blob: 7081fc59057cf0dd15c0fd8f420087bbc049ceed [file] [log] [blame]
//===-- Nearest integer floating-point operations ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H
#define LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H
#include "FEnvImpl.h"
#include "FPBits.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/common.h"
#include <math.h>
namespace __llvm_libc {
namespace fputil {
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T trunc(T x) {
FPBits<T> bits(x);
// If x is infinity or NaN, return it.
// If it is zero also we should return it as is, but the logic
// later in this function takes care of it. But not doing a zero
// check, we improve the run time of non-zero values.
if (bits.is_inf_or_nan())
return x;
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::VALUE))
return x;
// If the exponent is such that abs(x) is less than 1, then return 0.
if (exponent <= -1) {
if (bits.get_sign())
return T(-0.0);
else
return T(0.0);
}
int trim_size = MantissaWidth<T>::VALUE - exponent;
bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
return T(bits);
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T ceil(T x) {
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.is_inf_or_nan() || bits.is_zero())
return x;
bool is_neg = bits.get_sign();
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::VALUE))
return x;
if (exponent <= -1) {
if (is_neg)
return T(-0.0);
else
return T(1.0);
}
uint32_t trim_size = MantissaWidth<T>::VALUE - exponent;
bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
T trunc_value = T(bits);
// If x is already an integer, return it.
if (trunc_value == x)
return x;
// If x is negative, the ceil operation is equivalent to the trunc operation.
if (is_neg)
return trunc_value;
return trunc_value + T(1.0);
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T floor(T x) {
FPBits<T> bits(x);
if (bits.get_sign()) {
return -ceil(-x);
} else {
return trunc(x);
}
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T round(T x) {
using UIntType = typename FPBits<T>::UIntType;
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.is_inf_or_nan() || bits.is_zero())
return x;
bool is_neg = bits.get_sign();
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::VALUE))
return x;
if (exponent == -1) {
// Absolute value of x is greater than equal to 0.5 but less than 1.
if (is_neg)
return T(-1.0);
else
return T(1.0);
}
if (exponent <= -2) {
// Absolute value of x is less than 0.5.
if (is_neg)
return T(-0.0);
else
return T(0.0);
}
uint32_t trim_size = MantissaWidth<T>::VALUE - exponent;
bool half_bit_set =
bool(bits.get_mantissa() & (UIntType(1) << (trim_size - 1)));
bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
T trunc_value = T(bits);
// If x is already an integer, return it.
if (trunc_value == x)
return x;
if (!half_bit_set) {
// Franctional part is less than 0.5 so round value is the
// same as the trunc value.
return trunc_value;
} else {
return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0);
}
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T round_using_current_rounding_mode(T x) {
using UIntType = typename FPBits<T>::UIntType;
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.is_inf_or_nan() || bits.is_zero())
return x;
bool is_neg = bits.get_sign();
int exponent = bits.get_exponent();
int rounding_mode = get_round();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::VALUE))
return x;
if (exponent <= -1) {
switch (rounding_mode) {
case FE_DOWNWARD:
return is_neg ? T(-1.0) : T(0.0);
case FE_UPWARD:
return is_neg ? T(-0.0) : T(1.0);
case FE_TOWARDZERO:
return is_neg ? T(-0.0) : T(0.0);
case FE_TONEAREST:
if (exponent <= -2 || bits.get_mantissa() == 0)
return is_neg ? T(-0.0) : T(0.0); // abs(x) <= 0.5
else
return is_neg ? T(-1.0) : T(1.0); // abs(x) > 0.5
default:
__builtin_unreachable();
}
}
uint32_t trim_size = MantissaWidth<T>::VALUE - exponent;
FPBits<T> new_bits = bits;
new_bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
T trunc_value = T(new_bits);
// If x is already an integer, return it.
if (trunc_value == x)
return x;
UIntType trim_value = bits.get_mantissa() & ((UIntType(1) << trim_size) - 1);
UIntType half_value = (UIntType(1) << (trim_size - 1));
// If exponent is 0, trimSize will be equal to the mantissa width, and
// truncIsOdd` will not be correct. So, we handle it as a special case
// below.
UIntType trunc_is_odd = new_bits.get_mantissa() & (UIntType(1) << trim_size);
switch (rounding_mode) {
case FE_DOWNWARD:
return is_neg ? trunc_value - T(1.0) : trunc_value;
case FE_UPWARD:
return is_neg ? trunc_value : trunc_value + T(1.0);
case FE_TOWARDZERO:
return trunc_value;
case FE_TONEAREST:
if (trim_value > half_value) {
return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0);
} else if (trim_value == half_value) {
if (exponent == 0)
return is_neg ? T(-2.0) : T(2.0);
if (trunc_is_odd)
return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0);
else
return trunc_value;
} else {
return trunc_value;
}
default:
__builtin_unreachable();
}
}
namespace internal {
template <typename F, typename I,
cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>,
int> = 0>
LIBC_INLINE I rounded_float_to_signed_integer(F x) {
constexpr I INTEGER_MIN = (I(1) << (sizeof(I) * 8 - 1));
constexpr I INTEGER_MAX = -(INTEGER_MIN + 1);
FPBits<F> bits(x);
auto set_domain_error_and_raise_invalid = []() {
set_errno_if_required(EDOM);
raise_except_if_required(FE_INVALID);
};
if (bits.is_inf_or_nan()) {
set_domain_error_and_raise_invalid();
return bits.get_sign() ? INTEGER_MIN : INTEGER_MAX;
}
int exponent = bits.get_exponent();
constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1;
if (exponent > EXPONENT_LIMIT) {
set_domain_error_and_raise_invalid();
return bits.get_sign() ? INTEGER_MIN : INTEGER_MAX;
} else if (exponent == EXPONENT_LIMIT) {
if (bits.get_sign() == 0 || bits.get_mantissa() != 0) {
set_domain_error_and_raise_invalid();
return bits.get_sign() ? INTEGER_MIN : INTEGER_MAX;
}
// If the control reaches here, then it means that the rounded
// value is the most negative number for the signed integer type I.
}
// For all other cases, if `x` can fit in the integer type `I`,
// we just return `x`. static_cast will convert the floating
// point value to the exact integer value.
return static_cast<I>(x);
}
} // namespace internal
template <typename F, typename I,
cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>,
int> = 0>
LIBC_INLINE I round_to_signed_integer(F x) {
return internal::rounded_float_to_signed_integer<F, I>(round(x));
}
template <typename F, typename I,
cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>,
int> = 0>
LIBC_INLINE I round_to_signed_integer_using_current_rounding_mode(F x) {
return internal::rounded_float_to_signed_integer<F, I>(
round_using_current_rounding_mode(x));
}
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H