blob: ca9f33f2f8167b761927cd6c97dce62c7169e881 [file] [log] [blame]
//===-- Utility class to test different flavors of ldexp --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
#define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/NormalFloat.h"
#include "utils/UnitTest/FPMatcher.h"
#include "utils/UnitTest/Test.h"
#include <limits.h>
#include <math.h>
#include <stdint.h>
template <typename T>
class LdExpTestTemplate : public __llvm_libc::testing::Test {
using FPBits = __llvm_libc::fputil::FPBits<T>;
using NormalFloat = __llvm_libc::fputil::NormalFloat<T>;
using UIntType = typename FPBits::UIntType;
static constexpr UIntType MANTISSA_WIDTH =
__llvm_libc::fputil::MantissaWidth<T>::VALUE;
// A normalized mantissa to be used with tests.
static constexpr UIntType MANTISSA = NormalFloat::ONE + 0x1234;
const T zero = T(__llvm_libc::fputil::FPBits<T>::zero());
const T neg_zero = T(__llvm_libc::fputil::FPBits<T>::neg_zero());
const T inf = T(__llvm_libc::fputil::FPBits<T>::inf());
const T neg_inf = T(__llvm_libc::fputil::FPBits<T>::neg_inf());
const T nan = T(__llvm_libc::fputil::FPBits<T>::build_nan(1));
public:
typedef T (*LdExpFunc)(T, int);
void testSpecialNumbers(LdExpFunc func) {
int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX};
for (int exp : exp_array) {
ASSERT_FP_EQ(zero, func(zero, exp));
ASSERT_FP_EQ(neg_zero, func(neg_zero, exp));
ASSERT_FP_EQ(inf, func(inf, exp));
ASSERT_FP_EQ(neg_inf, func(neg_inf, exp));
ASSERT_FP_EQ(nan, func(nan, exp));
}
}
void testPowersOfTwo(LdExpFunc func) {
int32_t exp_array[5] = {1, 2, 3, 4, 5};
int32_t val_array[6] = {1, 2, 4, 8, 16, 32};
for (int32_t exp : exp_array) {
for (int32_t val : val_array) {
ASSERT_FP_EQ(T(val << exp), func(T(val), exp));
ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp));
}
}
}
void testOverflow(LdExpFunc func) {
NormalFloat x(FPBits::MAX_EXPONENT - 10, NormalFloat::ONE + 0xF00BA, 0);
for (int32_t exp = 10; exp < 100; ++exp) {
ASSERT_FP_EQ(inf, func(T(x), exp));
ASSERT_FP_EQ(neg_inf, func(-T(x), exp));
}
}
void testUnderflowToZeroOnNormal(LdExpFunc func) {
// In this test, we pass a normal nubmer to func and expect zero
// to be returned due to underflow.
int32_t base_exponent = FPBits::EXPONENT_BIAS + MANTISSA_WIDTH;
int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
base_exponent + 3, base_exponent + 2,
base_exponent + 1};
T x = NormalFloat(0, MANTISSA, 0);
for (int32_t exp : exp_array) {
ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
}
}
void testUnderflowToZeroOnSubnormal(LdExpFunc func) {
// In this test, we pass a normal nubmer to func and expect zero
// to be returned due to underflow.
int32_t base_exponent = FPBits::EXPONENT_BIAS + MANTISSA_WIDTH;
int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
base_exponent + 3, base_exponent + 2,
base_exponent + 1};
T x = NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 0);
for (int32_t exp : exp_array) {
ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
}
}
void testNormalOperation(LdExpFunc func) {
T val_array[] = {
// Normal numbers
NormalFloat(100, MANTISSA, 0), NormalFloat(-100, MANTISSA, 0),
NormalFloat(100, MANTISSA, 1), NormalFloat(-100, MANTISSA, 1),
// Subnormal numbers
NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 0),
NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 1)};
for (int32_t exp = 0; exp <= static_cast<int32_t>(MANTISSA_WIDTH); ++exp) {
for (T x : val_array) {
// We compare the result of ldexp with the result
// of the native multiplication/division instruction.
ASSERT_FP_EQ(func(x, exp), x * (UIntType(1) << exp));
ASSERT_FP_EQ(func(x, -exp), x / (UIntType(1) << exp));
}
}
// Normal which trigger mantissa overflow.
T x = NormalFloat(-FPBits::EXPONENT_BIAS + 1, 2 * NormalFloat::ONE - 1, 0);
ASSERT_FP_EQ(func(x, -1), x / 2);
ASSERT_FP_EQ(func(-x, -1), -x / 2);
// Start with a normal number high exponent but pass a very low number for
// exp. The result should be a subnormal number.
x = NormalFloat(FPBits::EXPONENT_BIAS, NormalFloat::ONE, 0);
int exp = -FPBits::MAX_EXPONENT - 5;
T result = func(x, exp);
FPBits result_bits(result);
ASSERT_FALSE(result_bits.is_zero());
// Verify that the result is indeed subnormal.
ASSERT_EQ(result_bits.get_unbiased_exponent(), uint16_t(0));
// But if the exp is so less that normalization leads to zero, then
// the result should be zero.
result = func(x, -FPBits::MAX_EXPONENT - int(MANTISSA_WIDTH) - 5);
ASSERT_TRUE(FPBits(result).is_zero());
// Start with a subnormal number but pass a very high number for exponent.
// The result should not be infinity.
x = NormalFloat(-FPBits::EXPONENT_BIAS + 1, NormalFloat::ONE >> 10, 0);
exp = FPBits::MAX_EXPONENT + 5;
ASSERT_FALSE(FPBits(func(x, exp)).is_inf());
// But if the exp is large enough to oversome than the normalization shift,
// then it should result in infinity.
exp = FPBits::MAX_EXPONENT + 15;
ASSERT_FP_EQ(func(x, exp), inf);
}
};
#define LIST_LDEXP_TESTS(T, func) \
using LlvmLibcLdExpTest = LdExpTestTemplate<T>; \
TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \
TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \
TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \
TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \
testUnderflowToZeroOnNormal(&func); \
} \
TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \
testUnderflowToZeroOnSubnormal(&func); \
} \
TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); }
#endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H