blob: e0824006582bc92564bbd2c514eb352b54c00248 [file] [log] [blame]
//===-- Single-precision cos function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/cosf.h"
#include "sincosf_utils.h"
#include "src/__support/FPUtil/BasicOperations.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/common.h"
#include <errno.h>
namespace __llvm_libc {
// Exceptional cases for cosf.
static constexpr int COSF_EXCEPTS = 6;
static constexpr fputil::ExceptionalValues<float, COSF_EXCEPTS> CosfExcepts{
/* inputs */ {
0x55325019, // x = 0x1.64a032p43
0x5922aa80, // x = 0x1.4555p51
0x5aa4542c, // x = 0x1.48a858p54
0x5f18b878, // x = 0x1.3170fp63
0x6115cb11, // x = 0x1.2b9622p67
0x7beef5ef, // x = 0x1.ddebdep120
},
/* outputs (RZ, RU offset, RD offset, RN offset) */
{
{0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
{0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
{0x3efa40a4, 1, 0, 0}, // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ)
{0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
{0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
{0x3f08a21c, 1, 0,
0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
}};
LLVM_LIBC_FUNCTION(float, cosf, (float x)) {
using FPBits = typename fputil::FPBits<float>;
FPBits xbits(x);
xbits.set_sign(false);
uint32_t x_abs = xbits.uintval();
double xd = static_cast<double>(xbits.get_val());
// Range reduction:
// For |x| > pi/16, we perform range reduction as follows:
// Find k and y such that:
// x = (k + y) * pi/16
// k is an integer
// |y| < 0.5
// For small range (|x| < 2^46 when FMA instructions are available, 2^22
// otherwise), this is done by performing:
// k = round(x * 16/pi)
// y = x * 16/pi - k
// For large range, we will omit all the higher parts of 16/pi such that the
// least significant bits of their full products with x are larger than 31,
// since cos((k + y + 32*i) * pi/16) = cos(x + i * 2pi) = cos(x).
//
// When FMA instructions are not available, we store the digits of 16/pi in
// chunks of 28-bit precision. This will make sure that the products:
// x * SIXTEEN_OVER_PI_28[i] are all exact.
// When FMA instructions are available, we simply store the digits of 16/pi in
// chunks of doubles (53-bit of precision).
// So when multiplying by the largest values of single precision, the
// resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the
// worst-case analysis of range reduction, |y| >= 2^-38, so this should give
// us more than 40 bits of accuracy. For the worst-case estimation of range
// reduction, see for instances:
// Elementary Functions by J-M. Muller, Chapter 11,
// Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
// Chapter 10.2.
//
// Once k and y are computed, we then deduce the answer by the cosine of sum
// formula:
// cos(x) = cos((k + y)*pi/16)
// = cos(y*pi/16) * cos(k*pi/16) - sin(y*pi/16) * sin(k*pi/16)
// The values of sin(k*pi/16) and cos(k*pi/16) for k = 0..31 are precomputed
// and stored using a vector of 32 doubles. Sin(y*pi/16) and cos(y*pi/16) are
// computed using degree-7 and degree-8 minimax polynomials generated by
// Sollya respectively.
// |x| < 0x1.0p-12f
if (unlikely(x_abs < 0x3980'0000U)) {
// When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1
// is:
// |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
// So the correctly rounded values of cos(x) are:
// = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
// = 1 otherwise.
// To simplify the rounding decision and make it more efficient and to
// prevent compiler to perform constant folding, we use
// fma(x, -2^-25, 1) instead.
// Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we
// do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when
// |x| < 2^-125. For targets without FMA instructions, we simply use
// double for intermediate results as it is more efficient than using an
// emulated version of FMA.
#if defined(LIBC_TARGET_HAS_FMA)
return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f);
#else
return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0));
#endif // LIBC_TARGET_HAS_FMA
}
using ExceptChecker = typename fputil::ExceptionChecker<float, COSF_EXCEPTS>;
{
float result;
if (ExceptChecker::check_odd_func(CosfExcepts, x_abs, false, result))
return result;
}
// x is inf or nan.
if (unlikely(x_abs >= 0x7f80'0000U)) {
if (x_abs == 0x7f80'0000U) {
errno = EDOM;
fputil::set_except(FE_INVALID);
}
return x +
FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
}
// Combine the results with the sine of sum formula:
// cos(x) = cos((k + y)*pi/16)
// = cos(y*pi/16) * cos(k*pi/16) - sin(y*pi/16) * sin(k*pi/16)
// = cosm1_y * cos_k + sin_y * sin_k
// = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
double sin_k, cos_k, sin_y, cosm1_y;
sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);
return fputil::multiply_add(sin_y, -sin_k,
fputil::multiply_add(cosm1_y, cos_k, cos_k));
}
} // namespace __llvm_libc