blob: 2ebc4e561a339a930728c1177b06a2b955932f4c [file] [log] [blame]
//===-- lib/Semantics/data-to-inits.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// DATA statement object/value checking and conversion to static
// initializers
// - Applies specific checks to each scalar element initialization with a
// constant value or pointer target with class DataInitializationCompiler;
// - Collects the elemental initializations for each symbol and converts them
// into a single init() expression with member function
// DataChecker::ConstructInitializer().
#include "data-to-inits.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Evaluate/tools.h"
#include "flang/Semantics/tools.h"
// The job of generating explicit static initializers for objects that don't
// have them in order to implement default component initialization is now being
// done in lowering, so don't do it here in semantics; but the code remains here
// in case we change our minds.
static constexpr bool makeDefaultInitializationExplicit{false};
// Whether to delete the original "init()" initializers from storage-associated
// objects and pointers.
static constexpr bool removeOriginalInits{false};
// Impose a hard limit that's more than large enough for real applications but
// small enough to cause artificial stress tests to fail reasonably instead of
// crashing the compiler with a memory allocation failure.
static constexpr auto maxDataInitBytes{std::size_t{1000000000}}; // 1GiB
namespace Fortran::semantics {
// Steps through a list of values in a DATA statement set; implements
// repetition.
template <typename DSV = parser::DataStmtValue> class ValueListIterator {
public:
ValueListIterator(SemanticsContext &context, const std::list<DSV> &list)
: context_{context}, end_{list.end()}, at_{list.begin()} {
SetRepetitionCount();
}
bool hasFatalError() const { return hasFatalError_; }
bool IsAtEnd() const { return at_ == end_; }
const SomeExpr *operator*() const { return GetExpr(context_, GetConstant()); }
std::optional<parser::CharBlock> LocateSource() const {
if (!hasFatalError_) {
return GetConstant().source;
}
return {};
}
ValueListIterator &operator++() {
if (repetitionsRemaining_ > 0) {
--repetitionsRemaining_;
} else if (at_ != end_) {
++at_;
SetRepetitionCount();
}
return *this;
}
private:
using listIterator = typename std::list<DSV>::const_iterator;
void SetRepetitionCount();
const parser::DataStmtValue &GetValue() const {
return DEREF(common::Unwrap<const parser::DataStmtValue>(*at_));
}
const parser::DataStmtConstant &GetConstant() const {
return std::get<parser::DataStmtConstant>(GetValue().t);
}
SemanticsContext &context_;
listIterator end_, at_;
ConstantSubscript repetitionsRemaining_{0};
bool hasFatalError_{false};
};
template <typename DSV> void ValueListIterator<DSV>::SetRepetitionCount() {
for (; at_ != end_; ++at_) {
auto repetitions{GetValue().repetitions};
if (repetitions < 0) {
hasFatalError_ = true;
} else if (repetitions > 0) {
repetitionsRemaining_ = repetitions - 1;
return;
}
}
repetitionsRemaining_ = 0;
}
// Collects all of the elemental initializations from DATA statements
// into a single image for each symbol that appears in any DATA.
// Expands the implied DO loops and array references.
// Applies checks that validate each distinct elemental initialization
// of the variables in a data-stmt-set, as well as those that apply
// to the corresponding values being used to initialize each element.
template <typename DSV = parser::DataStmtValue>
class DataInitializationCompiler {
public:
DataInitializationCompiler(DataInitializations &inits,
evaluate::ExpressionAnalyzer &a, const std::list<DSV> &list)
: inits_{inits}, exprAnalyzer_{a}, values_{a.context(), list} {}
const DataInitializations &inits() const { return inits_; }
bool HasSurplusValues() const { return !values_.IsAtEnd(); }
bool Scan(const parser::DataStmtObject &);
// Initializes all elements of whole variable or component
bool Scan(const Symbol &);
private:
bool Scan(const parser::Variable &);
bool Scan(const parser::Designator &);
bool Scan(const parser::DataImpliedDo &);
bool Scan(const parser::DataIDoObject &);
// Initializes all elements of a designator, which can be an array or section.
bool InitDesignator(const SomeExpr &, const Scope &);
// Initializes a single scalar object.
bool InitElement(const evaluate::OffsetSymbol &, const SomeExpr &designator,
const Scope &);
// If the returned flag is true, emit a warning about CHARACTER misusage.
std::optional<std::pair<SomeExpr, bool>> ConvertElement(
const SomeExpr &, const evaluate::DynamicType &);
DataInitializations &inits_;
evaluate::ExpressionAnalyzer &exprAnalyzer_;
ValueListIterator<DSV> values_;
};
template <typename DSV>
bool DataInitializationCompiler<DSV>::Scan(
const parser::DataStmtObject &object) {
return common::visit(
common::visitors{
[&](const common::Indirection<parser::Variable> &var) {
return Scan(var.value());
},
[&](const parser::DataImpliedDo &ido) { return Scan(ido); },
},
object.u);
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::Scan(const parser::Variable &var) {
if (const auto *expr{GetExpr(exprAnalyzer_.context(), var)}) {
parser::CharBlock at{var.GetSource()};
exprAnalyzer_.GetFoldingContext().messages().SetLocation(at);
if (InitDesignator(*expr, exprAnalyzer_.context().FindScope(at))) {
return true;
}
}
return false;
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::Scan(
const parser::Designator &designator) {
MaybeExpr expr;
{ // The out-of-range subscript errors from the designator folder are a
// more specific than the default ones from expression semantics, so
// disable those to avoid piling on.
auto restorer{exprAnalyzer_.GetContextualMessages().DiscardMessages()};
expr = exprAnalyzer_.Analyze(designator);
}
if (expr) {
parser::CharBlock at{parser::FindSourceLocation(designator)};
exprAnalyzer_.GetFoldingContext().messages().SetLocation(at);
if (InitDesignator(*expr, exprAnalyzer_.context().FindScope(at))) {
return true;
}
}
return false;
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::Scan(const parser::DataImpliedDo &ido) {
const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
auto name{bounds.name.thing.thing};
const auto *lowerExpr{
GetExpr(exprAnalyzer_.context(), bounds.lower.thing.thing)};
const auto *upperExpr{
GetExpr(exprAnalyzer_.context(), bounds.upper.thing.thing)};
const auto *stepExpr{bounds.step
? GetExpr(exprAnalyzer_.context(), bounds.step->thing.thing)
: nullptr};
if (lowerExpr && upperExpr) {
// Fold the bounds expressions (again) in case any of them depend
// on outer implied DO loops.
evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};
std::int64_t stepVal{1};
if (stepExpr) {
auto foldedStep{evaluate::Fold(context, SomeExpr{*stepExpr})};
stepVal = ToInt64(foldedStep).value_or(1);
if (stepVal == 0) {
exprAnalyzer_.Say(name.source,
"DATA statement implied DO loop has a step value of zero"_err_en_US);
return false;
}
}
auto foldedLower{evaluate::Fold(context, SomeExpr{*lowerExpr})};
auto lower{ToInt64(foldedLower)};
auto foldedUpper{evaluate::Fold(context, SomeExpr{*upperExpr})};
auto upper{ToInt64(foldedUpper)};
if (lower && upper) {
int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
if (dynamicType->category() == TypeCategory::Integer) {
kind = dynamicType->kind();
}
}
if (exprAnalyzer_.AddImpliedDo(name.source, kind)) {
auto &value{context.StartImpliedDo(name.source, *lower)};
bool result{true};
for (auto n{(*upper - value + stepVal) / stepVal}; n > 0;
--n, value += stepVal) {
for (const auto &object :
std::get<std::list<parser::DataIDoObject>>(ido.t)) {
if (!Scan(object)) {
result = false;
break;
}
}
}
context.EndImpliedDo(name.source);
exprAnalyzer_.RemoveImpliedDo(name.source);
return result;
}
}
}
return false;
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::Scan(
const parser::DataIDoObject &object) {
return common::visit(
common::visitors{
[&](const parser::Scalar<common::Indirection<parser::Designator>>
&var) { return Scan(var.thing.value()); },
[&](const common::Indirection<parser::DataImpliedDo> &ido) {
return Scan(ido.value());
},
},
object.u);
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::Scan(const Symbol &symbol) {
auto designator{exprAnalyzer_.Designate(evaluate::DataRef{symbol})};
CHECK(designator.has_value());
return InitDesignator(*designator, symbol.owner());
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::InitDesignator(
const SomeExpr &designator, const Scope &scope) {
evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};
evaluate::DesignatorFolder folder{context};
while (auto offsetSymbol{folder.FoldDesignator(designator)}) {
if (folder.isOutOfRange()) {
if (auto bad{evaluate::OffsetToDesignator(context, *offsetSymbol)}) {
exprAnalyzer_.context().Say(
"DATA statement designator '%s' is out of range"_err_en_US,
bad->AsFortran());
} else {
exprAnalyzer_.context().Say(
"DATA statement designator '%s' is out of range"_err_en_US,
designator.AsFortran());
}
return false;
} else if (!InitElement(*offsetSymbol, designator, scope)) {
return false;
} else {
++values_;
}
}
return folder.isEmpty();
}
template <typename DSV>
std::optional<std::pair<SomeExpr, bool>>
DataInitializationCompiler<DSV>::ConvertElement(
const SomeExpr &expr, const evaluate::DynamicType &type) {
if (auto converted{evaluate::ConvertToType(type, SomeExpr{expr})}) {
return {std::make_pair(std::move(*converted), false)};
}
// Allow DATA initialization with Hollerith and kind=1 CHARACTER like
// (most) other Fortran compilers do.
if (auto converted{evaluate::HollerithToBOZ(
exprAnalyzer_.GetFoldingContext(), expr, type)}) {
return {std::make_pair(std::move(*converted), true)};
}
SemanticsContext &context{exprAnalyzer_.context()};
if (context.IsEnabled(common::LanguageFeature::LogicalIntegerAssignment)) {
if (MaybeExpr converted{evaluate::DataConstantConversionExtension(
exprAnalyzer_.GetFoldingContext(), type, expr)}) {
if (context.ShouldWarn(
common::LanguageFeature::LogicalIntegerAssignment)) {
context.Say(
"nonstandard usage: initialization of %s with %s"_port_en_US,
type.AsFortran(), expr.GetType().value().AsFortran());
}
return {std::make_pair(std::move(*converted), false)};
}
}
return std::nullopt;
}
template <typename DSV>
bool DataInitializationCompiler<DSV>::InitElement(
const evaluate::OffsetSymbol &offsetSymbol, const SomeExpr &designator,
const Scope &scope) {
const Symbol &symbol{offsetSymbol.symbol()};
const Symbol *lastSymbol{GetLastSymbol(designator)};
bool isPointer{lastSymbol && IsPointer(*lastSymbol)};
bool isProcPointer{lastSymbol && IsProcedurePointer(*lastSymbol)};
evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};
const auto DescribeElement{[&]() {
if (auto badDesignator{
evaluate::OffsetToDesignator(context, offsetSymbol)}) {
return badDesignator->AsFortran();
} else {
// Error recovery
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << offsetSymbol.symbol().name() << " offset " << offsetSymbol.offset()
<< " bytes for " << offsetSymbol.size() << " bytes";
return ss.str();
}
}};
const auto GetImage{[&]() -> evaluate::InitialImage & {
// This could be (and was) written to always call std::map<>::emplace(),
// which should handle duplicate entries gracefully, but it was still
// causing memory allocation & deallocation with gcc.
auto iter{inits_.find(&symbol)};
if (iter == inits_.end()) {
iter = inits_.emplace(&symbol, symbol.size()).first;
}
auto &symbolInit{iter->second};
symbolInit.NoteInitializedRange(offsetSymbol);
return symbolInit.image;
}};
const auto OutOfRangeError{[&]() {
evaluate::AttachDeclaration(
exprAnalyzer_.context().Say(
"DATA statement designator '%s' is out of range for its variable '%s'"_err_en_US,
DescribeElement(), symbol.name()),
symbol);
}};
if (values_.hasFatalError()) {
return false;
} else if (values_.IsAtEnd()) {
exprAnalyzer_.context().Say(
"DATA statement set has no value for '%s'"_err_en_US,
DescribeElement());
return false;
} else if (static_cast<std::size_t>(
offsetSymbol.offset() + offsetSymbol.size()) > symbol.size()) {
OutOfRangeError();
return false;
}
auto &messages{context.messages()};
auto restorer{
messages.SetLocation(values_.LocateSource().value_or(messages.at()))};
const SomeExpr *expr{*values_};
if (!expr) {
CHECK(exprAnalyzer_.context().AnyFatalError());
} else if (symbol.size() > maxDataInitBytes) {
evaluate::AttachDeclaration(
exprAnalyzer_.context().Say(
"'%s' is too large to initialize with a DATA statement"_todo_en_US,
symbol.name()),
symbol);
return false;
} else if (isPointer) {
if (static_cast<std::size_t>(offsetSymbol.offset() + offsetSymbol.size()) >
symbol.size()) {
OutOfRangeError();
} else if (evaluate::IsNullPointer(*expr)) {
// nothing to do; rely on zero initialization
return true;
} else if (isProcPointer) {
if (evaluate::IsProcedure(*expr)) {
if (CheckPointerAssignment(exprAnalyzer_.context(), designator, *expr,
scope,
/*isBoundsRemapping=*/false, /*isAssumedRank=*/false)) {
if (lastSymbol->has<ProcEntityDetails>()) {
GetImage().AddPointer(offsetSymbol.offset(), *expr);
return true;
} else {
evaluate::AttachDeclaration(
exprAnalyzer_.context().Say(
"DATA statement initialization of procedure pointer '%s' declared using a POINTER statement and an INTERFACE instead of a PROCEDURE statement"_todo_en_US,
DescribeElement()),
*lastSymbol);
}
}
} else {
exprAnalyzer_.Say(
"Data object '%s' may not be used to initialize '%s', which is a procedure pointer"_err_en_US,
expr->AsFortran(), DescribeElement());
}
} else if (evaluate::IsProcedure(*expr)) {
exprAnalyzer_.Say(
"Procedure '%s' may not be used to initialize '%s', which is not a procedure pointer"_err_en_US,
expr->AsFortran(), DescribeElement());
} else if (CheckInitialDataPointerTarget(
exprAnalyzer_.context(), designator, *expr, scope)) {
GetImage().AddPointer(offsetSymbol.offset(), *expr);
return true;
}
} else if (evaluate::IsNullPointer(*expr)) {
exprAnalyzer_.Say("Initializer for '%s' must not be a pointer"_err_en_US,
DescribeElement());
} else if (evaluate::IsProcedure(*expr)) {
exprAnalyzer_.Say("Initializer for '%s' must not be a procedure"_err_en_US,
DescribeElement());
} else if (auto designatorType{designator.GetType()}) {
if (expr->Rank() > 0) {
// Because initial-data-target is ambiguous with scalar-constant and
// scalar-constant-subobject at parse time, enforcement of scalar-*
// must be deferred to here.
exprAnalyzer_.Say(
"DATA statement value initializes '%s' with an array"_err_en_US,
DescribeElement());
} else if (auto converted{ConvertElement(*expr, *designatorType)}) {
// value non-pointer initialization
if (IsBOZLiteral(*expr) &&
designatorType->category() != TypeCategory::Integer) { // 8.6.7(11)
if (exprAnalyzer_.context().ShouldWarn(
common::LanguageFeature::DataStmtExtensions)) {
exprAnalyzer_.Say(
"BOZ literal should appear in a DATA statement only as a value for an integer object, but '%s' is '%s'"_port_en_US,
DescribeElement(), designatorType->AsFortran());
}
} else if (converted->second &&
exprAnalyzer_.context().ShouldWarn(
common::LanguageFeature::DataStmtExtensions)) {
exprAnalyzer_.context().Say(
"DATA statement value initializes '%s' of type '%s' with CHARACTER"_port_en_US,
DescribeElement(), designatorType->AsFortran());
}
auto folded{evaluate::Fold(context, std::move(converted->first))};
// Rewritten from a switch() in order to avoid getting complaints
// about a missing "default:" from some compilers and complaints
// about a redundant "default:" from others.
auto status{GetImage().Add(
offsetSymbol.offset(), offsetSymbol.size(), folded, context)};
if (status == evaluate::InitialImage::Ok) {
return true;
} else if (status == evaluate::InitialImage::NotAConstant) {
exprAnalyzer_.Say(
"DATA statement value '%s' for '%s' is not a constant"_err_en_US,
folded.AsFortran(), DescribeElement());
} else if (status == evaluate::InitialImage::OutOfRange) {
OutOfRangeError();
} else if (status == evaluate::InitialImage::LengthMismatch) {
exprAnalyzer_.Say(
"DATA statement value '%s' for '%s' has the wrong length"_warn_en_US,
folded.AsFortran(), DescribeElement());
return true;
} else if (status == evaluate::InitialImage::TooManyElems) {
exprAnalyzer_.Say("DATA statement has too many elements"_err_en_US);
} else {
CHECK(exprAnalyzer_.context().AnyFatalError());
}
} else {
exprAnalyzer_.context().Say(
"DATA statement value could not be converted to the type '%s' of the object '%s'"_err_en_US,
designatorType->AsFortran(), DescribeElement());
}
} else {
CHECK(exprAnalyzer_.context().AnyFatalError());
}
return false;
}
void AccumulateDataInitializations(DataInitializations &inits,
evaluate::ExpressionAnalyzer &exprAnalyzer,
const parser::DataStmtSet &set) {
DataInitializationCompiler scanner{
inits, exprAnalyzer, std::get<std::list<parser::DataStmtValue>>(set.t)};
for (const auto &object :
std::get<std::list<parser::DataStmtObject>>(set.t)) {
if (!scanner.Scan(object)) {
return;
}
}
if (scanner.HasSurplusValues()) {
exprAnalyzer.context().Say(
"DATA statement set has more values than objects"_err_en_US);
}
}
void AccumulateDataInitializations(DataInitializations &inits,
evaluate::ExpressionAnalyzer &exprAnalyzer, const Symbol &symbol,
const std::list<common::Indirection<parser::DataStmtValue>> &list) {
DataInitializationCompiler<common::Indirection<parser::DataStmtValue>>
scanner{inits, exprAnalyzer, list};
if (scanner.Scan(symbol) && scanner.HasSurplusValues()) {
exprAnalyzer.context().Say(
"DATA statement set has more values than objects"_err_en_US);
}
}
// Looks for default derived type component initialization -- but
// *not* allocatables.
static const DerivedTypeSpec *HasDefaultInitialization(const Symbol &symbol) {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->init().has_value()) {
return nullptr; // init is explicit, not default
} else if (!object->isDummy() && object->type()) {
if (const DerivedTypeSpec * derived{object->type()->AsDerived()}) {
DirectComponentIterator directs{*derived};
if (std::find_if(
directs.begin(), directs.end(), [](const Symbol &component) {
return !IsAllocatable(component) &&
HasDeclarationInitializer(component);
}) != directs.end()) {
return derived;
}
}
}
}
return nullptr;
}
// PopulateWithComponentDefaults() adds initializations to an instance
// of SymbolDataInitialization containing all of the default component
// initializers
static void PopulateWithComponentDefaults(SymbolDataInitialization &init,
std::size_t offset, const DerivedTypeSpec &derived,
evaluate::FoldingContext &foldingContext);
static void PopulateWithComponentDefaults(SymbolDataInitialization &init,
std::size_t offset, const DerivedTypeSpec &derived,
evaluate::FoldingContext &foldingContext, const Symbol &symbol) {
if (auto extents{evaluate::GetConstantExtents(foldingContext, symbol)}) {
const Scope &scope{derived.scope() ? *derived.scope()
: DEREF(derived.typeSymbol().scope())};
std::size_t stride{scope.size()};
if (std::size_t alignment{scope.alignment().value_or(0)}) {
stride = ((stride + alignment - 1) / alignment) * alignment;
}
for (auto elements{evaluate::GetSize(*extents)}; elements-- > 0;
offset += stride) {
PopulateWithComponentDefaults(init, offset, derived, foldingContext);
}
}
}
// F'2018 19.5.3(10) allows storage-associated default component initialization
// when the values are identical.
static void PopulateWithComponentDefaults(SymbolDataInitialization &init,
std::size_t offset, const DerivedTypeSpec &derived,
evaluate::FoldingContext &foldingContext) {
const Scope &scope{
derived.scope() ? *derived.scope() : DEREF(derived.typeSymbol().scope())};
for (const auto &pair : scope) {
const Symbol &component{*pair.second};
std::size_t componentOffset{offset + component.offset()};
if (const auto *object{component.detailsIf<ObjectEntityDetails>()}) {
if (!IsAllocatable(component) && !IsAutomatic(component)) {
bool initialized{false};
if (object->init()) {
initialized = true;
if (IsPointer(component)) {
if (auto extant{init.image.AsConstantPointer(componentOffset)}) {
initialized = !(*extant == *object->init());
}
if (initialized) {
init.image.AddPointer(componentOffset, *object->init());
}
} else { // data, not pointer
if (auto dyType{evaluate::DynamicType::From(component)}) {
if (auto extents{evaluate::GetConstantExtents(
foldingContext, component)}) {
if (auto extant{init.image.AsConstant(foldingContext, *dyType,
std::nullopt, *extents, false /*don't pad*/,
componentOffset)}) {
initialized = !(*extant == *object->init());
}
}
}
if (initialized) {
init.image.Add(componentOffset, component.size(), *object->init(),
foldingContext);
}
}
} else if (const DeclTypeSpec * type{component.GetType()}) {
if (const DerivedTypeSpec * componentDerived{type->AsDerived()}) {
PopulateWithComponentDefaults(init, componentOffset,
*componentDerived, foldingContext, component);
}
}
if (initialized) {
init.NoteInitializedRange(componentOffset, component.size());
}
}
} else if (const auto *proc{component.detailsIf<ProcEntityDetails>()}) {
if (proc->init() && *proc->init()) {
SomeExpr procPtrInit{evaluate::ProcedureDesignator{**proc->init()}};
auto extant{init.image.AsConstantPointer(componentOffset)};
if (!extant || !(*extant == procPtrInit)) {
init.NoteInitializedRange(componentOffset, component.size());
init.image.AddPointer(componentOffset, std::move(procPtrInit));
}
}
}
}
}
static bool CheckForOverlappingInitialization(
const std::list<SymbolRef> &symbols,
SymbolDataInitialization &initialization,
evaluate::ExpressionAnalyzer &exprAnalyzer, const std::string &what) {
bool result{true};
auto &context{exprAnalyzer.GetFoldingContext()};
initialization.initializedRanges.sort();
ConstantSubscript next{0};
for (const auto &range : initialization.initializedRanges) {
if (range.start() < next) {
result = false; // error: overlap
bool hit{false};
for (const Symbol &symbol : symbols) {
auto offset{range.start() -
static_cast<ConstantSubscript>(
symbol.offset() - symbols.front()->offset())};
if (offset >= 0) {
if (auto badDesignator{evaluate::OffsetToDesignator(
context, symbol, offset, range.size())}) {
hit = true;
exprAnalyzer.Say(symbol.name(),
"%s affect '%s' more than once"_err_en_US, what,
badDesignator->AsFortran());
}
}
}
CHECK(hit);
}
next = range.start() + range.size();
CHECK(next <= static_cast<ConstantSubscript>(initialization.image.size()));
}
return result;
}
static void IncorporateExplicitInitialization(
SymbolDataInitialization &combined, DataInitializations &inits,
const Symbol &symbol, ConstantSubscript firstOffset,
evaluate::FoldingContext &foldingContext) {
auto iter{inits.find(&symbol)};
const auto offset{symbol.offset() - firstOffset};
if (iter != inits.end()) { // DATA statement initialization
for (const auto &range : iter->second.initializedRanges) {
auto at{offset + range.start()};
combined.NoteInitializedRange(at, range.size());
combined.image.Incorporate(
at, iter->second.image, range.start(), range.size());
}
if (removeOriginalInits) {
inits.erase(iter);
}
} else { // Declaration initialization
Symbol &mutableSymbol{const_cast<Symbol &>(symbol)};
if (IsPointer(mutableSymbol)) {
if (auto *object{mutableSymbol.detailsIf<ObjectEntityDetails>()}) {
if (object->init()) {
combined.NoteInitializedRange(offset, mutableSymbol.size());
combined.image.AddPointer(offset, *object->init());
if (removeOriginalInits) {
object->init().reset();
}
}
} else if (auto *proc{mutableSymbol.detailsIf<ProcEntityDetails>()}) {
if (proc->init() && *proc->init()) {
combined.NoteInitializedRange(offset, mutableSymbol.size());
combined.image.AddPointer(
offset, SomeExpr{evaluate::ProcedureDesignator{**proc->init()}});
if (removeOriginalInits) {
proc->init().reset();
}
}
}
} else if (auto *object{mutableSymbol.detailsIf<ObjectEntityDetails>()}) {
if (!IsNamedConstant(mutableSymbol) && object->init()) {
combined.NoteInitializedRange(offset, mutableSymbol.size());
combined.image.Add(
offset, mutableSymbol.size(), *object->init(), foldingContext);
if (removeOriginalInits) {
object->init().reset();
}
}
}
}
}
// Finds the size of the smallest element type in a list of
// storage-associated objects.
static std::size_t ComputeMinElementBytes(
const std::list<SymbolRef> &associated,
evaluate::FoldingContext &foldingContext) {
std::size_t minElementBytes{1};
const Symbol &first{*associated.front()};
for (const Symbol &s : associated) {
if (auto dyType{evaluate::DynamicType::From(s)}) {
auto size{static_cast<std::size_t>(
evaluate::ToInt64(dyType->MeasureSizeInBytes(foldingContext, true))
.value_or(1))};
if (std::size_t alignment{
dyType->GetAlignment(foldingContext.targetCharacteristics())}) {
size = ((size + alignment - 1) / alignment) * alignment;
}
if (&s == &first) {
minElementBytes = size;
} else {
minElementBytes = std::min(minElementBytes, size);
}
} else {
minElementBytes = 1;
}
}
return minElementBytes;
}
// Checks for overlapping initialization errors in a list of
// storage-associated objects. Default component initializations
// are allowed to be overridden by explicit initializations.
// If the objects are static, save the combined initializer as
// a compiler-created object that covers all of them.
static bool CombineEquivalencedInitialization(
const std::list<SymbolRef> &associated,
evaluate::ExpressionAnalyzer &exprAnalyzer, DataInitializations &inits) {
// Compute the minimum common granularity and total size
const Symbol &first{*associated.front()};
std::size_t maxLimit{0};
for (const Symbol &s : associated) {
CHECK(s.offset() >= first.offset());
auto limit{s.offset() + s.size()};
if (limit > maxLimit) {
maxLimit = limit;
}
}
auto bytes{static_cast<common::ConstantSubscript>(maxLimit - first.offset())};
Scope &scope{const_cast<Scope &>(first.owner())};
// Combine the initializations of the associated objects.
// Apply all default initializations first.
SymbolDataInitialization combined{static_cast<std::size_t>(bytes)};
auto &foldingContext{exprAnalyzer.GetFoldingContext()};
for (const Symbol &s : associated) {
if (!IsNamedConstant(s)) {
if (const auto *derived{HasDefaultInitialization(s)}) {
PopulateWithComponentDefaults(
combined, s.offset() - first.offset(), *derived, foldingContext, s);
}
}
}
if (!CheckForOverlappingInitialization(associated, combined, exprAnalyzer,
"Distinct default component initializations of equivalenced objects"s)) {
return false;
}
// Don't complain about overlap between explicit initializations and
// default initializations.
combined.initializedRanges.clear();
// Now overlay all explicit initializations from DATA statements and
// from initializers in declarations.
for (const Symbol &symbol : associated) {
IncorporateExplicitInitialization(
combined, inits, symbol, first.offset(), foldingContext);
}
if (!CheckForOverlappingInitialization(associated, combined, exprAnalyzer,
"Explicit initializations of equivalenced objects"s)) {
return false;
}
// If the items are in static storage, save the final initialization.
if (llvm::any_of(associated, [](SymbolRef ref) { return IsSaved(*ref); })) {
// Create a compiler array temp that overlaps all the items.
SourceName name{exprAnalyzer.context().GetTempName(scope)};
auto emplaced{
scope.try_emplace(name, Attrs{Attr::SAVE}, ObjectEntityDetails{})};
CHECK(emplaced.second);
Symbol &combinedSymbol{*emplaced.first->second};
combinedSymbol.set(Symbol::Flag::CompilerCreated);
inits.emplace(&combinedSymbol, std::move(combined));
auto &details{combinedSymbol.get<ObjectEntityDetails>()};
combinedSymbol.set_offset(first.offset());
combinedSymbol.set_size(bytes);
std::size_t minElementBytes{
ComputeMinElementBytes(associated, foldingContext)};
if (!exprAnalyzer.GetFoldingContext().targetCharacteristics().IsTypeEnabled(
TypeCategory::Integer, minElementBytes) ||
(bytes % minElementBytes) != 0) {
minElementBytes = 1;
}
const DeclTypeSpec &typeSpec{scope.MakeNumericType(
TypeCategory::Integer, KindExpr{minElementBytes})};
details.set_type(typeSpec);
ArraySpec arraySpec;
arraySpec.emplace_back(ShapeSpec::MakeExplicit(Bound{
bytes / static_cast<common::ConstantSubscript>(minElementBytes)}));
details.set_shape(arraySpec);
if (const auto *commonBlock{FindCommonBlockContaining(first)}) {
details.set_commonBlock(*commonBlock);
}
// Add an EQUIVALENCE set to the scope so that the new object appears in
// the results of GetStorageAssociations().
auto &newSet{scope.equivalenceSets().emplace_back()};
newSet.emplace_back(combinedSymbol);
newSet.emplace_back(const_cast<Symbol &>(first));
}
return true;
}
// When a statically-allocated derived type variable has no explicit
// initialization, but its type has at least one nonallocatable ultimate
// component with default initialization, make its initialization explicit.
[[maybe_unused]] static void MakeDefaultInitializationExplicit(
const Scope &scope, const std::list<std::list<SymbolRef>> &associations,
evaluate::FoldingContext &foldingContext, DataInitializations &inits) {
UnorderedSymbolSet equivalenced;
for (const std::list<SymbolRef> &association : associations) {
for (const Symbol &symbol : association) {
equivalenced.emplace(symbol);
}
}
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (!symbol.test(Symbol::Flag::InDataStmt) &&
!HasDeclarationInitializer(symbol) && IsSaved(symbol) &&
equivalenced.find(symbol) == equivalenced.end()) {
// Static object, no local storage association, no explicit initialization
if (const DerivedTypeSpec * derived{HasDefaultInitialization(symbol)}) {
auto newInitIter{inits.emplace(&symbol, symbol.size())};
CHECK(newInitIter.second);
auto &newInit{newInitIter.first->second};
PopulateWithComponentDefaults(
newInit, 0, *derived, foldingContext, symbol);
}
}
}
}
// Traverses the Scopes to:
// 1) combine initialization of equivalenced objects, &
// 2) optionally make initialization explicit for otherwise uninitialized static
// objects of derived types with default component initialization
// Returns false on error.
static bool ProcessScopes(const Scope &scope,
evaluate::ExpressionAnalyzer &exprAnalyzer, DataInitializations &inits) {
bool result{true}; // no error
switch (scope.kind()) {
case Scope::Kind::Global:
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
case Scope::Kind::BlockConstruct: {
std::list<std::list<SymbolRef>> associations{GetStorageAssociations(scope)};
for (const std::list<SymbolRef> &associated : associations) {
if (std::find_if(associated.begin(), associated.end(), [](SymbolRef ref) {
return IsInitialized(*ref);
}) != associated.end()) {
result &=
CombineEquivalencedInitialization(associated, exprAnalyzer, inits);
}
}
if constexpr (makeDefaultInitializationExplicit) {
MakeDefaultInitializationExplicit(
scope, associations, exprAnalyzer.GetFoldingContext(), inits);
}
for (const Scope &child : scope.children()) {
result &= ProcessScopes(child, exprAnalyzer, inits);
}
} break;
default:;
}
return result;
}
// Converts the static initialization image for a single symbol with
// one or more DATA statement appearances.
void ConstructInitializer(const Symbol &symbol,
SymbolDataInitialization &initialization,
evaluate::ExpressionAnalyzer &exprAnalyzer) {
std::list<SymbolRef> symbols{symbol};
CheckForOverlappingInitialization(
symbols, initialization, exprAnalyzer, "DATA statement initializations"s);
auto &context{exprAnalyzer.GetFoldingContext()};
if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
CHECK(IsProcedurePointer(symbol));
auto &mutableProc{const_cast<ProcEntityDetails &>(*proc)};
if (MaybeExpr expr{initialization.image.AsConstantPointer()}) {
if (const auto *procDesignator{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)}) {
CHECK(!procDesignator->GetComponent());
mutableProc.set_init(DEREF(procDesignator->GetSymbol()));
} else {
CHECK(evaluate::IsNullProcedurePointer(*expr));
mutableProc.set_init(nullptr);
}
} else {
mutableProc.set_init(nullptr);
}
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
auto &mutableObject{const_cast<ObjectEntityDetails &>(*object)};
if (IsPointer(symbol)) {
if (auto ptr{initialization.image.AsConstantPointer()}) {
mutableObject.set_init(*ptr);
} else {
mutableObject.set_init(SomeExpr{evaluate::NullPointer{}});
}
} else if (auto symbolType{evaluate::DynamicType::From(symbol)}) {
if (auto extents{evaluate::GetConstantExtents(context, symbol)}) {
mutableObject.set_init(initialization.image.AsConstant(
context, *symbolType, std::nullopt, *extents));
} else {
exprAnalyzer.Say(symbol.name(),
"internal: unknown shape for '%s' while constructing initializer from DATA"_err_en_US,
symbol.name());
return;
}
} else {
exprAnalyzer.Say(symbol.name(),
"internal: no type for '%s' while constructing initializer from DATA"_err_en_US,
symbol.name());
return;
}
if (!object->init()) {
exprAnalyzer.Say(symbol.name(),
"internal: could not construct an initializer from DATA statements for '%s'"_err_en_US,
symbol.name());
}
} else {
CHECK(exprAnalyzer.context().AnyFatalError());
}
}
void ConvertToInitializers(
DataInitializations &inits, evaluate::ExpressionAnalyzer &exprAnalyzer) {
if (ProcessScopes(
exprAnalyzer.context().globalScope(), exprAnalyzer, inits)) {
for (auto &[symbolPtr, initialization] : inits) {
ConstructInitializer(*symbolPtr, initialization, exprAnalyzer);
}
}
}
} // namespace Fortran::semantics