blob: 44aaa1fdd803640b7c1bc897b5d714a295eeb4b0 [file] [log] [blame]
//===-- lib/Semantics/check-acc-structure.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-acc-structure.h"
#include "flang/Common/enum-set.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/tools.h"
#define CHECK_SIMPLE_CLAUSE(X, Y) \
void AccStructureChecker::Enter(const parser::AccClause::X &) { \
CheckAllowed(llvm::acc::Clause::Y); \
}
#define CHECK_REQ_SCALAR_INT_CONSTANT_CLAUSE(X, Y) \
void AccStructureChecker::Enter(const parser::AccClause::X &c) { \
CheckAllowed(llvm::acc::Clause::Y); \
RequiresConstantPositiveParameter(llvm::acc::Clause::Y, c.v); \
}
using ReductionOpsSet =
Fortran::common::EnumSet<Fortran::parser::AccReductionOperator::Operator,
Fortran::parser::AccReductionOperator::Operator_enumSize>;
static ReductionOpsSet reductionIntegerSet{
Fortran::parser::AccReductionOperator::Operator::Plus,
Fortran::parser::AccReductionOperator::Operator::Multiply,
Fortran::parser::AccReductionOperator::Operator::Max,
Fortran::parser::AccReductionOperator::Operator::Min,
Fortran::parser::AccReductionOperator::Operator::Iand,
Fortran::parser::AccReductionOperator::Operator::Ior,
Fortran::parser::AccReductionOperator::Operator::Ieor};
static ReductionOpsSet reductionRealSet{
Fortran::parser::AccReductionOperator::Operator::Plus,
Fortran::parser::AccReductionOperator::Operator::Multiply,
Fortran::parser::AccReductionOperator::Operator::Max,
Fortran::parser::AccReductionOperator::Operator::Min};
static ReductionOpsSet reductionComplexSet{
Fortran::parser::AccReductionOperator::Operator::Plus,
Fortran::parser::AccReductionOperator::Operator::Multiply};
static ReductionOpsSet reductionLogicalSet{
Fortran::parser::AccReductionOperator::Operator::And,
Fortran::parser::AccReductionOperator::Operator::Or,
Fortran::parser::AccReductionOperator::Operator::Eqv,
Fortran::parser::AccReductionOperator::Operator::Neqv};
namespace Fortran::semantics {
static constexpr inline AccClauseSet
computeConstructOnlyAllowedAfterDeviceTypeClauses{
llvm::acc::Clause::ACCC_async, llvm::acc::Clause::ACCC_wait,
llvm::acc::Clause::ACCC_num_gangs, llvm::acc::Clause::ACCC_num_workers,
llvm::acc::Clause::ACCC_vector_length};
static constexpr inline AccClauseSet loopOnlyAllowedAfterDeviceTypeClauses{
llvm::acc::Clause::ACCC_auto, llvm::acc::Clause::ACCC_collapse,
llvm::acc::Clause::ACCC_independent, llvm::acc::Clause::ACCC_gang,
llvm::acc::Clause::ACCC_seq, llvm::acc::Clause::ACCC_tile,
llvm::acc::Clause::ACCC_vector, llvm::acc::Clause::ACCC_worker};
static constexpr inline AccClauseSet updateOnlyAllowedAfterDeviceTypeClauses{
llvm::acc::Clause::ACCC_async, llvm::acc::Clause::ACCC_wait};
static constexpr inline AccClauseSet routineOnlyAllowedAfterDeviceTypeClauses{
llvm::acc::Clause::ACCC_bind, llvm::acc::Clause::ACCC_gang,
llvm::acc::Clause::ACCC_vector, llvm::acc::Clause::ACCC_worker,
llvm::acc::Clause::ACCC_seq};
static constexpr inline AccClauseSet routineMutuallyExclusiveClauses{
llvm::acc::Clause::ACCC_gang, llvm::acc::Clause::ACCC_worker,
llvm::acc::Clause::ACCC_vector, llvm::acc::Clause::ACCC_seq};
bool AccStructureChecker::CheckAllowedModifier(llvm::acc::Clause clause) {
if (GetContext().directive == llvm::acc::ACCD_enter_data ||
GetContext().directive == llvm::acc::ACCD_exit_data) {
context_.Say(GetContext().clauseSource,
"Modifier is not allowed for the %s clause "
"on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clause).str()),
ContextDirectiveAsFortran());
return true;
}
return false;
}
bool AccStructureChecker::IsComputeConstruct(
llvm::acc::Directive directive) const {
return directive == llvm::acc::ACCD_parallel ||
directive == llvm::acc::ACCD_parallel_loop ||
directive == llvm::acc::ACCD_serial ||
directive == llvm::acc::ACCD_serial_loop ||
directive == llvm::acc::ACCD_kernels ||
directive == llvm::acc::ACCD_kernels_loop;
}
bool AccStructureChecker::IsInsideComputeConstruct() const {
if (dirContext_.size() <= 1) {
return false;
}
// Check all nested context skipping the first one.
for (std::size_t i = dirContext_.size() - 1; i > 0; --i) {
if (IsComputeConstruct(dirContext_[i - 1].directive)) {
return true;
}
}
return false;
}
void AccStructureChecker::CheckNotInComputeConstruct() {
if (IsInsideComputeConstruct()) {
context_.Say(GetContext().directiveSource,
"Directive %s may not be called within a compute region"_err_en_US,
ContextDirectiveAsFortran());
}
}
void AccStructureChecker::Enter(const parser::AccClause &x) {
SetContextClause(x);
}
void AccStructureChecker::Leave(const parser::AccClauseList &) {}
void AccStructureChecker::Enter(const parser::OpenACCBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)};
const auto &endBlockDir{std::get<parser::AccEndBlockDirective>(x.t)};
const auto &beginAccBlockDir{
std::get<parser::AccBlockDirective>(beginBlockDir.t)};
CheckMatching(beginAccBlockDir, endBlockDir.v);
PushContextAndClauseSets(beginAccBlockDir.source, beginAccBlockDir.v);
}
void AccStructureChecker::Leave(const parser::OpenACCBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)};
const auto &blockDir{std::get<parser::AccBlockDirective>(beginBlockDir.t)};
const parser::Block &block{std::get<parser::Block>(x.t)};
switch (blockDir.v) {
case llvm::acc::Directive::ACCD_kernels:
case llvm::acc::Directive::ACCD_parallel:
case llvm::acc::Directive::ACCD_serial:
// Restriction - line 1004-1005
CheckOnlyAllowedAfter(llvm::acc::Clause::ACCC_device_type,
computeConstructOnlyAllowedAfterDeviceTypeClauses);
// Restriction - line 1001
CheckNoBranching(block, GetContext().directive, blockDir.source);
break;
case llvm::acc::Directive::ACCD_data:
// Restriction - 2.6.5 pt 1
// Only a warning is emitted here for portability reason.
CheckRequireAtLeastOneOf(/*warnInsteadOfError=*/true);
// Restriction is not formally in the specification but all compilers emit
// an error and it is likely to be omitted from the spec.
CheckNoBranching(block, GetContext().directive, blockDir.source);
break;
case llvm::acc::Directive::ACCD_host_data:
// Restriction - line 1746
CheckRequireAtLeastOneOf();
break;
default:
break;
}
dirContext_.pop_back();
}
void AccStructureChecker::Enter(
const parser::OpenACCStandaloneDeclarativeConstruct &x) {
const auto &declarativeDir{std::get<parser::AccDeclarativeDirective>(x.t)};
PushContextAndClauseSets(declarativeDir.source, declarativeDir.v);
}
void AccStructureChecker::Leave(
const parser::OpenACCStandaloneDeclarativeConstruct &x) {
// Restriction - line 2409
CheckAtLeastOneClause();
// Restriction - line 2417-2418 - In a Fortran module declaration section,
// only create, copyin, device_resident, and link clauses are allowed.
const auto &declarativeDir{std::get<parser::AccDeclarativeDirective>(x.t)};
const auto &scope{context_.FindScope(declarativeDir.source)};
const Scope &containingScope{GetProgramUnitContaining(scope)};
if (containingScope.kind() == Scope::Kind::Module) {
for (auto cl : GetContext().actualClauses) {
if (cl != llvm::acc::Clause::ACCC_create &&
cl != llvm::acc::Clause::ACCC_copyin &&
cl != llvm::acc::Clause::ACCC_device_resident &&
cl != llvm::acc::Clause::ACCC_link) {
context_.Say(GetContext().directiveSource,
"%s clause is not allowed on the %s directive in module "
"declaration "
"section"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(cl).str()),
ContextDirectiveAsFortran());
}
}
}
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::OpenACCCombinedConstruct &x) {
const auto &beginCombinedDir{
std::get<parser::AccBeginCombinedDirective>(x.t)};
const auto &combinedDir{
std::get<parser::AccCombinedDirective>(beginCombinedDir.t)};
// check matching, End directive is optional
if (const auto &endCombinedDir{
std::get<std::optional<parser::AccEndCombinedDirective>>(x.t)}) {
CheckMatching<parser::AccCombinedDirective>(combinedDir, endCombinedDir->v);
}
PushContextAndClauseSets(combinedDir.source, combinedDir.v);
}
void AccStructureChecker::Leave(const parser::OpenACCCombinedConstruct &x) {
const auto &beginBlockDir{std::get<parser::AccBeginCombinedDirective>(x.t)};
const auto &combinedDir{
std::get<parser::AccCombinedDirective>(beginBlockDir.t)};
auto &doCons{std::get<std::optional<parser::DoConstruct>>(x.t)};
switch (combinedDir.v) {
case llvm::acc::Directive::ACCD_kernels_loop:
case llvm::acc::Directive::ACCD_parallel_loop:
case llvm::acc::Directive::ACCD_serial_loop:
// Restriction - line 1004-1005
CheckOnlyAllowedAfter(llvm::acc::Clause::ACCC_device_type,
computeConstructOnlyAllowedAfterDeviceTypeClauses |
loopOnlyAllowedAfterDeviceTypeClauses);
if (doCons) {
const parser::Block &block{std::get<parser::Block>(doCons->t)};
CheckNoBranching(block, GetContext().directive, beginBlockDir.source);
}
break;
default:
break;
}
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::OpenACCLoopConstruct &x) {
const auto &beginDir{std::get<parser::AccBeginLoopDirective>(x.t)};
const auto &loopDir{std::get<parser::AccLoopDirective>(beginDir.t)};
PushContextAndClauseSets(loopDir.source, loopDir.v);
}
void AccStructureChecker::Leave(const parser::OpenACCLoopConstruct &x) {
const auto &beginDir{std::get<parser::AccBeginLoopDirective>(x.t)};
const auto &loopDir{std::get<parser::AccLoopDirective>(beginDir.t)};
if (loopDir.v == llvm::acc::Directive::ACCD_loop) {
// Restriction - line 1818-1819
CheckOnlyAllowedAfter(llvm::acc::Clause::ACCC_device_type,
loopOnlyAllowedAfterDeviceTypeClauses);
// Restriction - line 1834
CheckNotAllowedIfClause(llvm::acc::Clause::ACCC_seq,
{llvm::acc::Clause::ACCC_gang, llvm::acc::Clause::ACCC_vector,
llvm::acc::Clause::ACCC_worker});
}
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::OpenACCStandaloneConstruct &x) {
const auto &standaloneDir{std::get<parser::AccStandaloneDirective>(x.t)};
PushContextAndClauseSets(standaloneDir.source, standaloneDir.v);
}
void AccStructureChecker::Leave(const parser::OpenACCStandaloneConstruct &x) {
const auto &standaloneDir{std::get<parser::AccStandaloneDirective>(x.t)};
switch (standaloneDir.v) {
case llvm::acc::Directive::ACCD_enter_data:
case llvm::acc::Directive::ACCD_exit_data:
// Restriction - line 1310-1311 (ENTER DATA)
// Restriction - line 1312-1313 (EXIT DATA)
CheckRequireAtLeastOneOf();
break;
case llvm::acc::Directive::ACCD_set:
// Restriction - line 2610
CheckRequireAtLeastOneOf();
// Restriction - line 2602
CheckNotInComputeConstruct();
break;
case llvm::acc::Directive::ACCD_update:
// Restriction - line 2636
CheckRequireAtLeastOneOf();
// Restriction - line 2669
CheckOnlyAllowedAfter(llvm::acc::Clause::ACCC_device_type,
updateOnlyAllowedAfterDeviceTypeClauses);
break;
case llvm::acc::Directive::ACCD_init:
case llvm::acc::Directive::ACCD_shutdown:
// Restriction - line 2525 (INIT)
// Restriction - line 2561 (SHUTDOWN)
CheckNotInComputeConstruct();
break;
default:
break;
}
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::OpenACCRoutineConstruct &x) {
PushContextAndClauseSets(x.source, llvm::acc::Directive::ACCD_routine);
const auto &optName{std::get<std::optional<parser::Name>>(x.t)};
if (!optName) {
const auto &verbatim{std::get<parser::Verbatim>(x.t)};
const auto &scope{context_.FindScope(verbatim.source)};
const Scope &containingScope{GetProgramUnitContaining(scope)};
if (containingScope.kind() == Scope::Kind::Module) {
context_.Say(GetContext().directiveSource,
"ROUTINE directive without name must appear within the specification "
"part of a subroutine or function definition, or within an interface "
"body for a subroutine or function in an interface block"_err_en_US);
}
}
}
void AccStructureChecker::Leave(const parser::OpenACCRoutineConstruct &) {
// Restriction - line 2790
CheckRequireAtLeastOneOf();
// Restriction - line 2788-2789
CheckOnlyAllowedAfter(llvm::acc::Clause::ACCC_device_type,
routineOnlyAllowedAfterDeviceTypeClauses);
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::OpenACCWaitConstruct &x) {
const auto &verbatim{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(verbatim.source, llvm::acc::Directive::ACCD_wait);
}
void AccStructureChecker::Leave(const parser::OpenACCWaitConstruct &x) {
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::OpenACCAtomicConstruct &x) {
PushContextAndClauseSets(x.source, llvm::acc::Directive::ACCD_atomic);
}
void AccStructureChecker::Leave(const parser::OpenACCAtomicConstruct &x) {
dirContext_.pop_back();
}
void AccStructureChecker::Enter(const parser::AccAtomicUpdate &x) {
const parser::AssignmentStmt &assignment{
std::get<parser::Statement<parser::AssignmentStmt>>(x.t).statement};
const auto &var{std::get<parser::Variable>(assignment.t)};
const auto &expr{std::get<parser::Expr>(assignment.t)};
const auto *rhs{GetExpr(context_, expr)};
const auto *lhs{GetExpr(context_, var)};
if (lhs && rhs) {
if (lhs->Rank() != 0)
context_.Say(expr.source,
"LHS of atomic update statement must be scalar"_err_en_US);
if (rhs->Rank() != 0)
context_.Say(var.GetSource(),
"RHS of atomic update statement must be scalar"_err_en_US);
}
}
void AccStructureChecker::Enter(const parser::OpenACCCacheConstruct &x) {
const auto &verbatim = std::get<parser::Verbatim>(x.t);
PushContextAndClauseSets(verbatim.source, llvm::acc::Directive::ACCD_cache);
SetContextDirectiveSource(verbatim.source);
if (loopNestLevel == 0) {
context_.Say(verbatim.source,
"The CACHE directive must be inside a loop"_err_en_US);
}
}
void AccStructureChecker::Leave(const parser::OpenACCCacheConstruct &x) {
dirContext_.pop_back();
}
// Clause checkers
CHECK_SIMPLE_CLAUSE(Auto, ACCC_auto)
CHECK_SIMPLE_CLAUSE(Async, ACCC_async)
CHECK_SIMPLE_CLAUSE(Attach, ACCC_attach)
CHECK_SIMPLE_CLAUSE(Bind, ACCC_bind)
CHECK_SIMPLE_CLAUSE(Capture, ACCC_capture)
CHECK_SIMPLE_CLAUSE(Default, ACCC_default)
CHECK_SIMPLE_CLAUSE(DefaultAsync, ACCC_default_async)
CHECK_SIMPLE_CLAUSE(Delete, ACCC_delete)
CHECK_SIMPLE_CLAUSE(Detach, ACCC_detach)
CHECK_SIMPLE_CLAUSE(Device, ACCC_device)
CHECK_SIMPLE_CLAUSE(DeviceNum, ACCC_device_num)
CHECK_SIMPLE_CLAUSE(Finalize, ACCC_finalize)
CHECK_SIMPLE_CLAUSE(Firstprivate, ACCC_firstprivate)
CHECK_SIMPLE_CLAUSE(Host, ACCC_host)
CHECK_SIMPLE_CLAUSE(IfPresent, ACCC_if_present)
CHECK_SIMPLE_CLAUSE(Independent, ACCC_independent)
CHECK_SIMPLE_CLAUSE(NoCreate, ACCC_no_create)
CHECK_SIMPLE_CLAUSE(Nohost, ACCC_nohost)
CHECK_SIMPLE_CLAUSE(Private, ACCC_private)
CHECK_SIMPLE_CLAUSE(Read, ACCC_read)
CHECK_SIMPLE_CLAUSE(UseDevice, ACCC_use_device)
CHECK_SIMPLE_CLAUSE(Wait, ACCC_wait)
CHECK_SIMPLE_CLAUSE(Write, ACCC_write)
CHECK_SIMPLE_CLAUSE(Unknown, ACCC_unknown)
void AccStructureChecker::CheckMultipleOccurrenceInDeclare(
const parser::AccObjectList &list, llvm::acc::Clause clause) {
if (GetContext().directive != llvm::acc::Directive::ACCD_declare)
return;
for (const auto &object : list.v) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::Designator &designator) {
if (const auto *name = getDesignatorNameIfDataRef(designator)) {
if (declareSymbols.contains(&name->symbol->GetUltimate())) {
if (declareSymbols[&name->symbol->GetUltimate()] == clause) {
context_.Say(GetContext().clauseSource,
"'%s' in the %s clause is already present in the same "
"clause in this module"_warn_en_US,
name->symbol->name(),
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(clause).str()));
} else {
context_.Say(GetContext().clauseSource,
"'%s' in the %s clause is already present in another "
"%s clause in this module"_err_en_US,
name->symbol->name(),
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(clause).str()),
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(
declareSymbols[&name->symbol->GetUltimate()])
.str()));
}
}
declareSymbols.insert({&name->symbol->GetUltimate(), clause});
}
},
[&](const Fortran::parser::Name &name) {
// TODO: check common block
}},
object.u);
}
}
void AccStructureChecker::CheckMultipleOccurrenceInDeclare(
const parser::AccObjectListWithModifier &list, llvm::acc::Clause clause) {
const auto &objectList = std::get<Fortran::parser::AccObjectList>(list.t);
CheckMultipleOccurrenceInDeclare(objectList, clause);
}
void AccStructureChecker::Enter(const parser::AccClause::Create &c) {
CheckAllowed(llvm::acc::Clause::ACCC_create);
const auto &modifierClause{c.v};
if (const auto &modifier{
std::get<std::optional<parser::AccDataModifier>>(modifierClause.t)}) {
if (modifier->v != parser::AccDataModifier::Modifier::Zero) {
context_.Say(GetContext().clauseSource,
"Only the ZERO modifier is allowed for the %s clause "
"on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_create)
.str()),
ContextDirectiveAsFortran());
}
if (GetContext().directive == llvm::acc::Directive::ACCD_declare) {
context_.Say(GetContext().clauseSource,
"The ZERO modifier is not allowed for the %s clause "
"on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_create)
.str()),
ContextDirectiveAsFortran());
}
}
CheckMultipleOccurrenceInDeclare(
modifierClause, llvm::acc::Clause::ACCC_create);
}
void AccStructureChecker::Enter(const parser::AccClause::Copyin &c) {
CheckAllowed(llvm::acc::Clause::ACCC_copyin);
const auto &modifierClause{c.v};
if (const auto &modifier{
std::get<std::optional<parser::AccDataModifier>>(modifierClause.t)}) {
if (CheckAllowedModifier(llvm::acc::Clause::ACCC_copyin)) {
return;
}
if (modifier->v != parser::AccDataModifier::Modifier::ReadOnly) {
context_.Say(GetContext().clauseSource,
"Only the READONLY modifier is allowed for the %s clause "
"on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_copyin)
.str()),
ContextDirectiveAsFortran());
}
}
CheckMultipleOccurrenceInDeclare(
modifierClause, llvm::acc::Clause::ACCC_copyin);
}
void AccStructureChecker::Enter(const parser::AccClause::Copyout &c) {
CheckAllowed(llvm::acc::Clause::ACCC_copyout);
const auto &modifierClause{c.v};
if (const auto &modifier{
std::get<std::optional<parser::AccDataModifier>>(modifierClause.t)}) {
if (CheckAllowedModifier(llvm::acc::Clause::ACCC_copyout)) {
return;
}
if (modifier->v != parser::AccDataModifier::Modifier::Zero) {
context_.Say(GetContext().clauseSource,
"Only the ZERO modifier is allowed for the %s clause "
"on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_copyout)
.str()),
ContextDirectiveAsFortran());
}
if (GetContext().directive == llvm::acc::Directive::ACCD_declare) {
context_.Say(GetContext().clauseSource,
"The ZERO modifier is not allowed for the %s clause "
"on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_copyout)
.str()),
ContextDirectiveAsFortran());
}
}
CheckMultipleOccurrenceInDeclare(
modifierClause, llvm::acc::Clause::ACCC_copyout);
}
void AccStructureChecker::Enter(const parser::AccClause::DeviceType &d) {
CheckAllowed(llvm::acc::Clause::ACCC_device_type);
if (GetContext().directive == llvm::acc::Directive::ACCD_set &&
d.v.v.size() > 1) {
context_.Say(GetContext().clauseSource,
"The %s clause on the %s directive accepts only one value"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_device_type)
.str()),
ContextDirectiveAsFortran());
}
ResetCrtGroup();
}
void AccStructureChecker::Enter(const parser::AccClause::Seq &g) {
llvm::acc::Clause crtClause = llvm::acc::Clause::ACCC_seq;
if (GetContext().directive == llvm::acc::Directive::ACCD_routine) {
CheckMutuallyExclusivePerGroup(crtClause,
llvm::acc::Clause::ACCC_device_type, routineMutuallyExclusiveClauses);
}
CheckAllowed(crtClause);
}
void AccStructureChecker::Enter(const parser::AccClause::Vector &g) {
llvm::acc::Clause crtClause = llvm::acc::Clause::ACCC_vector;
if (GetContext().directive == llvm::acc::Directive::ACCD_routine) {
CheckMutuallyExclusivePerGroup(crtClause,
llvm::acc::Clause::ACCC_device_type, routineMutuallyExclusiveClauses);
}
CheckAllowed(crtClause);
if (GetContext().directive != llvm::acc::Directive::ACCD_routine) {
CheckAllowedOncePerGroup(crtClause, llvm::acc::Clause::ACCC_device_type);
}
}
void AccStructureChecker::Enter(const parser::AccClause::Worker &g) {
llvm::acc::Clause crtClause = llvm::acc::Clause::ACCC_worker;
if (GetContext().directive == llvm::acc::Directive::ACCD_routine) {
CheckMutuallyExclusivePerGroup(crtClause,
llvm::acc::Clause::ACCC_device_type, routineMutuallyExclusiveClauses);
}
CheckAllowed(crtClause);
if (GetContext().directive != llvm::acc::Directive::ACCD_routine) {
CheckAllowedOncePerGroup(crtClause, llvm::acc::Clause::ACCC_device_type);
}
}
void AccStructureChecker::Enter(const parser::AccClause::Tile &g) {
CheckAllowed(llvm::acc::Clause::ACCC_tile);
CheckAllowedOncePerGroup(
llvm::acc::Clause::ACCC_tile, llvm::acc::Clause::ACCC_device_type);
}
void AccStructureChecker::Enter(const parser::AccClause::Gang &g) {
llvm::acc::Clause crtClause = llvm::acc::Clause::ACCC_gang;
if (GetContext().directive == llvm::acc::Directive::ACCD_routine) {
CheckMutuallyExclusivePerGroup(crtClause,
llvm::acc::Clause::ACCC_device_type, routineMutuallyExclusiveClauses);
}
CheckAllowed(crtClause);
if (GetContext().directive != llvm::acc::Directive::ACCD_routine) {
CheckAllowedOncePerGroup(crtClause, llvm::acc::Clause::ACCC_device_type);
}
if (g.v) {
bool hasNum = false;
bool hasDim = false;
bool hasStatic = false;
const Fortran::parser::AccGangArgList &x = *g.v;
for (const Fortran::parser::AccGangArg &gangArg : x.v) {
if (std::get_if<Fortran::parser::AccGangArg::Num>(&gangArg.u)) {
hasNum = true;
} else if (std::get_if<Fortran::parser::AccGangArg::Dim>(&gangArg.u)) {
hasDim = true;
} else if (std::get_if<Fortran::parser::AccGangArg::Static>(&gangArg.u)) {
hasStatic = true;
}
}
if (GetContext().directive == llvm::acc::Directive::ACCD_routine &&
(hasStatic || hasNum)) {
context_.Say(GetContext().clauseSource,
"Only the dim argument is allowed on the %s clause on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(llvm::acc::Clause::ACCC_gang)
.str()),
ContextDirectiveAsFortran());
}
if (hasDim && hasNum) {
context_.Say(GetContext().clauseSource,
"The num argument is not allowed when dim is specified"_err_en_US);
}
}
}
void AccStructureChecker::Enter(const parser::AccClause::NumGangs &n) {
CheckAllowed(llvm::acc::Clause::ACCC_num_gangs,
/*warnInsteadOfError=*/GetContext().directive ==
llvm::acc::Directive::ACCD_serial ||
GetContext().directive == llvm::acc::Directive::ACCD_serial_loop);
CheckAllowedOncePerGroup(
llvm::acc::Clause::ACCC_num_gangs, llvm::acc::Clause::ACCC_device_type);
if (n.v.size() > 3)
context_.Say(GetContext().clauseSource,
"NUM_GANGS clause accepts a maximum of 3 arguments"_err_en_US);
}
void AccStructureChecker::Enter(const parser::AccClause::NumWorkers &n) {
CheckAllowed(llvm::acc::Clause::ACCC_num_workers,
/*warnInsteadOfError=*/GetContext().directive ==
llvm::acc::Directive::ACCD_serial ||
GetContext().directive == llvm::acc::Directive::ACCD_serial_loop);
CheckAllowedOncePerGroup(
llvm::acc::Clause::ACCC_num_workers, llvm::acc::Clause::ACCC_device_type);
}
void AccStructureChecker::Enter(const parser::AccClause::VectorLength &n) {
CheckAllowed(llvm::acc::Clause::ACCC_vector_length,
/*warnInsteadOfError=*/GetContext().directive ==
llvm::acc::Directive::ACCD_serial ||
GetContext().directive == llvm::acc::Directive::ACCD_serial_loop);
CheckAllowedOncePerGroup(llvm::acc::Clause::ACCC_vector_length,
llvm::acc::Clause::ACCC_device_type);
}
void AccStructureChecker::Enter(const parser::AccClause::Reduction &reduction) {
CheckAllowed(llvm::acc::Clause::ACCC_reduction);
// From OpenACC 3.3
// At a minimum, the supported data types include Fortran logical as well as
// the numerical data types (e.g. integer, real, double precision, complex).
// However, for each reduction operator, the supported data types include only
// the types permitted as operands to the corresponding operator in the base
// language where (1) for max and min, the corresponding operator is less-than
// and (2) for other operators, the operands and the result are the same type.
//
// The following check that the reduction operator is supported with the given
// type.
const parser::AccObjectListWithReduction &list{reduction.v};
const auto &op{std::get<parser::AccReductionOperator>(list.t)};
const auto &objects{std::get<parser::AccObjectList>(list.t)};
for (const auto &object : objects.v) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::Designator &designator) {
if (const auto *name = getDesignatorNameIfDataRef(designator)) {
const auto *type{name->symbol->GetType()};
if (type->IsNumeric(TypeCategory::Integer) &&
!reductionIntegerSet.test(op.v)) {
context_.Say(GetContext().clauseSource,
"reduction operator not supported for integer type"_err_en_US);
} else if (type->IsNumeric(TypeCategory::Real) &&
!reductionRealSet.test(op.v)) {
context_.Say(GetContext().clauseSource,
"reduction operator not supported for real type"_err_en_US);
} else if (type->IsNumeric(TypeCategory::Complex) &&
!reductionComplexSet.test(op.v)) {
context_.Say(GetContext().clauseSource,
"reduction operator not supported for complex type"_err_en_US);
} else if (type->category() ==
Fortran::semantics::DeclTypeSpec::Category::Logical &&
!reductionLogicalSet.test(op.v)) {
context_.Say(GetContext().clauseSource,
"reduction operator not supported for logical type"_err_en_US);
}
// TODO: check composite type.
}
},
[&](const Fortran::parser::Name &name) {
// TODO: check common block
}},
object.u);
}
}
void AccStructureChecker::Enter(const parser::AccClause::Self &x) {
CheckAllowed(llvm::acc::Clause::ACCC_self);
const std::optional<parser::AccSelfClause> &accSelfClause = x.v;
if (GetContext().directive == llvm::acc::Directive::ACCD_update &&
((accSelfClause &&
std::holds_alternative<std::optional<parser::ScalarLogicalExpr>>(
(*accSelfClause).u)) ||
!accSelfClause)) {
context_.Say(GetContext().clauseSource,
"SELF clause on the %s directive must have a var-list"_err_en_US,
ContextDirectiveAsFortran());
} else if (GetContext().directive != llvm::acc::Directive::ACCD_update &&
accSelfClause &&
std::holds_alternative<parser::AccObjectList>((*accSelfClause).u)) {
const auto &accObjectList =
std::get<parser::AccObjectList>((*accSelfClause).u);
if (accObjectList.v.size() != 1) {
context_.Say(GetContext().clauseSource,
"SELF clause on the %s directive only accepts optional scalar logical"
" expression"_err_en_US,
ContextDirectiveAsFortran());
}
}
}
void AccStructureChecker::Enter(const parser::AccClause::Collapse &x) {
CheckAllowed(llvm::acc::Clause::ACCC_collapse);
CheckAllowedOncePerGroup(
llvm::acc::Clause::ACCC_collapse, llvm::acc::Clause::ACCC_device_type);
const parser::AccCollapseArg &accCollapseArg = x.v;
const auto &collapseValue{
std::get<parser::ScalarIntConstantExpr>(accCollapseArg.t)};
RequiresConstantPositiveParameter(
llvm::acc::Clause::ACCC_collapse, collapseValue);
}
void AccStructureChecker::Enter(const parser::AccClause::Present &x) {
CheckAllowed(llvm::acc::Clause::ACCC_present);
CheckMultipleOccurrenceInDeclare(x.v, llvm::acc::Clause::ACCC_present);
}
void AccStructureChecker::Enter(const parser::AccClause::Copy &x) {
CheckAllowed(llvm::acc::Clause::ACCC_copy);
CheckMultipleOccurrenceInDeclare(x.v, llvm::acc::Clause::ACCC_copy);
}
void AccStructureChecker::Enter(const parser::AccClause::Deviceptr &x) {
CheckAllowed(llvm::acc::Clause::ACCC_deviceptr);
CheckMultipleOccurrenceInDeclare(x.v, llvm::acc::Clause::ACCC_deviceptr);
}
void AccStructureChecker::Enter(const parser::AccClause::DeviceResident &x) {
CheckAllowed(llvm::acc::Clause::ACCC_device_resident);
CheckMultipleOccurrenceInDeclare(
x.v, llvm::acc::Clause::ACCC_device_resident);
}
void AccStructureChecker::Enter(const parser::AccClause::Link &x) {
CheckAllowed(llvm::acc::Clause::ACCC_link);
CheckMultipleOccurrenceInDeclare(x.v, llvm::acc::Clause::ACCC_link);
}
void AccStructureChecker::Enter(const parser::AccClause::If &x) {
CheckAllowed(llvm::acc::Clause::ACCC_if);
if (const auto *expr{GetExpr(x.v)}) {
if (auto type{expr->GetType()}) {
if (type->category() == TypeCategory::Integer ||
type->category() == TypeCategory::Logical) {
return; // LOGICAL and INTEGER type supported for the if clause.
}
}
}
context_.Say(
GetContext().clauseSource, "Must have LOGICAL or INTEGER type"_err_en_US);
}
void AccStructureChecker::Enter(const parser::OpenACCEndConstruct &x) {
context_.Say(x.source, "Misplaced OpenACC end directive"_warn_en_US);
}
void AccStructureChecker::Enter(const parser::Module &) {
declareSymbols.clear();
}
void AccStructureChecker::Enter(const parser::FunctionSubprogram &x) {
declareSymbols.clear();
}
void AccStructureChecker::Enter(const parser::SubroutineSubprogram &) {
declareSymbols.clear();
}
void AccStructureChecker::Enter(const parser::SeparateModuleSubprogram &) {
declareSymbols.clear();
}
void AccStructureChecker::Enter(const parser::DoConstruct &) {
++loopNestLevel;
}
void AccStructureChecker::Leave(const parser::DoConstruct &) {
--loopNestLevel;
}
llvm::StringRef AccStructureChecker::getDirectiveName(
llvm::acc::Directive directive) {
return llvm::acc::getOpenACCDirectiveName(directive);
}
llvm::StringRef AccStructureChecker::getClauseName(llvm::acc::Clause clause) {
return llvm::acc::getOpenACCClauseName(clause);
}
} // namespace Fortran::semantics