| //===-- Implementation of cbrt function -----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/cbrt.h" |
| #include "hdr/fenv_macros.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/double_double.h" |
| #include "src/__support/FPUtil/dyadic_float.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/integer_literals.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| #if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0) |
| #define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS |
| #endif |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| using DoubleDouble = fputil::DoubleDouble; |
| using Float128 = fputil::DyadicFloat<128>; |
| |
| namespace { |
| |
| // Initial approximation of x^(-2/3) for 1 <= x < 2. |
| // Polynomial generated by Sollya with: |
| // > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]); |
| // > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]); |
| // 0x1.28...p-21 |
| double intial_approximation(double x) { |
| constexpr double COEFFS[8] = { |
| 0x1.bc52aedead5c6p1, -0x1.b52bfebf110b3p2, 0x1.1d8d71d53d126p3, |
| -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2, -0x1.5973c66ee6da7p0, |
| 0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6, |
| }; |
| |
| double x_sq = x * x; |
| |
| double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]); |
| double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]); |
| double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]); |
| double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]); |
| |
| double x_4 = x_sq * x_sq; |
| double d0 = fputil::multiply_add(x_sq, c1, c0); |
| double d1 = fputil::multiply_add(x_sq, c3, c2); |
| |
| return fputil::multiply_add(x_4, d1, d0); |
| } |
| |
| // Get the error term for Newton iteration: |
| // h(x) = x^3 * a^2 - 1, |
| #ifdef LIBC_TARGET_CPU_HAS_FMA |
| double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) { |
| return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) + |
| fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo); |
| } |
| #else |
| double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) { |
| DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3); |
| return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo; |
| } |
| #endif |
| |
| } // anonymous namespace |
| |
| // Correctly rounded cbrt algorithm: |
| // |
| // === Step 1 - Range reduction === |
| // For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as: |
| // x_r = 1.m |
| // a = (-1)^s * 2^(e % 3) * (1.m) |
| // Then cbrt(x) = x^(1/3) can be computed as: |
| // x^(1/3) = 2^(e / 3) * a^(1/3). |
| // |
| // In order to avoid division, we compute a^(-2/3) using Newton method and then |
| // multiply the results by a: |
| // a^(1/3) = a * a^(-2/3). |
| // |
| // === Step 2 - First approximation to a^(-2/3) === |
| // First, we use a degree-7 minimax polynomial generated by Sollya to |
| // approximate x_r^(-2/3) for 1 <= x_r < 2. |
| // p = P(x_r) ~ x_r^(-2/3), |
| // with relative errors bounded by: |
| // | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21. |
| // |
| // Then we multiply with 2^(e % 3) from a small lookup table to get: |
| // x_0 = 2^(-2*(e % 3)/3) * p |
| // ~ 2^(-2*(e % 3)/3) * x_r^(-2/3) |
| // = a^(-2/3) |
| // With relative errors: |
| // | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21. |
| // This step is done in double precision. |
| // |
| // === Step 3 - First Newton iteration === |
| // We follow the method described in: |
| // Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation |
| // in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf |
| // to derive multiplicative Newton iterations as below: |
| // Let x_n be the nth approximation to a^(-2/3). Define the n^th error as: |
| // h_n = x_n^3 * a^2 - 1 |
| // Then: |
| // a^(-2/3) = x_n / (1 + h_n)^(1/3) |
| // = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...) |
| // using the Taylor series expansion of (1 + h_n)^(-1/3). |
| // |
| // Apply to x_0 above: |
| // h_0 = x_0^3 * a^2 - 1 |
| // = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)), |
| // it's bounded by: |
| // |h_0| < 4 * 3 * 1.16 * 2^-21 * 4 < 2^-17. |
| // So in the first iteration step, we use: |
| // x_1 = x_0 * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3) |
| // Its relative error is bounded by: |
| // | x_1 / a^(-2/3) - 1 | < 35/242 * |h_0|^4 < 2^-70. |
| // Then we perform Ziv's rounding test and check if the answer is exact. |
| // This step is done in double-double precision. |
| // |
| // === Step 4 - Second Newton iteration === |
| // If the Ziv's rounding test from the previous step fails, we define the error |
| // term: |
| // h_1 = x_1^3 * a^2 - 1, |
| // And perform another iteration: |
| // x_2 = x_1 * (1 - h_1 / 3) |
| // with the relative errors exceed the precision of double-double. |
| // We then check the Ziv's accuracy test with relative errors < 2^-102 to |
| // compensate for rounding errors. |
| // |
| // === Step 5 - Final iteration === |
| // If the Ziv's accuracy test from the previous step fails, we perform another |
| // iteration in 128-bit precision and check for exact outputs. |
| // |
| // TODO: It is possible to replace this costly computation step with special |
| // exceptional handling, similar to what was done in the CORE-MATH project: |
| // https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/cbrt/cbrt.c |
| |
| LLVM_LIBC_FUNCTION(double, cbrt, (double x)) { |
| using FPBits = fputil::FPBits<double>; |
| |
| uint64_t x_abs = FPBits(x).abs().uintval(); |
| |
| unsigned exp_bias_correction = 682; // 1023 * 2/3 |
| |
| if (LIBC_UNLIKELY(x_abs < FPBits::min_normal().uintval() || |
| x_abs >= FPBits::inf().uintval())) { |
| if (x_abs == 0 || x_abs >= FPBits::inf().uintval()) |
| // x is 0, Inf, or NaN. |
| return x; |
| |
| // x is non-zero denormal number. |
| // Normalize x. |
| x *= 0x1.0p60; |
| exp_bias_correction -= 20; |
| } |
| |
| FPBits x_bits(x); |
| |
| // When using biased exponent of x in double precision, |
| // x_e = real_exponent_of_x + 1023 |
| // Then: |
| // x_e / 3 = real_exponent_of_x / 3 + 1023/3 |
| // = real_exponent_of_x / 3 + 341 |
| // So to make it the correct biased exponent of x^(1/3), we add |
| // 1023 - 341 = 682 |
| // to the quotient x_e / 3. |
| unsigned x_e = static_cast<unsigned>(x_bits.get_biased_exponent()); |
| unsigned out_e = (x_e / 3 + exp_bias_correction); |
| unsigned shift_e = x_e % 3; |
| |
| // Set x_r = 1.mantissa |
| double x_r = |
| FPBits(x_bits.get_mantissa() | |
| (static_cast<uint64_t>(FPBits::EXP_BIAS) << FPBits::FRACTION_LEN)) |
| .get_val(); |
| |
| // Set a = (-1)^x_sign * 2^(x_e % 3) * (1.mantissa) |
| uint64_t a_bits = x_bits.uintval() & 0x800F'FFFF'FFFF'FFFF; |
| a_bits |= |
| (static_cast<uint64_t>(shift_e + static_cast<unsigned>(FPBits::EXP_BIAS)) |
| << FPBits::FRACTION_LEN); |
| double a = FPBits(a_bits).get_val(); |
| |
| // Initial approximation of x_r^(-2/3). |
| double p = intial_approximation(x_r); |
| |
| // Look up for 2^(-2*n/3) used for first approximation step. |
| constexpr double EXP2_M2_OVER_3[3] = {1.0, 0x1.428a2f98d728bp-1, |
| 0x1.965fea53d6e3dp-2}; |
| |
| // x0 is an initial approximation of a^(-2/3) for 1 <= |a| < 8. |
| // Relative error: < 1.16 * 2^(-21). |
| double x0 = static_cast<double>(EXP2_M2_OVER_3[shift_e] * p); |
| |
| // First iteration in double precision. |
| DoubleDouble a_sq = fputil::exact_mult(a, a); |
| |
| // h0 = x0^3 * a^2 - 1 |
| DoubleDouble x0_sq = fputil::exact_mult(x0, x0); |
| DoubleDouble x0_3 = fputil::quick_mult(x0, x0_sq); |
| |
| double h0 = get_error(x0_3, a_sq); |
| |
| #ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS |
| constexpr double REL_ERROR = 0; |
| #else |
| constexpr double REL_ERROR = 0x1.0p-51; |
| #endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS |
| |
| // Taylor polynomial of (1 + h)^(-1/3): |
| // (1 + h)^(-1/3) = 1 - h/3 + 2 h^2 / 9 - 14 h^3 / 81 + ... |
| constexpr double ERR_COEFFS[3] = { |
| -0x1.5555555555555p-2 - REL_ERROR, // -1/3 - relative_error |
| 0x1.c71c71c71c71cp-3, // 2/9 |
| -0x1.61f9add3c0ca4p-3, // -14/81 |
| }; |
| // e0 = -14 * h^2 / 81 + 2 * h / 9 - 1/3 - relative_error. |
| double e0 = fputil::polyeval(h0, ERR_COEFFS[0], ERR_COEFFS[1], ERR_COEFFS[2]); |
| double x0_h0 = x0 * h0; |
| |
| // x1 = x0 (1 - h0/3 + 2 h0^2 / 9 - 14 h0^3 / 81) |
| // x1 approximate a^(-2/3) with relative errors bounded by: |
| // | x1 / a^(-2/3) - 1 | < (34/243) h0^4 < h0 * REL_ERROR |
| DoubleDouble x1_dd{x0_h0 * e0, x0}; |
| |
| // r1 = x1 * a ~ a^(-2/3) * a = a^(1/3). |
| DoubleDouble r1 = fputil::quick_mult(a, x1_dd); |
| |
| // Lambda function to update the exponent of the result. |
| auto update_exponent = [=](double r) -> double { |
| uint64_t r_m = FPBits(r).uintval() - 0x3FF0'0000'0000'0000; |
| // Adjust exponent and sign. |
| uint64_t r_bits = |
| r_m + (static_cast<uint64_t>(out_e) << FPBits::FRACTION_LEN); |
| return FPBits(r_bits).get_val(); |
| }; |
| |
| #ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS |
| // TODO: We probably don't need to use double-double if accurate tests and |
| // passes are skipped. |
| return update_exponent(r1.hi + r1.lo); |
| #else |
| // Accurate checks and passes. |
| double r1_lower = r1.hi + r1.lo; |
| double r1_upper = |
| r1.hi + fputil::multiply_add(x0_h0, 2.0 * REL_ERROR * a, r1.lo); |
| |
| // Ziv's accuracy test. |
| if (LIBC_LIKELY(r1_upper == r1_lower)) { |
| // Test for exact outputs. |
| // Check if lower (52 - 17 = 35) bits are 0's. |
| if (LIBC_UNLIKELY((FPBits(r1_lower).uintval() & 0x0000'0007'FFFF'FFFF) == |
| 0)) { |
| double r1_err = (r1_lower - r1.hi) - r1.lo; |
| if (FPBits(r1_err).abs().get_val() < 0x1.0p69) |
| fputil::clear_except_if_required(FE_INEXACT); |
| } |
| |
| return update_exponent(r1_lower); |
| } |
| |
| // Accuracy test failed, perform another Newton iteration. |
| double x1 = x1_dd.hi + (e0 + REL_ERROR) * x0_h0; |
| |
| // Second iteration in double-double precision. |
| // h1 = x1^3 * a^2 - 1. |
| DoubleDouble x1_sq = fputil::exact_mult(x1, x1); |
| DoubleDouble x1_3 = fputil::quick_mult(x1, x1_sq); |
| double h1 = get_error(x1_3, a_sq); |
| |
| // e1 = -x1*h1/3. |
| double e1 = h1 * (x1 * -0x1.5555555555555p-2); |
| // x2 = x1*(1 - h1/3) = x1 + e1 ~ a^(-2/3) with relative errors < 2^-101. |
| DoubleDouble x2 = fputil::exact_add(x1, e1); |
| // r2 = a * x2 ~ a * a^(-2/3) = a^(1/3) with relative errors < 2^-100. |
| DoubleDouble r2 = fputil::quick_mult(a, x2); |
| |
| double r2_upper = r2.hi + fputil::multiply_add(a, 0x1.0p-102, r2.lo); |
| double r2_lower = r2.hi + fputil::multiply_add(a, -0x1.0p-102, r2.lo); |
| |
| // Ziv's accuracy test. |
| if (LIBC_LIKELY(r2_upper == r2_lower)) |
| return update_exponent(r2_upper); |
| |
| // TODO: Investigate removing float128 and just list exceptional cases. |
| // Apply another Newton iteration with ~126-bit accuracy. |
| Float128 x2_f128 = fputil::quick_add(Float128(x2.hi), Float128(x2.lo)); |
| // x2^3 |
| Float128 x2_3 = |
| fputil::quick_mul(fputil::quick_mul(x2_f128, x2_f128), x2_f128); |
| // a^2 |
| Float128 a_sq_f128 = fputil::quick_mul(Float128(a), Float128(a)); |
| // x2^3 * a^2 |
| Float128 x2_3_a_sq = fputil::quick_mul(x2_3, a_sq_f128); |
| // h2 = x2^3 * a^2 - 1 |
| Float128 h2_f128 = fputil::quick_add(x2_3_a_sq, Float128(-1.0)); |
| double h2 = static_cast<double>(h2_f128); |
| // t2 = 1 - h2 / 3 |
| Float128 t2 = |
| fputil::quick_add(Float128(1.0), Float128(h2 * (-0x1.5555555555555p-2))); |
| // x3 = x2 * (1 - h2 / 3) ~ a^(-2/3) |
| Float128 x3 = fputil::quick_mul(x2_f128, t2); |
| // r3 = a * x3 ~ a * a^(-2/3) = a^(1/3) |
| Float128 r3 = fputil::quick_mul(Float128(a), x3); |
| |
| // Check for exact cases: |
| Float128::MantissaType rounding_bits = |
| r3.mantissa & 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFFF_u128; |
| |
| double result = static_cast<double>(r3); |
| if ((rounding_bits < 0x0000'0000'0000'0000'0000'0000'0000'000F_u128) || |
| (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128)) { |
| // Output is exact. |
| r3.mantissa &= 0xFFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFF0_u128; |
| |
| if (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128) { |
| Float128 tmp{r3.sign, r3.exponent - 123, |
| 0x8000'0000'0000'0000'0000'0000'0000'0000_u128}; |
| Float128 r4 = fputil::quick_add(r3, tmp); |
| result = static_cast<double>(r4); |
| } else { |
| result = static_cast<double>(r3); |
| } |
| |
| fputil::clear_except_if_required(FE_INEXACT); |
| } |
| |
| return update_exponent(result); |
| #endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |