blob: 29449bd73973024a52ca5bb7688496fcdbd9e793 [file] [log] [blame]
//===-- Utilities to convert integral values to string ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Converts an integer to a string.
//
// By default, the string is written as decimal to an internal buffer and
// accessed via the 'view' method.
//
// IntegerToString<int> buffer(42);
// cpp::string_view view = buffer.view();
//
// The buffer is allocated on the stack and its size is so that the conversion
// always succeeds.
//
// It is also possible to write the data to a preallocated buffer, but this may
// fail.
//
// char buffer[8];
// if (auto maybe_view = IntegerToString<int>::write_to_span(buffer, 42)) {
// cpp::string_view view = *maybe_view;
// }
//
// The first template parameter is the type of the integer.
// The second template parameter defines how the integer is formatted.
// Available default are 'radix::Bin', 'radix::Oct', 'radix::Dec' and
// 'radix::Hex'.
//
// For 'radix::Bin', 'radix::Oct' and 'radix::Hex' the value is always
// interpreted as a positive type but 'radix::Dec' will honor negative values.
// e.g.,
//
// IntegerToString<int8_t>(-1) // "-1"
// IntegerToString<int8_t, radix::Dec>(-1) // "-1"
// IntegerToString<int8_t, radix::Bin>(-1) // "11111111"
// IntegerToString<int8_t, radix::Oct>(-1) // "377"
// IntegerToString<int8_t, radix::Hex>(-1) // "ff"
//
// Additionnally, the format can be changed by navigating the subtypes:
// - WithPrefix : Adds "0b", "0", "0x" for binary, octal and hexadecimal
// - WithWidth<XX> : Pad string to XX characters filling leading digits with 0
// - Uppercase : Use uppercase letters (only for HexString)
// - WithSign : Prepend '+' for positive values (only for DecString)
//
// Examples
// --------
// IntegerToString<int8_t, radix::Dec::WithWidth<2>::WithSign>(0) : "+00"
// IntegerToString<int8_t, radix::Dec::WithWidth<2>::WithSign>(-1) : "-01"
// IntegerToString<uint8_t, radix::Hex::WithPrefix::Uppercase>(255) : "0xFF"
// IntegerToString<uint8_t, radix::Hex::WithWidth<4>::Uppercase>(255) : "00FF"
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_INTEGER_TO_STRING_H
#define LLVM_LIBC_SRC___SUPPORT_INTEGER_TO_STRING_H
#include "hdr/stdint_proxy.h"
#include "src/__support/CPP/algorithm.h" // max
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/limits.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/CPP/span.h"
#include "src/__support/CPP/string_view.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/big_int.h" // make_integral_or_big_int_unsigned_t
#include "src/__support/common.h"
#include "src/__support/ctype_utils.h"
#include "src/__support/macros/config.h"
namespace LIBC_NAMESPACE_DECL {
namespace details {
template <uint8_t base, bool prefix = false, bool force_sign = false,
bool is_uppercase = false, size_t min_digits = 1>
struct Fmt {
static constexpr uint8_t BASE = base;
static constexpr size_t MIN_DIGITS = min_digits;
static constexpr bool IS_UPPERCASE = is_uppercase;
static constexpr bool PREFIX = prefix;
static constexpr char FORCE_SIGN = force_sign;
using WithPrefix = Fmt<BASE, true, FORCE_SIGN, IS_UPPERCASE, MIN_DIGITS>;
using WithSign = Fmt<BASE, PREFIX, true, IS_UPPERCASE, MIN_DIGITS>;
using Uppercase = Fmt<BASE, PREFIX, FORCE_SIGN, true, MIN_DIGITS>;
template <size_t value>
using WithWidth = Fmt<BASE, PREFIX, FORCE_SIGN, IS_UPPERCASE, value>;
// Invariants
static constexpr uint8_t NUMERICAL_DIGITS = 10;
static constexpr uint8_t ALPHA_DIGITS = 26;
static constexpr uint8_t MAX_DIGIT = NUMERICAL_DIGITS + ALPHA_DIGITS;
static_assert(BASE > 1 && BASE <= MAX_DIGIT);
static_assert(!IS_UPPERCASE || BASE > 10, "Uppercase is only for radix > 10");
static_assert(!FORCE_SIGN || BASE == 10, "WithSign is only for radix == 10");
static_assert(!PREFIX || (BASE == 2 || BASE == 8 || BASE == 16),
"WithPrefix is only for radix == 2, 8 or 16");
};
// Move this to a separate header since it might be useful elsewhere.
template <bool forward> class StringBufferWriterImpl {
cpp::span<char> buffer;
size_t index = 0;
bool out_of_range = false;
LIBC_INLINE size_t location() const {
return forward ? index : buffer.size() - 1 - index;
}
public:
StringBufferWriterImpl(const StringBufferWriterImpl &) = delete;
StringBufferWriterImpl(cpp::span<char> buffer) : buffer(buffer) {}
LIBC_INLINE size_t size() const { return index; }
LIBC_INLINE size_t remainder_size() const { return buffer.size() - size(); }
LIBC_INLINE bool empty() const { return size() == 0; }
LIBC_INLINE bool full() const { return size() == buffer.size(); }
LIBC_INLINE bool ok() const { return !out_of_range; }
LIBC_INLINE StringBufferWriterImpl &push(char c) {
if (ok()) {
if (!full()) {
buffer[location()] = c;
++index;
} else {
out_of_range = true;
}
}
return *this;
}
LIBC_INLINE cpp::span<char> remainder_span() const {
return forward ? buffer.last(remainder_size())
: buffer.first(remainder_size());
}
LIBC_INLINE cpp::span<char> buffer_span() const {
return forward ? buffer.first(size()) : buffer.last(size());
}
LIBC_INLINE cpp::string_view buffer_view() const {
const auto s = buffer_span();
return {s.data(), s.size()};
}
};
using StringBufferWriter = StringBufferWriterImpl<true>;
using BackwardStringBufferWriter = StringBufferWriterImpl<false>;
} // namespace details
namespace radix {
using Bin = details::Fmt<2>;
using Oct = details::Fmt<8>;
using Dec = details::Fmt<10>;
using Hex = details::Fmt<16>;
template <size_t radix> using Custom = details::Fmt<radix>;
} // namespace radix
// Extract the low-order decimal digit from a value of integer type T. The
// returned value is the digit itself, from 0 to 9. The input value is passed
// by reference, and modified by dividing by 10, so that iterating this
// function extracts all the digits of the original number one at a time from
// low to high.
template <typename T>
LIBC_INLINE cpp::enable_if_t<cpp::is_integral_v<T>, uint8_t>
extract_decimal_digit(T &value) {
const uint8_t digit(static_cast<uint8_t>(value % 10));
// For built-in integer types, we assume that an adequately fast division is
// available. If hardware division isn't implemented, then with a divisor
// known at compile time the compiler might be able to generate an optimized
// sequence instead.
value /= 10;
return digit;
}
// A specialization of extract_decimal_digit for the BigInt type in big_int.h,
// avoiding the use of general-purpose BigInt division which is very slow.
template <typename T>
LIBC_INLINE cpp::enable_if_t<is_big_int_v<T>, uint8_t>
extract_decimal_digit(T &value) {
// There are two essential ways you can turn n into (n/10,n%10). One is
// ordinary integer division. The other is a modular-arithmetic approach in
// which you first compute n%10 by bit twiddling, then subtract it off to get
// a value that is definitely a multiple of 10. Then you divide that by 10 in
// two steps: shift right to divide off a factor of 2, and then divide off a
// factor of 5 by multiplying by the modular inverse of 5 mod 2^BITS. (That
// last step only works if you know there's no remainder, which is why you
// had to subtract off the output digit first.)
//
// Either approach can be made to work in linear time. This code uses the
// modular-arithmetic technique, because the other approach either does a lot
// of integer divisions (requiring a fast hardware divider), or else uses a
// "multiply by an approximation to the reciprocal" technique which depends
// on careful error analysis which might go wrong in an untested edge case.
using Word = typename T::word_type;
// Find the remainder (value % 10). We do this by breaking up the input
// integer into chunks of size WORD_SIZE/2, so that the sum of them doesn't
// overflow a Word. Then we sum all the half-words times 6, except the bottom
// one, which is added to that sum without scaling.
//
// Why 6? Because you can imagine that the original number had the form
//
// halfwords[0] + K*halfwords[1] + K^2*halfwords[2] + ...
//
// where K = 2^(WORD_SIZE/2). Since WORD_SIZE is expected to be a multiple of
// 8, that makes WORD_SIZE/2 a multiple of 4, so that K is a power of 16. And
// all powers of 16 (larger than 1) are congruent to 6 mod 10, by induction:
// 16 itself is, and 6^2=36 is also congruent to 6.
Word acc_remainder = 0;
constexpr Word HALFWORD_BITS = T::WORD_SIZE / 2;
constexpr Word HALFWORD_MASK = ((Word(1) << HALFWORD_BITS) - 1);
// Sum both halves of all words except the low one.
for (size_t i = 1; i < T::WORD_COUNT; i++) {
acc_remainder += value.val[i] >> HALFWORD_BITS;
acc_remainder += value.val[i] & HALFWORD_MASK;
}
// Add the high half of the low word. Then we have everything that needs to
// be multiplied by 6, so do that.
acc_remainder += value.val[0] >> HALFWORD_BITS;
acc_remainder *= 6;
// Having multiplied it by 6, add the lowest half-word, and then reduce mod
// 10 by normal integer division to finish.
acc_remainder += value.val[0] & HALFWORD_MASK;
uint8_t digit = static_cast<uint8_t>(acc_remainder % 10);
// Now we have the output digit. Subtract it from the input value, and shift
// right to divide by 2.
value -= digit;
value >>= 1;
// Now all that's left is to multiply by the inverse of 5 mod 2^BITS. No
// matter what the value of BITS, the inverse of 5 has the very convenient
// form 0xCCCC...CCCD, with as many C hex digits in the middle as necessary.
//
// We could construct a second BigInt with all words 0xCCCCCCCCCCCCCCCC,
// increment the bottom word, and call a general-purpose multiply function.
// But we can do better, by taking advantage of the regularity: we can do
// this particular operation in linear time, whereas a general multiplier
// would take superlinear time (quadratic in small cases).
//
// To begin with, instead of computing n*0xCCCC...CCCD, we'll compute
// n*0xCCCC...CCCC and then add it to the original n. Then all the words of
// the multiplier have the same value 0xCCCCCCCCCCCCCCCC, which I'll just
// denote as C. If we also write t = 2^WORD_SIZE, and imagine (as an example)
// that the input number has three words x,y,z with x being the low word,
// then we're computing
//
// (x + y t + z t^2) * (C + C t + C t^2)
//
// = x C + y C t + z C t^2
// + x C t + y C t^2 + z C t^3
// + x C t^2 + y C t^3 + z C t^4
//
// but we're working mod t^3, so the high-order terms vanish and this becomes
//
// x C + y C t + z C t^2
// + x C t + y C t^2
// + x C t^2
//
// = x C + (x+y) C t + (x+y+z) C t^2
//
// So all you have to do is to work from the low word of the integer upwards,
// accumulating C times the sum of all the words you've seen so far to get
// x*C, (x+y)*C, (x+y+z)*C and so on. In each step you add another product to
// the accumulator, and add the accumulator to the corresponding word of the
// original number (so that we end up with value*CCCD, not just value*CCCC).
//
// If you do that literally, then your accumulator has to be three words
// wide, because the sum of words can overflow into a second word, and
// multiplying by C adds another word. But we can do slightly better by
// breaking each product word*C up into a bottom half and a top half. If we
// write x*C = xl + xh*t, and similarly for y and z, then our sum becomes
//
// (xl + xh t) + (yl + yh t) t + (zl + zh t) t^2
// + (xl + xh t) t + (yl + yh t) t^2
// + (xl + xh t) t^2
//
// and if you expand out again, collect terms, and discard t^3 terms, you get
//
// (xl)
// + (xl + xh + yl) t
// + (xl + xh + yl + yh + zl) t^2
//
// in which each coefficient is the sum of all the low words of the products
// up to _and including_ the current word, plus all the high words up to but
// _not_ including the current word. So now you only have to retain two words
// of sum instead of three.
//
// We do this entire procedure in a single in-place pass over the input
// number, reading each word to make its product with C and then adding the
// low word of the accumulator to it.
constexpr Word C = Word(-1) / 5 * 4; // calculate 0xCCCC as 4/5 of 0xFFFF
Word acc_lo = 0, acc_hi = 0; // accumulator of all the half-products so far
Word carry_bit, carry_word = 0;
for (size_t i = 0; i < T::WORD_COUNT; i++) {
// Make the two-word product of C with the current input word.
multiword::DoubleWide<Word> product = multiword::mul2(C, value.val[i]);
// Add the low half of the product to our accumulator, but not yet the high
// half.
acc_lo = add_with_carry<Word>(acc_lo, product[0], 0, carry_bit);
acc_hi += carry_bit;
// Now the accumulator contains exactly the value we need to add to the
// current input word. Add it, plus any carries from lower words, and make
// a new word of carry data to propagate into the next iteration.
value.val[i] = add_with_carry<Word>(value.val[i], carry_word, 0, carry_bit);
carry_word = acc_hi + carry_bit;
value.val[i] = add_with_carry<Word>(value.val[i], acc_lo, 0, carry_bit);
carry_word += carry_bit;
// Now add the high half of the current product to our accumulator.
acc_lo = add_with_carry<Word>(acc_lo, product[1], 0, carry_bit);
acc_hi += carry_bit;
}
return digit;
}
// See file header for documentation.
template <typename T, typename Fmt = radix::Dec> class IntegerToString {
static_assert(cpp::is_integral_v<T> || is_big_int_v<T>);
LIBC_INLINE static constexpr size_t compute_buffer_size() {
constexpr auto MAX_DIGITS = []() -> size_t {
// We size the string buffer for base 10 using an approximation algorithm:
//
// size = ceil(sizeof(T) * 5 / 2)
//
// If sizeof(T) is 1, then size is 3 (actually need 3)
// If sizeof(T) is 2, then size is 5 (actually need 5)
// If sizeof(T) is 4, then size is 10 (actually need 10)
// If sizeof(T) is 8, then size is 20 (actually need 20)
// If sizeof(T) is 16, then size is 40 (actually need 39)
//
// NOTE: The ceil operation is actually implemented as
// floor(((sizeof(T) * 5) + 1) / 2)
// where floor operation is just integer division.
//
// This estimation grows slightly faster than the actual value, but the
// overhead is small enough to tolerate.
if constexpr (Fmt::BASE == 10)
return ((sizeof(T) * 5) + 1) / 2;
// For other bases, we approximate by rounding down to the nearest power
// of two base, since the space needed is easy to calculate and it won't
// overestimate by too much.
constexpr auto FLOOR_LOG_2 = [](size_t num) -> size_t {
size_t i = 0;
for (; num > 1; num /= 2)
++i;
return i;
};
constexpr size_t BITS_PER_DIGIT = FLOOR_LOG_2(Fmt::BASE);
return ((sizeof(T) * 8 + (BITS_PER_DIGIT - 1)) / BITS_PER_DIGIT);
};
constexpr size_t DIGIT_SIZE = cpp::max(MAX_DIGITS(), Fmt::MIN_DIGITS);
constexpr size_t SIGN_SIZE = Fmt::BASE == 10 ? 1 : 0;
constexpr size_t PREFIX_SIZE = Fmt::PREFIX ? 2 : 0;
return DIGIT_SIZE + SIGN_SIZE + PREFIX_SIZE;
}
static constexpr size_t BUFFER_SIZE = compute_buffer_size();
static_assert(BUFFER_SIZE > 0);
// An internal stateless structure that handles the number formatting logic.
struct IntegerWriter {
static_assert(cpp::is_integral_v<T> || is_big_int_v<T>);
using UNSIGNED_T = make_integral_or_big_int_unsigned_t<T>;
LIBC_INLINE static char digit_char(uint8_t digit) {
const int result = internal::int_to_b36_char(digit);
return static_cast<char>(Fmt::IS_UPPERCASE ? internal::toupper(result)
: result);
}
LIBC_INLINE static void
write_unsigned_number(UNSIGNED_T value,
details::BackwardStringBufferWriter &sink) {
for (; sink.ok() && value != 0; value /= Fmt::BASE) {
const uint8_t digit(static_cast<uint8_t>(value % Fmt::BASE));
sink.push(digit_char(digit));
}
}
LIBC_INLINE static void
write_unsigned_number_dec(UNSIGNED_T value,
details::BackwardStringBufferWriter &sink) {
while (sink.ok() && value != 0) {
const uint8_t digit = extract_decimal_digit(value);
sink.push(digit_char(digit));
}
}
// Returns the absolute value of 'value' as 'UNSIGNED_T'.
LIBC_INLINE static UNSIGNED_T abs(T value) {
if (cpp::is_unsigned_v<T> || value >= 0)
return static_cast<UNSIGNED_T>(value); // already of the right sign.
// Signed integers are asymmetric (e.g., int8_t ∈ [-128, 127]).
// Thus negating the type's minimum value would overflow.
// From C++20 on, signed types are guaranteed to be represented as 2's
// complement. We take advantage of this representation and negate the
// value by using the exact same bit representation, e.g.,
// binary : 0b1000'0000
// int8_t : -128
// uint8_t: 128
// Note: the compiler can completely optimize out the two branches and
// replace them by a simple negate instruction.
// https://godbolt.org/z/hE7zahT9W
if (value == cpp::numeric_limits<T>::min()) {
return cpp::bit_cast<UNSIGNED_T>(value);
} else {
return static_cast<UNSIGNED_T>(
-value); // legal and representable both as T and UNSIGNED_T.`
}
}
LIBC_INLINE static void write(T value,
details::BackwardStringBufferWriter &sink) {
if constexpr (Fmt::BASE == 10) {
write_unsigned_number_dec(abs(value), sink);
} else {
write_unsigned_number(static_cast<UNSIGNED_T>(value), sink);
}
// width
while (sink.ok() && sink.size() < Fmt::MIN_DIGITS)
sink.push('0');
// sign
if constexpr (Fmt::BASE == 10) {
if (value < 0)
sink.push('-');
else if (Fmt::FORCE_SIGN)
sink.push('+');
}
// prefix
if constexpr (Fmt::PREFIX) {
if constexpr (Fmt::BASE == 2) {
sink.push('b');
sink.push('0');
}
if constexpr (Fmt::BASE == 16) {
sink.push('x');
sink.push('0');
}
if constexpr (Fmt::BASE == 8) {
const cpp::string_view written = sink.buffer_view();
if (written.empty() || written.front() != '0')
sink.push('0');
}
}
}
};
cpp::array<char, BUFFER_SIZE> array;
size_t written = 0;
public:
IntegerToString(const IntegerToString &) = delete;
IntegerToString(T value) {
details::BackwardStringBufferWriter writer(array);
IntegerWriter::write(value, writer);
written = writer.size();
}
[[nodiscard]] LIBC_INLINE static cpp::optional<cpp::string_view>
format_to(cpp::span<char> buffer, T value) {
details::BackwardStringBufferWriter writer(buffer);
IntegerWriter::write(value, writer);
if (writer.ok())
return cpp::string_view(buffer.data() + buffer.size() - writer.size(),
writer.size());
return cpp::nullopt;
}
LIBC_INLINE static constexpr size_t buffer_size() { return BUFFER_SIZE; }
LIBC_INLINE size_t size() const { return written; }
LIBC_INLINE cpp::string_view view() && = delete;
LIBC_INLINE cpp::string_view view() const & {
return cpp::string_view(array.data() + array.size() - size(), size());
}
};
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_INTEGER_TO_STRING_H