits<F>::zero());
const F neg_zero = F(__llvm_libc::fputil::FPBits<F>::neg_zero());
const F inf = F(__llvm_libc::fputil::FPBits<F>::inf());
const F neg_inf = F(__llvm_libc::fputil::FPBits<F>::neg_inf());
const F nan = F(__llvm_libc::fputil::FPBits<F>::build_quiet_nan(1));
static constexpr I INTEGER_MIN = I(1) << (sizeof(I) * 8 - 1);
static constexpr I INTEGER_MAX = -(INTEGER_MIN + 1);
void test_one_input(RoundToIntegerFunc func, F input, I expected,
bool expectError) {
libc_errno = 0;
__llvm_libc::fputil::clear_except(FE_ALL_EXCEPT);
ASSERT_EQ(func(input), expected);
if (expectError) {
ASSERT_FP_EXCEPTION(FE_INVALID);
ASSERT_MATH_ERRNO(EDOM);
} else {
ASSERT_FP_EXCEPTION(0);
ASSERT_MATH_ERRNO(0);
}
}
static inline mpfr::RoundingMode to_mpfr_rounding_mode(int mode) {
switch (mode) {
case FE_UPWARD:
return mpfr::RoundingMode::Upward;
case FE_DOWNWARD:
return mpfr::RoundingMode::Downward;
case FE_TOWARDZERO:
return mpfr::RoundingMode::TowardZero;
case FE_TONEAREST:
return mpfr::RoundingMode::Nearest;
default:
__builtin_unreachable();
}
}
public:
void SetUp() override {
if (math_errhandling & MATH_ERREXCEPT) {
// We will disable all exceptions so that the test will not
// crash with SIGFPE. We can still use fetestexcept to check
// if the appropriate flag was raised.
__llvm_libc::fputil::disable_except(FE_ALL_EXCEPT);
}
}
void do_infinity_and_na_n_test(RoundToIntegerFunc func) {
test_one_input(func, inf, INTEGER_MAX, true);
test_one_input(func, neg_inf, INTEGER_MIN, true);
// This is currently never enabled, the
// LLVM_LIBC_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR CMake option in
// libc/CMakeLists.txt is not forwarded to C++.
#if LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR
// Result is not well-defined, we always returns INTEGER_MAX
test_one_input(func, nan, INTEGER_MAX, true);
#endif // LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR
}
void testInfinityAndNaN(RoundToIntegerFunc func) {
if (TestModes) {
for (int mode : ROUNDING_MODES) {
__llvm_libc::fputil::set_round(mode);
do_infinity_and_na_n_test(func);
}
} else {
do_infinity_and_na_n_test(func);
}
}
void do_round_numbers_test(RoundToIntegerFunc func) {
test_one_input(func, zero, I(0), false);
test_one_input(func, neg_zero, I(0), false);
test_one_input(func, F(1.0), I(1), false);
test_one_input(func, F(-1.0), I(-1), false);
test_one_input(func, F(10.0), I(10), false);
test_one_input(func, F(-10.0), I(-10), false);
test_one_input(func, F(1234.0), I(1234), false);
test_one_input(func, F(-1234.0), I(-1234), false);
// The rest of this this function compares with an equivalent MPFR function
// which rounds floating point numbers to long values. There is no MPFR
// function to round to long long or wider integer values. So, we will
// the remaining tests only if the width of I less than equal to that of
// long.
if (sizeof(I) > sizeof(long))
return;
constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1;
// We start with 1.0 so that the implicit bit for x86 long doubles
// is set.
FPBits bits(F(1.0));
bits.set_unbiased_exponent(EXPONENT_LIMIT + FPBits::EXPONENT_BIAS);
bits.set_sign(1);
bits.set_mantissa(0);
F x = F(bits);
long mpfr_result;
bool erangeflag = mpfr::round_to_long(x, mpfr_result);
ASSERT_FALSE(erangeflag);
test_one_input(func, x, mpfr_result, false);
}
void testRoundNumbers(RoundToIntegerFunc func) {
if (TestModes) {
for (int mode : ROUNDING_MODES) {
__llvm_libc::fputil::set_round(mode);
do_round_numbers_test(func);
}
} else {
do_round_numbers_test(func);
}
}
void do_fractions_test(RoundToIntegerFunc func, int mode) {
constexpr F FRACTIONS[] = {0.5, -0.5, 0.115, -0.115, 0.715, -0.715};
for (F x : FRACTIONS) {
long mpfr_long_result;
bool erangeflag;
if (TestModes)
erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(mode),
mpfr_long_result);
else
erangeflag = mpfr::round_to_long(x, mpfr_long_result);
ASSERT_FALSE(erangeflag);
I mpfr_result = mpfr_long_result;
test_one_input(func, x, mpfr_result, false);
}
}
void testFractions(RoundToIntegerFunc func) {
if (TestModes) {
for (int mode : ROUNDING_MODES) {
__llvm_libc::fputil::set_round(mode);
do_fractions_test(func, mode);
}
} else {
// Passing 0 for mode has no effect as it is not used in doFractionsTest
// when `TestModes` is false;
do_fractions_test(func, 0);
}
}
void testIntegerOverflow(RoundToIntegerFunc func) {
// This function compares with an equivalent MPFR function which rounds
// floating point numbers to long values. There is no MPFR function to
// round to long long or wider integer values. So, we will peform the
// comparisons in this function only if the width of I less than equal to
// that of long.
if (sizeof(I) > sizeof(long))
return;
constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1;
// We start with 1.0 so that the implicit bit for x86 long doubles
// is set.
FPBits bits(F(1.0));
bits.set_unbiased_exponent(EXPONENT_LIMIT + FPBits::EXPONENT_BIAS);
bits.set_sign(1);
bits.set_mantissa(UIntType(0x1)
<< (__llvm_libc::fputil::MantissaWidth<F>::VALUE - 1));
F x = F(bits);
if (TestModes) {
for (int m : ROUNDING_MODES) {
__llvm_libc::fputil::set_round(m);
long mpfr_long_result;
bool erangeflag =
mpfr::round_to_long(x, to_mpfr_rounding_mode(m), mpfr_long_result);
ASSERT_TRUE(erangeflag);
test_one_input(func, x, INTEGER_MIN, true);
}
} else {
long mpfr_long_result;
bool erangeflag = mpfr::round_to_long(x, mpfr_long_result);
ASSERT_TRUE(erangeflag);
test_one_input(func, x, INTEGER_MIN, true);
}
}
void testSubnormalRange(RoundToIntegerFunc func) {
constexpr UIntType COUNT = 1'000'001;
constexpr UIntType STEP =
(FPBits::MAX_SUBNORMAL - FPBits::MIN_SUBNORMAL) / COUNT;
for (UIntType i = FPBits::MIN_SUBNORMAL; i <= FPBits::MAX_SUBNORMAL;
i += STEP) {
F x = F(FPBits(i));
if (x == F(0.0))
continue;
// All subnormal numbers should round to zero.
if (TestModes) {
if (x > 0) {
__llvm_libc::fputil::set_round(FE_UPWARD);
test_one_input(func, x, I(1), false);
__llvm_libc::fputil::set_round(FE_DOWNWARD);
test_one_input(func, x, I(0), false);
__llvm_libc::fputil::set_round(FE_TOWARDZERO);
test_one_input(func, x, I(0), false);
__llvm_libc::fputil::set_round(FE_TONEAREST);
test_one_input(func, x, I(0), false);
} else {
__llvm_libc::fputil::set_round(FE_UPWARD);
test_one_input(func, x, I(0), false);
__llvm_libc::fputil::set_round(FE_DOWNWARD);
test_one_input(func, x, I(-1), false);
__llvm_libc::fputil::set_round(FE_TOWARDZERO);
test_one_input(func, x, I(0), false);
__llvm_libc::fputil::set_round(FE_TONEAREST);
test_one_input(func, x, I(0), false);
}
} else {
test_one_input(func, x, 0L, false);
}
}
}
void testNormalRange(RoundToIntegerFunc func) {
// This function compares with an equivalent MPFR function which rounds
// floating point numbers to long values. There is no MPFR function to
// round to long long or wider integer values. So, we will peform the
// comparisons in this function only if the width of I less than equal to
// that of long.
if (sizeof(I) > sizeof(long))
return;
constexpr UIntType COUNT = 1'000'001;
constexpr UIntType STEP = (FPBits::MAX_NORMAL - FPBits::MIN_NORMAL) / COUNT;
for (UIntType i = FPBits::MIN_NORMAL; i <= FPBits::MAX_NORMAL; i += STEP) {
F x = F(FPBits(i));
// In normal range on x86 platforms, the long double implicit 1 bit can be
// zero making the numbers NaN. We will skip them.
if (isnan(x)) {
continue;
}
if (TestModes) {
for (int m : ROUNDING_MODES) {
long mpfr_long_result;
bool erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(m),
mpfr_long_result);
I mpfr_result = mpfr_long_result;
__llvm_libc::fputil::set_round(m);
if (erangeflag)
test_one_input(func, x, x > 0 ? INTEGER_MAX : INTEGER_MIN, true);
else
test_one_input(func, x, mpfr_result, false);
}
} else {
long mpfr_long_result;
bool erangeflag = mpfr::round_to_long(x, mpfr_long_result);
I mpfr_result = mpfr_long_result;
if (erangeflag)
test_one_input(func, x, x > 0 ? INTEGER_MAX : INTEGER_MIN, true);
else
test_one_input(func, x, mpfr_result, false);
}
}
}
};
#define LIST_ROUND_TO_INTEGER_TESTS_HELPER(F, I, func, TestModes) \
using LlvmLibcRoundToIntegerTest = \
RoundToIntegerTestTemplate<F, I, TestModes>; \
TEST_F(LlvmLibcRoundToIntegerTest, InfinityAndNaN) { \
testInfinityAndNaN(&func); \
} \
TEST_F(LlvmLibcRoundToIntegerTest, RoundNumbers) { \
testRoundNumbers(&func); \
} \
TEST_F(LlvmLibcRoundToIntegerTest, Fractions) { testFractions(&func); } \
TEST_F(LlvmLibcRoundToIntegerTest, IntegerOverflow) { \
testIntegerOverflow(&func); \
} \
TEST_F(LlvmLibcRoundToIntegerTest, SubnormalRange) { \
testSubnormalRange(&func); \
} \
TEST_F(LlvmLibcRoundToIntegerTest, NormalRange) { testNormalRange(&func); }
#define LIST_ROUND_TO_INTEGER_TESTS(F, I, func) \
LIST_ROUND_TO_INTEGER_TESTS_HELPER(F, I, func, false)
#define LIST_ROUND_TO_INTEGER_TESTS_WITH_MODES(F, I, func) \
LIST_ROUND_TO_INTEGER_TESTS_HELPER(F, I, func, true)
#endif // LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H