| // polynomial used for __v_log(x) |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| deg = 6; // poly degree |
| a = -0x1.fc1p-9; |
| b = 0x1.009p-8; |
| |
| // find log(1+x)/x polynomial with minimal relative error |
| // (minimal relative error polynomial for log(1+x) is the same * x) |
| deg = deg-1; // because of /x |
| |
| // f = log(1+x)/x; using taylor series |
| f = 0; |
| for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; |
| |
| // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| |
| approx = proc(poly,d) { |
| return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); |
| }; |
| |
| // first coeff is fixed, iteratively find optimal double prec coeffs |
| poly = 1; |
| for i from 1 to deg do { |
| p = roundcoefficients(approx(poly,i), [|D ...|]); |
| poly = poly + x^i*coeff(p,0); |
| }; |
| |
| display = hexadecimal; |
| print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); |
| print("in [",a,b,"]"); |
| print("coeffs:"); |
| for i from 0 to deg do coeff(poly,i); |