blob: a12d188266f7c3d92edca10876cb8ef1321e4981 [file] [log] [blame]
//===-- runtime/matmul-transpose.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements a fused matmul-transpose operation
//
// There are two main entry points; one establishes a descriptor for the
// result and allocates it, and the other expects a result descriptor that
// points to existing storage.
//
// This implementation must handle all combinations of numeric types and
// kinds (100 - 165 cases depending on the target), plus all combinations
// of logical kinds (16). A single template undergoes many instantiations
// to cover all of the valid possibilities.
//
// The usefulness of this optimization should be reviewed once Matmul is swapped
// to use the faster BLAS routines.
#include "flang/Runtime/matmul-transpose.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Common/optional.h"
#include "flang/Runtime/c-or-cpp.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include <cstring>
namespace {
using namespace Fortran::runtime;
// Suppress the warnings about calling __host__-only std::complex operators,
// defined in C++ STD header files, from __device__ code.
RT_DIAG_PUSH
RT_DIAG_DISABLE_CALL_HOST_FROM_DEVICE_WARN
// Contiguous numeric TRANSPOSE(matrix)*matrix multiplication
// TRANSPOSE(matrix(n, rows)) * matrix(n,cols) ->
// matrix(rows, n) * matrix(n,cols) -> matrix(rows,cols)
// The transpose is implemented by swapping the indices of accesses into the LHS
//
// Straightforward algorithm:
// DO 1 I = 1, NROWS
// DO 1 J = 1, NCOLS
// RES(I,J) = 0
// DO 1 K = 1, N
// 1 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J)
//
// With loop distribution and transposition to avoid the inner sum
// reduction and to avoid non-unit strides:
// DO 1 I = 1, NROWS
// DO 1 J = 1, NCOLS
// 1 RES(I,J) = 0
// DO 2 J = 1, NCOLS
// DO 2 I = 1, NROWS
// DO 2 K = 1, N
// 2 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) ! loop-invariant last term
template <TypeCategory RCAT, int RKIND, typename XT, typename YT,
bool X_HAS_STRIDED_COLUMNS, bool Y_HAS_STRIDED_COLUMNS>
inline static RT_API_ATTRS void MatrixTransposedTimesMatrix(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
SubscriptValue n, std::size_t xColumnByteStride = 0,
std::size_t yColumnByteStride = 0) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, rows * cols * sizeof *product);
for (SubscriptValue j{0}; j < cols; ++j) {
for (SubscriptValue i{0}; i < rows; ++i) {
for (SubscriptValue k{0}; k < n; ++k) {
ResultType x_ki;
if constexpr (!X_HAS_STRIDED_COLUMNS) {
x_ki = static_cast<ResultType>(x[i * n + k]);
} else {
x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>(
reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]);
}
ResultType y_kj;
if constexpr (!Y_HAS_STRIDED_COLUMNS) {
y_kj = static_cast<ResultType>(y[j * n + k]);
} else {
y_kj = static_cast<ResultType>(reinterpret_cast<const YT *>(
reinterpret_cast<const char *>(y) + j * yColumnByteStride)[k]);
}
product[j * rows + i] += x_ki * y_kj;
}
}
}
}
RT_DIAG_POP
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline static RT_API_ATTRS void MatrixTransposedTimesMatrixHelper(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
SubscriptValue n, Fortran::common::optional<std::size_t> xColumnByteStride,
Fortran::common::optional<std::size_t> yColumnByteStride) {
if (!xColumnByteStride) {
if (!yColumnByteStride) {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, false>(
product, rows, cols, x, y, n);
} else {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, true>(
product, rows, cols, x, y, n, 0, *yColumnByteStride);
}
} else {
if (!yColumnByteStride) {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, false>(
product, rows, cols, x, y, n, *xColumnByteStride);
} else {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, true>(
product, rows, cols, x, y, n, *xColumnByteStride, *yColumnByteStride);
}
}
}
RT_DIAG_PUSH
RT_DIAG_DISABLE_CALL_HOST_FROM_DEVICE_WARN
// Contiguous numeric matrix*vector multiplication
// matrix(rows,n) * column vector(n) -> column vector(rows)
// Straightforward algorithm:
// DO 1 I = 1, NROWS
// RES(I) = 0
// DO 1 K = 1, N
// 1 RES(I) = RES(I) + X(K,I)*Y(K)
// With loop distribution and transposition to avoid the inner
// sum reduction and to avoid non-unit strides:
// DO 1 I = 1, NROWS
// 1 RES(I) = 0
// DO 2 I = 1, NROWS
// DO 2 K = 1, N
// 2 RES(I) = RES(I) + X(K,I)*Y(K)
template <TypeCategory RCAT, int RKIND, typename XT, typename YT,
bool X_HAS_STRIDED_COLUMNS>
inline static RT_API_ATTRS void MatrixTransposedTimesVector(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y,
std::size_t xColumnByteStride = 0) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, rows * sizeof *product);
for (SubscriptValue i{0}; i < rows; ++i) {
for (SubscriptValue k{0}; k < n; ++k) {
ResultType x_ki;
if constexpr (!X_HAS_STRIDED_COLUMNS) {
x_ki = static_cast<ResultType>(x[i * n + k]);
} else {
x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>(
reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]);
}
ResultType y_k = static_cast<ResultType>(y[k]);
product[i] += x_ki * y_k;
}
}
}
RT_DIAG_POP
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline static RT_API_ATTRS void MatrixTransposedTimesVectorHelper(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y,
Fortran::common::optional<std::size_t> xColumnByteStride) {
if (!xColumnByteStride) {
MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, false>(
product, rows, n, x, y);
} else {
MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, true>(
product, rows, n, x, y, *xColumnByteStride);
}
}
RT_DIAG_PUSH
RT_DIAG_DISABLE_CALL_HOST_FROM_DEVICE_WARN
// Implements an instance of MATMUL for given argument types.
template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT,
typename YT>
inline static RT_API_ATTRS void DoMatmulTranspose(
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result,
const Descriptor &x, const Descriptor &y, Terminator &terminator) {
int xRank{x.rank()};
int yRank{y.rank()};
int resRank{xRank + yRank - 2};
if (xRank * yRank != 2 * resRank) {
terminator.Crash(
"MATMUL-TRANSPOSE: bad argument ranks (%d * %d)", xRank, yRank);
}
SubscriptValue extent[2]{x.GetDimension(1).Extent(),
resRank == 2 ? y.GetDimension(1).Extent() : 0};
if constexpr (IS_ALLOCATING) {
result.Establish(
RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable);
for (int j{0}; j < resRank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"MATMUL-TRANSPOSE: could not allocate memory for result; STAT=%d",
stat);
}
} else {
RUNTIME_CHECK(terminator, resRank == result.rank());
RUNTIME_CHECK(
terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND));
RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]);
RUNTIME_CHECK(terminator,
resRank == 1 || result.GetDimension(1).Extent() == extent[1]);
}
SubscriptValue n{x.GetDimension(0).Extent()};
if (n != y.GetDimension(0).Extent()) {
terminator.Crash(
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(x.GetDimension(1).Extent()),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
}
using WriteResult =
CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT,
RKIND>;
const SubscriptValue rows{extent[0]};
const SubscriptValue cols{extent[1]};
if constexpr (RCAT != TypeCategory::Logical) {
if (x.IsContiguous(1) && y.IsContiguous(1) &&
(IS_ALLOCATING || result.IsContiguous())) {
// Contiguous numeric matrices (maybe with columns
// separated by a stride).
Fortran::common::optional<std::size_t> xColumnByteStride;
if (!x.IsContiguous()) {
// X's columns are strided.
SubscriptValue xAt[2]{};
x.GetLowerBounds(xAt);
xAt[1]++;
xColumnByteStride = x.SubscriptsToByteOffset(xAt);
}
Fortran::common::optional<std::size_t> yColumnByteStride;
if (!y.IsContiguous()) {
// Y's columns are strided.
SubscriptValue yAt[2]{};
y.GetLowerBounds(yAt);
yAt[1]++;
yColumnByteStride = y.SubscriptsToByteOffset(yAt);
}
if (resRank == 2) { // M*M -> M
// TODO: use BLAS-3 GEMM for supported types.
MatrixTransposedTimesMatrixHelper<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), rows, cols,
x.OffsetElement<XT>(), y.OffsetElement<YT>(), n, xColumnByteStride,
yColumnByteStride);
return;
}
if (xRank == 2) { // M*V -> V
// TODO: use BLAS-2 GEMM for supported types.
MatrixTransposedTimesVectorHelper<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), rows, n,
x.OffsetElement<XT>(), y.OffsetElement<YT>(), xColumnByteStride);
return;
}
// else V*M -> V (not allowed because TRANSPOSE() is only defined for rank
// 1 matrices
terminator.Crash(
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(n),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
return;
}
}
// General algorithms for LOGICAL and noncontiguity
SubscriptValue xLB[2], yLB[2], resLB[2];
x.GetLowerBounds(xLB);
y.GetLowerBounds(yLB);
result.GetLowerBounds(resLB);
using ResultType = CppTypeFor<RCAT, RKIND>;
if (resRank == 2) { // M*M -> M
for (SubscriptValue i{0}; i < rows; ++i) {
for (SubscriptValue j{0}; j < cols; ++j) {
ResultType res_ij;
if constexpr (RCAT == TypeCategory::Logical) {
res_ij = false;
} else {
res_ij = 0;
}
for (SubscriptValue k{0}; k < n; ++k) {
SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
SubscriptValue yAt[2]{k + yLB[0], j + yLB[1]};
if constexpr (RCAT == TypeCategory::Logical) {
ResultType x_ki = IsLogicalElementTrue(x, xAt);
ResultType y_kj = IsLogicalElementTrue(y, yAt);
res_ij = res_ij || (x_ki && y_kj);
} else {
ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
ResultType y_kj = static_cast<ResultType>(*y.Element<YT>(yAt));
res_ij += x_ki * y_kj;
}
}
SubscriptValue resAt[2]{i + resLB[0], j + resLB[1]};
*result.template Element<WriteResult>(resAt) = res_ij;
}
}
} else if (xRank == 2) { // M*V -> V
for (SubscriptValue i{0}; i < rows; ++i) {
ResultType res_i;
if constexpr (RCAT == TypeCategory::Logical) {
res_i = false;
} else {
res_i = 0;
}
for (SubscriptValue k{0}; k < n; ++k) {
SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
SubscriptValue yAt[1]{k + yLB[0]};
if constexpr (RCAT == TypeCategory::Logical) {
ResultType x_ki = IsLogicalElementTrue(x, xAt);
ResultType y_k = IsLogicalElementTrue(y, yAt);
res_i = res_i || (x_ki && y_k);
} else {
ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
ResultType y_k = static_cast<ResultType>(*y.Element<YT>(yAt));
res_i += x_ki * y_k;
}
}
SubscriptValue resAt[1]{i + resLB[0]};
*result.template Element<WriteResult>(resAt) = res_i;
}
} else { // V*M -> V
// TRANSPOSE(V) not allowed by fortran standard
terminator.Crash(
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(n),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
}
}
RT_DIAG_POP
// Maps the dynamic type information from the arguments' descriptors
// to the right instantiation of DoMatmul() for valid combinations of
// types.
template <bool IS_ALLOCATING> struct MatmulTranspose {
using ResultDescriptor =
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>;
template <TypeCategory XCAT, int XKIND> struct MM1 {
template <TypeCategory YCAT, int YKIND> struct MM2 {
RT_API_ATTRS void operator()(ResultDescriptor &result,
const Descriptor &x, const Descriptor &y,
Terminator &terminator) const {
if constexpr (constexpr auto resultType{
GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
if constexpr (Fortran::common::IsNumericTypeCategory(
resultType->first) ||
resultType->first == TypeCategory::Logical) {
return DoMatmulTranspose<IS_ALLOCATING, resultType->first,
resultType->second, CppTypeFor<XCAT, XKIND>,
CppTypeFor<YCAT, YKIND>>(result, x, y, terminator);
}
}
terminator.Crash("MATMUL-TRANSPOSE: bad operand types (%d(%d), %d(%d))",
static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND);
}
};
RT_API_ATTRS void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, Terminator &terminator, TypeCategory yCat,
int yKind) const {
ApplyType<MM2, void>(yCat, yKind, terminator, result, x, y, terminator);
}
};
RT_API_ATTRS void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) const {
Terminator terminator{sourceFile, line};
auto xCatKind{x.type().GetCategoryAndKind()};
auto yCatKind{y.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
ApplyType<MM1, void>(xCatKind->first, xCatKind->second, terminator, result,
x, y, terminator, yCatKind->first, yCatKind->second);
}
};
} // namespace
namespace Fortran::runtime {
extern "C" {
RT_EXT_API_GROUP_BEGIN
void RTDEF(MatmulTranspose)(Descriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) {
MatmulTranspose<true>{}(result, x, y, sourceFile, line);
}
void RTDEF(MatmulTransposeDirect)(const Descriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) {
MatmulTranspose<false>{}(result, x, y, sourceFile, line);
}
RT_EXT_API_GROUP_END
} // extern "C"
} // namespace Fortran::runtime