| //===-- Utility class to test different flavors of [l|ll]round --*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
| #define LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
| |
| #include "src/__support/CPP/algorithm.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/macros/properties/architectures.h" |
| #include "test/UnitTest/FEnvSafeTest.h" |
| #include "test/UnitTest/FPMatcher.h" |
| #include "test/UnitTest/Test.h" |
| #include "utils/MPFRWrapper/MPFRUtils.h" |
| |
| #include "hdr/math_macros.h" |
| |
| namespace mpfr = LIBC_NAMESPACE::testing::mpfr; |
| using LIBC_NAMESPACE::Sign; |
| |
| static constexpr int ROUNDING_MODES[4] = {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO, |
| FE_TONEAREST}; |
| |
| template <typename FloatType, typename IntType, bool TestModes = false> |
| class RoundToIntegerTestTemplate |
| : public LIBC_NAMESPACE::testing::FEnvSafeTest { |
| public: |
| typedef IntType (*RoundToIntegerFunc)(FloatType); |
| |
| private: |
| using FPBits = LIBC_NAMESPACE::fputil::FPBits<FloatType>; |
| using StorageType = typename FPBits::StorageType; |
| |
| const FloatType zero = FPBits::zero().get_val(); |
| const FloatType neg_zero = FPBits::zero(Sign::NEG).get_val(); |
| const FloatType inf = FPBits::inf().get_val(); |
| const FloatType neg_inf = FPBits::inf(Sign::NEG).get_val(); |
| const FloatType nan = FPBits::quiet_nan().get_val(); |
| |
| static constexpr StorageType MAX_NORMAL = FPBits::max_normal().uintval(); |
| static constexpr StorageType MIN_NORMAL = FPBits::min_normal().uintval(); |
| static constexpr StorageType MAX_SUBNORMAL = |
| FPBits::max_subnormal().uintval(); |
| static constexpr StorageType MIN_SUBNORMAL = |
| FPBits::min_subnormal().uintval(); |
| |
| static constexpr IntType INTEGER_MIN = IntType(1) |
| << (sizeof(IntType) * 8 - 1); |
| static constexpr IntType INTEGER_MAX = -(INTEGER_MIN + 1); |
| |
| void test_one_input(RoundToIntegerFunc func, FloatType input, |
| IntType expected, bool expectError) { |
| libc_errno = 0; |
| LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); |
| |
| ASSERT_EQ(func(input), expected); |
| |
| // TODO: Handle the !expectError case. It used to expect |
| // 0 for errno and exceptions, but this doesn't hold for |
| // all math functions using RoundToInteger test: |
| // https://github.com/llvm/llvm-project/pull/88816 |
| if (expectError) { |
| ASSERT_FP_EXCEPTION(FE_INVALID); |
| ASSERT_MATH_ERRNO(EDOM); |
| } |
| } |
| |
| static inline mpfr::RoundingMode to_mpfr_rounding_mode(int mode) { |
| switch (mode) { |
| case FE_UPWARD: |
| return mpfr::RoundingMode::Upward; |
| case FE_DOWNWARD: |
| return mpfr::RoundingMode::Downward; |
| case FE_TOWARDZERO: |
| return mpfr::RoundingMode::TowardZero; |
| case FE_TONEAREST: |
| return mpfr::RoundingMode::Nearest; |
| default: |
| __builtin_unreachable(); |
| } |
| } |
| |
| public: |
| void SetUp() override { |
| LIBC_NAMESPACE::testing::FEnvSafeTest::SetUp(); |
| |
| if (math_errhandling & MATH_ERREXCEPT) { |
| // We will disable all exceptions so that the test will not |
| // crash with SIGFPE. We can still use fetestexcept to check |
| // if the appropriate flag was raised. |
| LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT); |
| } |
| } |
| |
| void do_infinity_and_na_n_test(RoundToIntegerFunc func) { |
| test_one_input(func, inf, INTEGER_MAX, true); |
| test_one_input(func, neg_inf, INTEGER_MIN, true); |
| // This is currently never enabled, the |
| // LLVM_LIBC_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR CMake option in |
| // libc/CMakeLists.txt is not forwarded to C++. |
| #if LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR |
| // Result is not well-defined, we always returns INTEGER_MAX |
| test_one_input(func, nan, INTEGER_MAX, true); |
| #endif // LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR |
| } |
| |
| void testInfinityAndNaN(RoundToIntegerFunc func) { |
| if (TestModes) { |
| for (int mode : ROUNDING_MODES) { |
| LIBC_NAMESPACE::fputil::set_round(mode); |
| do_infinity_and_na_n_test(func); |
| } |
| } else { |
| do_infinity_and_na_n_test(func); |
| } |
| } |
| |
| void do_round_numbers_test(RoundToIntegerFunc func) { |
| test_one_input(func, zero, IntType(0), false); |
| test_one_input(func, neg_zero, IntType(0), false); |
| test_one_input(func, FloatType(1.0), IntType(1), false); |
| test_one_input(func, FloatType(-1.0), IntType(-1), false); |
| test_one_input(func, FloatType(10.0), IntType(10), false); |
| test_one_input(func, FloatType(-10.0), IntType(-10), false); |
| test_one_input(func, FloatType(1232.0), IntType(1232), false); |
| test_one_input(func, FloatType(-1232.0), IntType(-1232), false); |
| |
| // The rest of this function compares with an equivalent MPFR function |
| // which rounds floating point numbers to long values. There is no MPFR |
| // function to round to long long or wider integer values. So, we will |
| // the remaining tests only if the width of IntType less than equal to that |
| // of long. |
| if (sizeof(IntType) > sizeof(long)) |
| return; |
| |
| constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; |
| constexpr int BIASED_EXPONENT_LIMIT = EXPONENT_LIMIT + FPBits::EXP_BIAS; |
| if (BIASED_EXPONENT_LIMIT > FPBits::MAX_BIASED_EXPONENT) |
| return; |
| // We start with 1.0 so that the implicit bit for x86 long doubles |
| // is set. |
| FPBits bits(FloatType(1.0)); |
| bits.set_biased_exponent(BIASED_EXPONENT_LIMIT); |
| bits.set_sign(Sign::NEG); |
| bits.set_mantissa(0); |
| |
| FloatType x = bits.get_val(); |
| long mpfr_result; |
| bool erangeflag = mpfr::round_to_long(x, mpfr_result); |
| ASSERT_FALSE(erangeflag); |
| test_one_input(func, x, mpfr_result, false); |
| } |
| |
| void testRoundNumbers(RoundToIntegerFunc func) { |
| if (TestModes) { |
| for (int mode : ROUNDING_MODES) { |
| LIBC_NAMESPACE::fputil::set_round(mode); |
| do_round_numbers_test(func); |
| } |
| } else { |
| do_round_numbers_test(func); |
| } |
| } |
| |
| void do_fractions_test(RoundToIntegerFunc func, int mode) { |
| constexpr FloatType FRACTIONS[] = { |
| FloatType(0.5), FloatType(-0.5), FloatType(0.115), |
| FloatType(-0.115), FloatType(0.715), FloatType(-0.715), |
| }; |
| for (FloatType x : FRACTIONS) { |
| long mpfr_long_result; |
| bool erangeflag; |
| if (TestModes) |
| erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(mode), |
| mpfr_long_result); |
| else |
| erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
| ASSERT_FALSE(erangeflag); |
| IntType mpfr_result = mpfr_long_result; |
| test_one_input(func, x, mpfr_result, false); |
| } |
| } |
| |
| void testFractions(RoundToIntegerFunc func) { |
| if (TestModes) { |
| for (int mode : ROUNDING_MODES) { |
| LIBC_NAMESPACE::fputil::set_round(mode); |
| do_fractions_test(func, mode); |
| } |
| } else { |
| // Passing 0 for mode has no effect as it is not used in doFractionsTest |
| // when `TestModes` is false; |
| do_fractions_test(func, 0); |
| } |
| } |
| |
| void testIntegerOverflow(RoundToIntegerFunc func) { |
| // This function compares with an equivalent MPFR function which rounds |
| // floating point numbers to long values. There is no MPFR function to |
| // round to long long or wider integer values. So, we will peform the |
| // comparisons in this function only if the width of IntType less than equal |
| // to that of long. |
| if (sizeof(IntType) > sizeof(long)) |
| return; |
| |
| constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; |
| constexpr int BIASED_EXPONENT_LIMIT = EXPONENT_LIMIT + FPBits::EXP_BIAS; |
| if (BIASED_EXPONENT_LIMIT > FPBits::MAX_BIASED_EXPONENT) |
| return; |
| // We start with 1.0 so that the implicit bit for x86 long doubles |
| // is set. |
| FPBits bits(FloatType(1.0)); |
| bits.set_biased_exponent(BIASED_EXPONENT_LIMIT); |
| bits.set_sign(Sign::NEG); |
| bits.set_mantissa(FPBits::FRACTION_MASK); |
| |
| FloatType x = bits.get_val(); |
| if (TestModes) { |
| for (int m : ROUNDING_MODES) { |
| LIBC_NAMESPACE::fputil::set_round(m); |
| long mpfr_long_result; |
| bool erangeflag = |
| mpfr::round_to_long(x, to_mpfr_rounding_mode(m), mpfr_long_result); |
| ASSERT_TRUE(erangeflag); |
| test_one_input(func, x, INTEGER_MIN, true); |
| } |
| } else { |
| long mpfr_long_result; |
| bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
| ASSERT_TRUE(erangeflag); |
| test_one_input(func, x, INTEGER_MIN, true); |
| } |
| } |
| |
| void testSubnormalRange(RoundToIntegerFunc func) { |
| constexpr int COUNT = 1'000'001; |
| constexpr StorageType STEP = LIBC_NAMESPACE::cpp::max( |
| static_cast<StorageType>((MAX_SUBNORMAL - MIN_SUBNORMAL) / COUNT), |
| StorageType(1)); |
| for (StorageType i = MIN_SUBNORMAL; i <= MAX_SUBNORMAL; i += STEP) { |
| FloatType x = FPBits(i).get_val(); |
| if (x == FloatType(0.0)) |
| continue; |
| // All subnormal numbers should round to zero. |
| if (TestModes) { |
| if (x > 0) { |
| LIBC_NAMESPACE::fputil::set_round(FE_UPWARD); |
| test_one_input(func, x, IntType(1), false); |
| LIBC_NAMESPACE::fputil::set_round(FE_DOWNWARD); |
| test_one_input(func, x, IntType(0), false); |
| LIBC_NAMESPACE::fputil::set_round(FE_TOWARDZERO); |
| test_one_input(func, x, IntType(0), false); |
| LIBC_NAMESPACE::fputil::set_round(FE_TONEAREST); |
| test_one_input(func, x, IntType(0), false); |
| } else { |
| LIBC_NAMESPACE::fputil::set_round(FE_UPWARD); |
| test_one_input(func, x, IntType(0), false); |
| LIBC_NAMESPACE::fputil::set_round(FE_DOWNWARD); |
| test_one_input(func, x, IntType(-1), false); |
| LIBC_NAMESPACE::fputil::set_round(FE_TOWARDZERO); |
| test_one_input(func, x, IntType(0), false); |
| LIBC_NAMESPACE::fputil::set_round(FE_TONEAREST); |
| test_one_input(func, x, IntType(0), false); |
| } |
| } else { |
| test_one_input(func, x, 0L, false); |
| } |
| } |
| } |
| |
| void testNormalRange(RoundToIntegerFunc func) { |
| // This function compares with an equivalent MPFR function which rounds |
| // floating point numbers to long values. There is no MPFR function to |
| // round to long long or wider integer values. So, we will peform the |
| // comparisons in this function only if the width of IntType less than equal |
| // to that of long. |
| if (sizeof(IntType) > sizeof(long)) |
| return; |
| |
| constexpr int COUNT = 1'000'001; |
| constexpr StorageType STEP = LIBC_NAMESPACE::cpp::max( |
| static_cast<StorageType>((MAX_NORMAL - MIN_NORMAL) / COUNT), |
| StorageType(1)); |
| for (StorageType i = MIN_NORMAL; i <= MAX_NORMAL; i += STEP) { |
| FPBits xbits(i); |
| FloatType x = xbits.get_val(); |
| // In normal range on x86 platforms, the long double implicit 1 bit can be |
| // zero making the numbers NaN. We will skip them. |
| if (xbits.is_nan()) |
| continue; |
| |
| if (TestModes) { |
| for (int m : ROUNDING_MODES) { |
| long mpfr_long_result; |
| bool erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(m), |
| mpfr_long_result); |
| IntType mpfr_result = mpfr_long_result; |
| LIBC_NAMESPACE::fputil::set_round(m); |
| if (erangeflag) |
| test_one_input(func, x, x > 0 ? INTEGER_MAX : INTEGER_MIN, true); |
| else |
| test_one_input(func, x, mpfr_result, false); |
| } |
| } else { |
| long mpfr_long_result; |
| bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
| IntType mpfr_result = mpfr_long_result; |
| if (erangeflag) |
| test_one_input(func, x, x > 0 ? INTEGER_MAX : INTEGER_MIN, true); |
| else |
| test_one_input(func, x, mpfr_result, false); |
| } |
| } |
| } |
| }; |
| |
| #define LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, \ |
| TestModes) \ |
| using LlvmLibcRoundToIntegerTest = \ |
| RoundToIntegerTestTemplate<FloatType, IntType, TestModes>; \ |
| TEST_F(LlvmLibcRoundToIntegerTest, InfinityAndNaN) { \ |
| testInfinityAndNaN(&func); \ |
| } \ |
| TEST_F(LlvmLibcRoundToIntegerTest, RoundNumbers) { \ |
| testRoundNumbers(&func); \ |
| } \ |
| TEST_F(LlvmLibcRoundToIntegerTest, Fractions) { testFractions(&func); } \ |
| TEST_F(LlvmLibcRoundToIntegerTest, IntegerOverflow) { \ |
| testIntegerOverflow(&func); \ |
| } \ |
| TEST_F(LlvmLibcRoundToIntegerTest, SubnormalRange) { \ |
| testSubnormalRange(&func); \ |
| } \ |
| TEST_F(LlvmLibcRoundToIntegerTest, NormalRange) { testNormalRange(&func); } |
| |
| #define LIST_ROUND_TO_INTEGER_TESTS(FloatType, IntType, func) \ |
| LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, false) |
| |
| #define LIST_ROUND_TO_INTEGER_TESTS_WITH_MODES(FloatType, IntType, func) \ |
| LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, true) |
| |
| #endif // LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |