blob: 42a2d49f45eeb5d1819e68cd6912d4898b964e48 [file] [log] [blame]
//===-- Single-precision tan function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/tanf.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/common.h"
#include <errno.h>
#if defined(LIBC_TARGET_HAS_FMA)
#include "range_reduction_fma.h"
// using namespace __llvm_libc::fma;
using __llvm_libc::fma::FAST_PASS_BOUND;
using __llvm_libc::fma::large_range_reduction;
using __llvm_libc::fma::small_range_reduction;
#else
#include "range_reduction.h"
// using namespace __llvm_libc::generic;
using __llvm_libc::generic::FAST_PASS_BOUND;
using __llvm_libc::generic::large_range_reduction;
using __llvm_libc::generic::small_range_reduction;
#endif
namespace __llvm_libc {
// Lookup table for tan(k * pi/32) with k = -15..15 organized as follow:
// TAN_K_OVER_32[k] = tan(k * pi/32) for k = 0..15
// TAN_K_OVER_32[k] = tan((k - 31) * pi/32) for k = 16..31.
// This organization allows us to simply do the lookup:
// TAN_K_OVER_32[k & 31] for k of type int(32/64) with 2-complement
// representation.
// The values of tan(k * pi/32) are generated by Sollya with:
// for k from 0 -15 to 15 do { round(tan(k*pi/32), D, RN); };
static constexpr double TAN_K_PI_OVER_32[32] = {
0.0000000000000000, 0x1.936bb8c5b2da2p-4, 0x1.975f5e0553158p-3,
0x1.36a08355c63dcp-2, 0x1.a827999fcef32p-2, 0x1.11ab7190834ecp-1,
0x1.561b82ab7f99p-1, 0x1.a43002ae4285p-1, 0x1.0000000000000p0,
0x1.37efd8d87607ep0, 0x1.7f218e25a7461p0, 0x1.def13b73c1406p0,
0x1.3504f333f9de6p1, 0x1.a5f59e90600ddp1, 0x1.41bfee2424771p2,
0x1.44e6c595afdccp3, -0x1.44e6c595afdccp3, -0x1.41bfee2424771p2,
-0x1.a5f59e90600ddp1, -0x1.3504f333f9de6p1, -0x1.def13b73c1406p0,
-0x1.7f218e25a7461p0, -0x1.37efd8d87607ep0, -0x1.0000000000000p0,
-0x1.a43002ae4285p-1, -0x1.561b82ab7f99p-1, -0x1.11ab7190834ecp-1,
-0x1.a827999fcef32p-2, -0x1.36a08355c63dcp-2, -0x1.975f5e0553158p-3,
-0x1.936bb8c5b2da2p-4, 0.0000000000000000,
};
// Exceptional cases for tanf.
static constexpr int TANF_EXCEPTS = 6;
static constexpr fputil::ExceptionalValues<float, TANF_EXCEPTS> TanfExcepts{
/* inputs */ {
0x531d744c, // x = 0x1.3ae898p39
0x57d7b0ed, // x = 0x1.af61dap48
0x65ee8695, // x = 0x1.dd0d2ap76
0x6798fe4f, // x = 0x1.31fc9ep80
0x6ad36709, // x = 0x1.a6ce12p86
0x72b505bb, // x = 0x1.6a0b76p102
},
/* outputs (RZ, RU offset, RD offset, RN offset) */
{
{0x4591ea1e, 1, 0, 1}, // x = 0x1.3ae898p39, tan(x) = 0x1.23d43cp12 (RZ)
{0x3eb068e3, 1, 0, 1}, // x = 0x1.af61dap48, tan(x) = 0x1.60d1c6p-2 (RZ)
{0xcaa32f8e, 0, 1,
0}, // x = 0x1.dd0d2ap76, tan(x) = -0x1.465f1cp22 (RZ)
{0x461e09f7, 1, 0, 0}, // x = 0x1.31fc9ep80, tan(x) = 0x1.3c13eep13 (RZ)
{0xbf62b097, 0, 1,
0}, // x = 0x1.a6ce12p86, tan(x) = -0x1.c5612ep-1 (RZ)
{0xbff2150f, 0, 1,
0}, // x = 0x1.6a0b76p102, tan(x) = -0x1.e42a1ep0 (RZ)
}};
LLVM_LIBC_FUNCTION(float, tanf, (float x)) {
using FPBits = typename fputil::FPBits<float>;
FPBits xbits(x);
constexpr double SIGN[2] = {1.0, -1.0};
double x_sign = SIGN[xbits.uintval() >> 31];
xbits.set_sign(false);
uint32_t x_abs = xbits.uintval();
// Range reduction:
//
// Since tan(x) is an odd function,
// tan(x) = -tan(-x),
// By replacing x with -x if x is negative, we can assume in the following
// that x is non-negative.
//
// We perform a range reduction mod pi/32, so that we ca have a good
// polynomial approximation of tan(x) around [-pi/32, pi/32]. Since tan(x) is
// periodic with period pi, in the first step of range reduction, we find k
// and y such that:
// x = (k + y) * pi/32,
// where k is an integer, and |y| <= 0.5.
// Moreover, we only care about the lowest 5 bits of k, since
// tan((k + 32) * pi/32) = tan(k * pi/32 + pi) = tan(k * pi/32).
// So after the reduction k = k & 31, we can assume that 0 <= k <= 31.
//
// For the second step, since tan(x) has a singularity at pi/2, we need a
// further reduction so that:
// k * pi/32 < pi/2, or equivalently, 0 <= k < 16.
// So if k >= 16, we perform the following transformation:
// tan(x) = tan(x - pi) = tan((k + y) * pi/32 - pi)
// = tan((k - 31 + y - 1) * pi/32)
// = tan((k - 31) * pi/32 + (y - 1) * pi/32)
// = tan(k' * pi/32 + y' * pi/32)
// Notice that we only subtract k by 31, not 32, to make sure that |k'| < 16.
// In fact, the range of k' is: -15 <= k' <= 0.
// But the range of y' is now: -1.5 <= y' <= -0.5.
// If we perform round to zero in the first step of finding k and y, so that
// 0 <= y <= 1, then the range of y' would be -1 <= y' <= 0, then we can
// reduce the degree of polynomial approximation using to approximate
// tan(y* pi/32) by 1 or 2 terms.
// In any case, for simplicity and to reuse the same range reduction as sinf
// and cosf, we opted to use the former range: [-1.5, 1.5] * pi/32 for
// the polynomial approximation step.
//
// Once k and y are computed, we then deduce the answer by the tangent of sum
// formula:
// tan(x) = tan((k + y)*pi/32)
// = (tan(y*pi/32) + tan(k*pi/32)) / (1 - tan(y*pi/32)*tan(k*pi/32))
// The values of tan(k*pi/32) for k = -15..15 are precomputed and stored using
// a vector of 31 doubles. Tan(y*pi/32) is computed using degree-9 minimax
// polynomials generated by Sollya.
// |x| < pi/32
if (unlikely(x_abs <= 0x3dc9'0fdbU)) {
double xd = static_cast<double>(x);
// |x| < 0x1.0p-12f
if (unlikely(x_abs < 0x3980'0000U)) {
if (unlikely(x_abs == 0U)) {
// For signed zeros.
return x;
}
// When |x| < 2^-12, the relative error of the approximation tan(x) ~ x
// is:
// |tan(x) - x| / |tan(x)| < |x^3| / (3|x|)
// = x^2 / 3
// < 2^-25
// < epsilon(1)/2.
// So the correctly rounded values of tan(x) are:
// = x + sign(x)*eps(x) if rounding mode = FE_UPWARD and x is positive,
// or (rounding mode = FE_DOWNWARD and x is
// negative),
// = x otherwise.
// To simplify the rounding decision and make it more efficient, we use
// fma(x, 2^-25, x) instead.
// Note: to use the formula x + 2^-25*x to decide the correct rounding, we
// do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when
// |x| < 2^-125. For targets without FMA instructions, we simply use
// double for intermediate results as it is more efficient than using an
// emulated version of FMA.
#if defined(LIBC_TARGET_HAS_FMA)
return fputil::multiply_add(x, 0x1.0p-25f, x);
#else
return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd));
#endif // LIBC_TARGET_HAS_FMA
}
// |x| < pi/32
double xsq = xd * xd;
// Degree-9 minimax odd polynomial of tan(x) generated by Sollya with:
// > P = fpminimax(tan(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/32]);
double result =
fputil::polyeval(xsq, 1.0, 0x1.555555553d022p-2, 0x1.111111ce442c1p-3,
0x1.ba180a6bbdecdp-5, 0x1.69c0a88a0b71fp-6);
return xd * result;
}
// Inf or NaN
if (unlikely(x_abs >= 0x7f80'0000U)) {
if (x_abs == 0x7f80'0000U) {
errno = EDOM;
fputil::set_except(FE_INVALID);
}
return x +
FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
}
int64_t k;
double y;
double xd = static_cast<double>(xbits.get_val());
// Perform the first step of range reduction: find k and y such that
// x = (k + y) * pi/32,
// where k is an integer, and |y| <= 0.5.
if (likely(x_abs < FAST_PASS_BOUND)) {
k = small_range_reduction(xd, y);
} else {
using ExceptChecker =
typename fputil::ExceptionChecker<float, TANF_EXCEPTS>;
{
float result;
if (ExceptChecker::check_odd_func(TanfExcepts, x_abs, x_sign <= 0.0,
result))
return result;
}
fputil::FPBits<float> x_bits(x_abs);
k = large_range_reduction(xd, x_bits.get_exponent(), y);
}
// Only care about the lowest 5 bits of k.
k &= 31;
// Adjust y if k >= 16.
constexpr double ADJUSTMENT[2] = {0.0, -1.0};
y += ADJUSTMENT[k >> 4];
double tan_k = TAN_K_PI_OVER_32[k];
// Degree-10 minimax odd polynomial for tan(y * pi/32)/y generated by Sollya
// with:
// > P = fpminimax(tan(y*pi/32)/y, [|0, 2, 4, 6, 8, 10|], [|D...|], [0, 1.5]);
double ysq = y * y;
double tan_y =
y * fputil::polyeval(ysq, 0x1.921fb54442d17p-4, 0x1.4abbce625e84cp-12,
0x1.466bc669afd51p-20, 0x1.460013a5aae3p-28,
0x1.45de3dc438976p-36, 0x1.4eaeead85bef4p-44);
// Combine the results with the tangent of sum formula:
// tan(x) = tan((k + y)*pi/32)
// = (tan(k*pi/32) + tan(k*pi/32)) / (1 - tan(y*pi/32)*tan(k*pi/32))
return x_sign * (tan_y + tan_k) / fputil::multiply_add(tan_y, -tan_k, 1.0);
}
} // namespace __llvm_libc