blob: 327ce07265682a193d15232d68e9f5e234cd2680 [file] [log] [blame]
//===-- aarch64 floating point env manipulation functions -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_AARCH64_FENV_H
#define LLVM_LIBC_UTILS_FPUTIL_AARCH64_FENV_H
#include <arm_acle.h>
#include <fenv.h>
#include <stdint.h>
#include "utils/FPUtil/FPBits.h"
namespace __llvm_libc {
namespace fputil {
struct FEnv {
struct FPState {
uint32_t ControlWord;
uint32_t StatusWord;
};
static_assert(
sizeof(fenv_t) == sizeof(FPState),
"Internal floating point state does not match the public fenv_t type.");
static constexpr uint32_t ToNearest = 0x0;
static constexpr uint32_t Upward = 0x1;
static constexpr uint32_t Downward = 0x2;
static constexpr uint32_t TowardZero = 0x3;
static constexpr uint32_t Invalid = 0x1;
static constexpr uint32_t DivByZero = 0x2;
static constexpr uint32_t Overflow = 0x4;
static constexpr uint32_t Underflow = 0x8;
static constexpr uint32_t Inexact = 0x10;
// Zero-th bit is the first bit.
static constexpr uint32_t RoundingControlBitPosition = 22;
static constexpr uint32_t ExceptionStatusFlagsBitPosition = 0;
static constexpr uint32_t ExceptionControlFlagsBitPosition = 8;
static inline uint32_t getStatusValueForExcept(int excepts) {
return (excepts & FE_INVALID ? Invalid : 0) |
(excepts & FE_DIVBYZERO ? DivByZero : 0) |
(excepts & FE_OVERFLOW ? Overflow : 0) |
(excepts & FE_UNDERFLOW ? Underflow : 0) |
(excepts & FE_INEXACT ? Inexact : 0);
}
static inline int exceptionStatusToMacro(uint32_t status) {
return (status & Invalid ? FE_INVALID : 0) |
(status & DivByZero ? FE_DIVBYZERO : 0) |
(status & Overflow ? FE_OVERFLOW : 0) |
(status & Underflow ? FE_UNDERFLOW : 0) |
(status & Inexact ? FE_INEXACT : 0);
}
static uint32_t getControlWord() { return __arm_rsr("fpcr"); }
static void writeControlWord(uint32_t fpcr) { __arm_wsr("fpcr", fpcr); }
static uint32_t getStatusWord() { return __arm_rsr("fpsr"); }
static void writeStatusWord(uint32_t fpsr) { __arm_wsr("fpsr", fpsr); }
};
static inline int enableExcept(int excepts) {
uint32_t newExcepts = FEnv::getStatusValueForExcept(excepts);
uint32_t controlWord = FEnv::getControlWord();
int oldExcepts =
(controlWord >> FEnv::ExceptionControlFlagsBitPosition) & 0x1F;
controlWord |= (newExcepts << FEnv::ExceptionControlFlagsBitPosition);
FEnv::writeControlWord(controlWord);
return FEnv::exceptionStatusToMacro(oldExcepts);
}
static inline int disableExcept(int excepts) {
uint32_t disabledExcepts = FEnv::getStatusValueForExcept(excepts);
uint32_t controlWord = FEnv::getControlWord();
int oldExcepts =
(controlWord >> FEnv::ExceptionControlFlagsBitPosition) & 0x1F;
controlWord &= ~(disabledExcepts << FEnv::ExceptionControlFlagsBitPosition);
FEnv::writeControlWord(controlWord);
return FEnv::exceptionStatusToMacro(oldExcepts);
}
static inline int clearExcept(int excepts) {
uint32_t controlWord = FEnv::getControlWord();
uint32_t toClear = FEnv::getStatusValueForExcept(excepts);
controlWord &= ~(toClear << FEnv::ExceptionStatusFlagsBitPosition);
FEnv::writeStatusWord(controlWord);
return 0;
}
static inline int testExcept(int excepts) {
uint32_t toTest = FEnv::getStatusValueForExcept(excepts);
uint32_t statusWord = FEnv::getStatusWord();
return FEnv::exceptionStatusToMacro(
(statusWord >> FEnv::ExceptionStatusFlagsBitPosition) & toTest);
}
static inline int setExcept(int excepts) {
uint32_t statusWord = FEnv::getControlWord();
uint32_t statusValue = FEnv::getStatusValueForExcept(excepts);
statusWord |= (statusValue << FEnv::ExceptionStatusFlagsBitPosition);
FEnv::writeStatusWord(statusWord);
return 0;
}
static inline int raiseExcept(int excepts) {
float zero = 0.0f;
float one = 1.0f;
float largeValue = float(FPBits<float>(FPBits<float>::maxNormal));
float smallValue = float(FPBits<float>(FPBits<float>::minNormal));
auto divfunc = [](float a, float b) {
__asm__ __volatile__("ldr s0, %0\n\t"
"ldr s1, %1\n\t"
"fdiv s0, s0, s1\n\t"
: // No outputs
: "m"(a), "m"(b)
: "s0", "s1" /* s0 and s1 are clobbered */);
};
uint32_t toRaise = FEnv::getStatusValueForExcept(excepts);
if (toRaise & FEnv::Invalid) {
divfunc(zero, zero);
uint32_t statusWord = FEnv::getStatusWord();
if (!((statusWord >> FEnv::ExceptionStatusFlagsBitPosition) &
FEnv::Invalid))
return -1;
}
if (toRaise & FEnv::DivByZero) {
divfunc(one, zero);
uint32_t statusWord = FEnv::getStatusWord();
if (!((statusWord >> FEnv::ExceptionStatusFlagsBitPosition) &
FEnv::DivByZero))
return -1;
}
if (toRaise & FEnv::Overflow) {
divfunc(largeValue, smallValue);
uint32_t statusWord = FEnv::getStatusWord();
if (!((statusWord >> FEnv::ExceptionStatusFlagsBitPosition) &
FEnv::Overflow))
return -1;
}
if (toRaise & FEnv::Underflow) {
divfunc(smallValue, largeValue);
uint32_t statusWord = FEnv::getStatusWord();
if (!((statusWord >> FEnv::ExceptionStatusFlagsBitPosition) &
FEnv::Underflow))
return -1;
}
if (toRaise & FEnv::Inexact) {
float two = 2.0f;
float three = 3.0f;
// 2.0 / 3.0 cannot be represented exactly in any radix 2 floating point
// format.
divfunc(two, three);
uint32_t statusWord = FEnv::getStatusWord();
if (!((statusWord >> FEnv::ExceptionStatusFlagsBitPosition) &
FEnv::Inexact))
return -1;
}
return 0;
}
static inline int getRound() {
uint32_t roundingMode =
(FEnv::getControlWord() >> FEnv::RoundingControlBitPosition) & 0x3;
switch (roundingMode) {
case FEnv::ToNearest:
return FE_TONEAREST;
case FEnv::Downward:
return FE_DOWNWARD;
case FEnv::Upward:
return FE_UPWARD;
case FEnv::TowardZero:
return FE_TOWARDZERO;
default:
return -1; // Error value.
}
}
static inline int setRound(int mode) {
uint16_t bitValue;
switch (mode) {
case FE_TONEAREST:
bitValue = FEnv::ToNearest;
break;
case FE_DOWNWARD:
bitValue = FEnv::Downward;
break;
case FE_UPWARD:
bitValue = FEnv::Upward;
break;
case FE_TOWARDZERO:
bitValue = FEnv::TowardZero;
break;
default:
return 1; // To indicate failure
}
uint32_t controlWord = FEnv::getControlWord();
controlWord &= ~(0x3 << FEnv::RoundingControlBitPosition);
controlWord |= (bitValue << FEnv::RoundingControlBitPosition);
FEnv::writeControlWord(controlWord);
return 0;
}
static inline int getEnv(fenv_t *envp) {
FEnv::FPState *state = reinterpret_cast<FEnv::FPState *>(envp);
state->ControlWord = FEnv::getControlWord();
state->StatusWord = FEnv::getStatusWord();
return 0;
}
static inline int setEnv(const fenv_t *envp) {
const FEnv::FPState *state = reinterpret_cast<const FEnv::FPState *>(envp);
FEnv::writeControlWord(state->ControlWord);
FEnv::writeStatusWord(state->StatusWord);
return 0;
}
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_AARCH64_FENV_H