| //===-- Single-precision log1p(x) function --------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/log1pf.h" |
| #include "common_constants.h" // Lookup table for (1/f) and log(f) |
| #include "src/__support/FPUtil/BasicOperations.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FMA.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/common.h" |
| |
| // This is an algorithm for log10(x) in single precision which is |
| // correctly rounded for all rounding modes. |
| // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x) |
| // for all rounding modes. |
| // - When 2^(-8) <= |x| < 2^45, the sum (double(x) + 1.0) is exact, |
| // so we can adapt the correctly rounded algorithm of logf to compute |
| // log(double(x) + 1.0) correctly. For more information about the logf |
| // algorithm, see `libc/src/math/generic/logf.cpp`. |
| // - When |x| < 2^(-8), we use a degree-6 polynomial in double precision |
| // generated with Sollya using the following command: |
| // fpminimax(log(1 + x)/x, 5, [|D...|], [-2^-8; 2^-8]); |
| |
| namespace __llvm_libc { |
| |
| namespace internal { |
| |
| // We don't need to treat denormal |
| static inline float log(double x) { |
| constexpr double LOG_2 = 0x1.62e42fefa39efp-1; |
| |
| using FPBits = typename fputil::FPBits<double>; |
| FPBits xbits(x); |
| |
| if (xbits.is_zero()) { |
| return static_cast<float>(fputil::FPBits<float>::neg_inf()); |
| } |
| |
| if (xbits.uintval() > FPBits::MAX_NORMAL) { |
| if (xbits.get_sign() && !xbits.is_nan()) { |
| return fputil::FPBits<float>::build_nan( |
| 1 << (fputil::MantissaWidth<float>::VALUE - 1)); |
| } |
| return static_cast<float>(x); |
| } |
| |
| double m = static_cast<double>(xbits.get_exponent()); |
| |
| // Set bits to 1.m |
| xbits.set_unbiased_exponent(0x3FF); |
| // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for |
| // lookup tables. |
| int f_index = |
| xbits.get_mantissa() >> 45; // fputil::MantissaWidth<double>::VALUE - 7 |
| |
| FPBits f = xbits; |
| // Clear the lowest 45 bits. |
| f.bits &= ~0x0000'1FFF'FFFF'FFFFULL; |
| |
| double d = static_cast<double>(xbits) - static_cast<double>(f); |
| d *= ONE_OVER_F[f_index]; |
| |
| double extra_factor = fputil::multiply_add(m, LOG_2, LOG_F[f_index]); |
| |
| double r = fputil::polyeval(d, extra_factor, 0x1.fffffffffffacp-1, |
| -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2, |
| -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3); |
| |
| return static_cast<float>(r); |
| } |
| |
| } // namespace internal |
| |
| LLVM_LIBC_FUNCTION(float, log1pf, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| FPBits xbits(x); |
| double xd = static_cast<double>(x); |
| |
| if (xbits.get_exponent() >= -8) { |
| // Hard-to-round cases. |
| switch (xbits.uintval()) { |
| case 0x3b9315c8U: // x = 0x1.262b9p-8f |
| if (fputil::get_round() != FE_UPWARD) |
| return 0x1.25830cp-8f; |
| break; |
| case 0x3c6eb7afU: // x = 0x1.dd6f5ep-7f |
| if (fputil::get_round() == FE_UPWARD) |
| return 0x1.d9fd86p-7f; |
| return 0x1.d9fd84p-7f; |
| case 0x41078febU: // x = 0x1.0f1fd6p+3f |
| if (fputil::get_round() != FE_UPWARD) |
| return 0x1.1fcbcep+1f; |
| break; |
| case 0x5cd69e88U: // x = 0x1.ad3d1p+58f |
| if (fputil::get_round() != FE_UPWARD) |
| return 0x1.45c146p+5f; |
| break; |
| case 0x65d890d3U: // x = 0x1.b121a6p+76f |
| if (fputil::get_round() == FE_TONEAREST) |
| return 0x1.a9a3f2p+5f; |
| break; |
| case 0x6f31a8ecU: // x = 0x1.6351d8p+95f |
| if (fputil::get_round() == FE_TONEAREST) |
| return 0x1.08b512p+6f; |
| break; |
| case 0x7a17f30aU: // x = 0x1.2fe614p+117f |
| if (fputil::get_round() != FE_UPWARD) |
| return 0x1.451436p+6f; |
| break; |
| case 0xbc4d092cU: // x = -0x1.9a1258p-7f |
| if (fputil::get_round() == FE_TONEAREST) |
| return -0x1.9ca8bep-7f; |
| break; |
| case 0xbc657728U: // x = -0x1.caee5p-7f |
| if (fputil::get_round() != FE_DOWNWARD) |
| return -0x1.ce2cccp-7f; |
| break; |
| case 0xbd1d20afU: // x = -0x1.3a415ep-5f |
| int round_mode = fputil::get_round(); |
| if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO) |
| return -0x1.40711p-5f; |
| return -0x1.407112p-5f; |
| } |
| |
| return internal::log(xd + 1.0); |
| } |
| |
| // Hard-to round cases. |
| switch (xbits.uintval()) { |
| case 0x35400003U: // x = 0x1.800006p-21f |
| if (fputil::get_round() == FE_TONEAREST) |
| return 0x1.7ffffep-21f; |
| break; |
| case 0x3710001bU: // x = 0x1.200036p-17f |
| if (fputil::get_round() == FE_TONEAREST) |
| return 0x1.1fffe6p-17f; |
| break; |
| case 0xb53ffffdU: // x = -0x1.7ffffap-21f |
| if (fputil::get_round() != FE_DOWNWARD) |
| return -0x1.800002p-21f; |
| break; |
| case 0xb70fffe5U: // x = -0x1.1fffcap-17f |
| if (fputil::get_round() != FE_DOWNWARD) |
| return -0x1.20001ap-17f; |
| break; |
| case 0xbb0ec8c4U: // x = -0x1.1d9188p-9f |
| if (fputil::get_round() == FE_TONEAREST) |
| return -0x1.1de14ap-9f; |
| break; |
| } |
| |
| double r; |
| // Polymial generated with Sollya: |
| // > fpminimax(log(1 + x)/x, 5, [|D...|], [-2^-8; 2^-8]); |
| r = fputil::polyeval(xd, -0x1p-1, 0x1.5555555515551p-2, -0x1.ffffffff82bdap-3, |
| 0x1.999b33348d3aep-3, -0x1.5556cae3adcc3p-3); |
| return static_cast<float>(fputil::multiply_add(r, xd * xd, xd)); |
| } |
| |
| } // namespace __llvm_libc |