blob: daa3ac905dad5c3a0977a7e9e2c69bd9673b0df5 [file] [log] [blame]
//===-- FIRType.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/ISO_Fortran_binding_wrapper.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Tools/PointerModels.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/ErrorHandling.h"
#define GET_TYPEDEF_CLASSES
#include "flang/Optimizer/Dialect/FIROpsTypes.cpp.inc"
using namespace fir;
namespace {
template <typename TYPE>
TYPE parseIntSingleton(mlir::AsmParser &parser) {
int kind = 0;
if (parser.parseLess() || parser.parseInteger(kind) || parser.parseGreater())
return {};
return TYPE::get(parser.getContext(), kind);
}
template <typename TYPE>
TYPE parseKindSingleton(mlir::AsmParser &parser) {
return parseIntSingleton<TYPE>(parser);
}
template <typename TYPE>
TYPE parseRankSingleton(mlir::AsmParser &parser) {
return parseIntSingleton<TYPE>(parser);
}
template <typename TYPE>
TYPE parseTypeSingleton(mlir::AsmParser &parser) {
mlir::Type ty;
if (parser.parseLess() || parser.parseType(ty) || parser.parseGreater())
return {};
return TYPE::get(ty);
}
/// Is `ty` a standard or FIR integer type?
static bool isaIntegerType(mlir::Type ty) {
// TODO: why aren't we using isa_integer? investigatation required.
return mlir::isa<mlir::IntegerType, fir::IntegerType>(ty);
}
bool verifyRecordMemberType(mlir::Type ty) {
return !mlir::isa<BoxCharType, ShapeType, ShapeShiftType, ShiftType,
SliceType, FieldType, LenType, ReferenceType, TypeDescType>(
ty);
}
bool verifySameLists(llvm::ArrayRef<RecordType::TypePair> a1,
llvm::ArrayRef<RecordType::TypePair> a2) {
// FIXME: do we need to allow for any variance here?
return a1 == a2;
}
RecordType verifyDerived(mlir::AsmParser &parser, RecordType derivedTy,
llvm::ArrayRef<RecordType::TypePair> lenPList,
llvm::ArrayRef<RecordType::TypePair> typeList) {
auto loc = parser.getNameLoc();
if (!verifySameLists(derivedTy.getLenParamList(), lenPList) ||
!verifySameLists(derivedTy.getTypeList(), typeList)) {
parser.emitError(loc, "cannot redefine record type members");
return {};
}
for (auto &p : lenPList)
if (!isaIntegerType(p.second)) {
parser.emitError(loc, "LEN parameter must be integral type");
return {};
}
for (auto &p : typeList)
if (!verifyRecordMemberType(p.second)) {
parser.emitError(loc, "field parameter has invalid type");
return {};
}
llvm::StringSet<> uniq;
for (auto &p : lenPList)
if (!uniq.insert(p.first).second) {
parser.emitError(loc, "LEN parameter cannot have duplicate name");
return {};
}
for (auto &p : typeList)
if (!uniq.insert(p.first).second) {
parser.emitError(loc, "field cannot have duplicate name");
return {};
}
return derivedTy;
}
} // namespace
// Implementation of the thin interface from dialect to type parser
mlir::Type fir::parseFirType(FIROpsDialect *dialect,
mlir::DialectAsmParser &parser) {
mlir::StringRef typeTag;
mlir::Type genType;
auto parseResult = generatedTypeParser(parser, &typeTag, genType);
if (parseResult.has_value())
return genType;
parser.emitError(parser.getNameLoc(), "unknown fir type: ") << typeTag;
return {};
}
namespace fir {
namespace detail {
// Type storage classes
/// Derived type storage
struct RecordTypeStorage : public mlir::TypeStorage {
using KeyTy = llvm::StringRef;
static unsigned hashKey(const KeyTy &key) {
return llvm::hash_combine(key.str());
}
bool operator==(const KeyTy &key) const { return key == getName(); }
static RecordTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
const KeyTy &key) {
auto *storage = allocator.allocate<RecordTypeStorage>();
return new (storage) RecordTypeStorage{key};
}
llvm::StringRef getName() const { return name; }
void setLenParamList(llvm::ArrayRef<RecordType::TypePair> list) {
lens = list;
}
llvm::ArrayRef<RecordType::TypePair> getLenParamList() const { return lens; }
void setTypeList(llvm::ArrayRef<RecordType::TypePair> list) { types = list; }
llvm::ArrayRef<RecordType::TypePair> getTypeList() const { return types; }
bool isFinalized() const { return finalized; }
void finalize(llvm::ArrayRef<RecordType::TypePair> lenParamList,
llvm::ArrayRef<RecordType::TypePair> typeList) {
if (finalized)
return;
finalized = true;
setLenParamList(lenParamList);
setTypeList(typeList);
}
protected:
std::string name;
bool finalized;
std::vector<RecordType::TypePair> lens;
std::vector<RecordType::TypePair> types;
private:
RecordTypeStorage() = delete;
explicit RecordTypeStorage(llvm::StringRef name)
: name{name}, finalized{false} {}
};
} // namespace detail
template <typename A, typename B>
bool inbounds(A v, B lb, B ub) {
return v >= lb && v < ub;
}
bool isa_fir_type(mlir::Type t) {
return llvm::isa<FIROpsDialect>(t.getDialect());
}
bool isa_std_type(mlir::Type t) {
return llvm::isa<mlir::BuiltinDialect>(t.getDialect());
}
bool isa_fir_or_std_type(mlir::Type t) {
if (auto funcType = mlir::dyn_cast<mlir::FunctionType>(t))
return llvm::all_of(funcType.getInputs(), isa_fir_or_std_type) &&
llvm::all_of(funcType.getResults(), isa_fir_or_std_type);
return isa_fir_type(t) || isa_std_type(t);
}
mlir::Type getDerivedType(mlir::Type ty) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(ty)
.Case<fir::PointerType, fir::HeapType, fir::SequenceType>([](auto p) {
if (auto seq = mlir::dyn_cast<fir::SequenceType>(p.getEleTy()))
return seq.getEleTy();
return p.getEleTy();
})
.Default([](mlir::Type t) { return t; });
}
mlir::Type dyn_cast_ptrEleTy(mlir::Type t) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(t)
.Case<fir::ReferenceType, fir::PointerType, fir::HeapType,
fir::LLVMPointerType>([](auto p) { return p.getEleTy(); })
.Default([](mlir::Type) { return mlir::Type{}; });
}
mlir::Type dyn_cast_ptrOrBoxEleTy(mlir::Type t) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(t)
.Case<fir::ReferenceType, fir::PointerType, fir::HeapType,
fir::LLVMPointerType>([](auto p) { return p.getEleTy(); })
.Case<fir::BaseBoxType>(
[](auto p) { return unwrapRefType(p.getEleTy()); })
.Default([](mlir::Type) { return mlir::Type{}; });
}
static bool hasDynamicSize(fir::RecordType recTy) {
for (auto field : recTy.getTypeList()) {
if (auto arr = mlir::dyn_cast<fir::SequenceType>(field.second)) {
if (sequenceWithNonConstantShape(arr))
return true;
} else if (characterWithDynamicLen(field.second)) {
return true;
} else if (auto rec = mlir::dyn_cast<fir::RecordType>(field.second)) {
if (hasDynamicSize(rec))
return true;
}
}
return false;
}
bool hasDynamicSize(mlir::Type t) {
if (auto arr = mlir::dyn_cast<fir::SequenceType>(t)) {
if (sequenceWithNonConstantShape(arr))
return true;
t = arr.getEleTy();
}
if (characterWithDynamicLen(t))
return true;
if (auto rec = mlir::dyn_cast<fir::RecordType>(t))
return hasDynamicSize(rec);
return false;
}
mlir::Type extractSequenceType(mlir::Type ty) {
if (mlir::isa<fir::SequenceType>(ty))
return ty;
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty))
return extractSequenceType(boxTy.getEleTy());
if (auto heapTy = mlir::dyn_cast<fir::HeapType>(ty))
return extractSequenceType(heapTy.getEleTy());
if (auto ptrTy = mlir::dyn_cast<fir::PointerType>(ty))
return extractSequenceType(ptrTy.getEleTy());
return mlir::Type{};
}
bool isPointerType(mlir::Type ty) {
if (auto refTy = fir::dyn_cast_ptrEleTy(ty))
ty = refTy;
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty))
return mlir::isa<fir::PointerType>(boxTy.getEleTy());
return false;
}
bool isAllocatableType(mlir::Type ty) {
if (auto refTy = fir::dyn_cast_ptrEleTy(ty))
ty = refTy;
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty))
return mlir::isa<fir::HeapType>(boxTy.getEleTy());
return false;
}
bool isBoxNone(mlir::Type ty) {
if (auto box = mlir::dyn_cast<fir::BoxType>(ty))
return mlir::isa<mlir::NoneType>(box.getEleTy());
return false;
}
bool isBoxedRecordType(mlir::Type ty) {
if (auto refTy = fir::dyn_cast_ptrEleTy(ty))
ty = refTy;
if (auto boxTy = mlir::dyn_cast<fir::BoxType>(ty)) {
if (mlir::isa<fir::RecordType>(boxTy.getEleTy()))
return true;
mlir::Type innerType = boxTy.unwrapInnerType();
return innerType && mlir::isa<fir::RecordType>(innerType);
}
return false;
}
bool isScalarBoxedRecordType(mlir::Type ty) {
if (auto refTy = fir::dyn_cast_ptrEleTy(ty))
ty = refTy;
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) {
if (mlir::isa<fir::RecordType>(boxTy.getEleTy()))
return true;
if (auto heapTy = mlir::dyn_cast<fir::HeapType>(boxTy.getEleTy()))
return mlir::isa<fir::RecordType>(heapTy.getEleTy());
if (auto ptrTy = mlir::dyn_cast<fir::PointerType>(boxTy.getEleTy()))
return mlir::isa<fir::RecordType>(ptrTy.getEleTy());
}
return false;
}
bool isAssumedType(mlir::Type ty) {
// Rule out CLASS(*) which are `fir.class<[fir.array] none>`.
if (mlir::isa<fir::ClassType>(ty))
return false;
mlir::Type valueType = fir::unwrapPassByRefType(fir::unwrapRefType(ty));
// Refuse raw `none` or `fir.array<none>` since assumed type
// should be in memory variables.
if (valueType == ty)
return false;
mlir::Type inner = fir::unwrapSequenceType(valueType);
return mlir::isa<mlir::NoneType>(inner);
}
bool isAssumedShape(mlir::Type ty) {
if (auto boxTy = mlir::dyn_cast<fir::BoxType>(ty))
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(boxTy.getEleTy()))
return seqTy.hasDynamicExtents();
return false;
}
bool isAllocatableOrPointerArray(mlir::Type ty) {
if (auto refTy = fir::dyn_cast_ptrEleTy(ty))
ty = refTy;
if (auto boxTy = mlir::dyn_cast<fir::BoxType>(ty)) {
if (auto heapTy = mlir::dyn_cast<fir::HeapType>(boxTy.getEleTy()))
return mlir::isa<fir::SequenceType>(heapTy.getEleTy());
if (auto ptrTy = mlir::dyn_cast<fir::PointerType>(boxTy.getEleTy()))
return mlir::isa<fir::SequenceType>(ptrTy.getEleTy());
}
return false;
}
bool isTypeWithDescriptor(mlir::Type ty) {
if (mlir::isa<fir::BaseBoxType>(unwrapRefType(ty)))
return true;
return false;
}
bool isPolymorphicType(mlir::Type ty) {
// CLASS(T) or CLASS(*)
if (mlir::isa<fir::ClassType>(fir::unwrapRefType(ty)))
return true;
// assumed type are polymorphic.
return isAssumedType(ty);
}
bool isUnlimitedPolymorphicType(mlir::Type ty) {
// CLASS(*)
if (auto clTy = mlir::dyn_cast<fir::ClassType>(fir::unwrapRefType(ty))) {
if (mlir::isa<mlir::NoneType>(clTy.getEleTy()))
return true;
mlir::Type innerType = clTy.unwrapInnerType();
return innerType && mlir::isa<mlir::NoneType>(innerType);
}
// TYPE(*)
return isAssumedType(ty);
}
mlir::Type unwrapInnerType(mlir::Type ty) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(ty)
.Case<fir::PointerType, fir::HeapType, fir::SequenceType>([](auto t) {
mlir::Type eleTy = t.getEleTy();
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(eleTy))
return seqTy.getEleTy();
return eleTy;
})
.Case<fir::RecordType>([](auto t) { return t; })
.Default([](mlir::Type) { return mlir::Type{}; });
}
bool isRecordWithAllocatableMember(mlir::Type ty) {
if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty))
for (auto [field, memTy] : recTy.getTypeList()) {
if (fir::isAllocatableType(memTy))
return true;
// A record type cannot recursively include itself as a direct member.
// There must be an intervening `ptr` type, so recursion is safe here.
if (mlir::isa<fir::RecordType>(memTy) &&
isRecordWithAllocatableMember(memTy))
return true;
}
return false;
}
bool isRecordWithDescriptorMember(mlir::Type ty) {
ty = unwrapSequenceType(ty);
if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty))
for (auto [field, memTy] : recTy.getTypeList()) {
if (mlir::isa<fir::BaseBoxType>(memTy))
return true;
if (mlir::isa<fir::RecordType>(memTy) &&
isRecordWithDescriptorMember(memTy))
return true;
}
return false;
}
mlir::Type unwrapAllRefAndSeqType(mlir::Type ty) {
while (true) {
mlir::Type nt = unwrapSequenceType(unwrapRefType(ty));
if (auto vecTy = mlir::dyn_cast<fir::VectorType>(nt))
nt = vecTy.getEleTy();
if (nt == ty)
return ty;
ty = nt;
}
}
mlir::Type unwrapSeqOrBoxedSeqType(mlir::Type ty) {
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
return seqTy.getEleTy();
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) {
auto eleTy = unwrapRefType(boxTy.getEleTy());
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(eleTy))
return seqTy.getEleTy();
}
return ty;
}
unsigned getBoxRank(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(eleTy))
return seqTy.getDimension();
return 0;
}
/// Return the ISO_C_BINDING intrinsic module value of type \p ty.
int getTypeCode(mlir::Type ty, const fir::KindMapping &kindMap) {
unsigned width = 0;
if (mlir::IntegerType intTy = mlir::dyn_cast<mlir::IntegerType>(ty)) {
switch (intTy.getWidth()) {
case 8:
return CFI_type_int8_t;
case 16:
return CFI_type_int16_t;
case 32:
return CFI_type_int32_t;
case 64:
return CFI_type_int64_t;
case 128:
return CFI_type_int128_t;
}
llvm_unreachable("unsupported integer type");
}
if (fir::LogicalType logicalTy = mlir::dyn_cast<fir::LogicalType>(ty)) {
switch (kindMap.getLogicalBitsize(logicalTy.getFKind())) {
case 8:
return CFI_type_Bool;
case 16:
return CFI_type_int_least16_t;
case 32:
return CFI_type_int_least32_t;
case 64:
return CFI_type_int_least64_t;
}
llvm_unreachable("unsupported logical type");
}
if (mlir::FloatType floatTy = mlir::dyn_cast<mlir::FloatType>(ty)) {
switch (floatTy.getWidth()) {
case 16:
return floatTy.isBF16() ? CFI_type_bfloat : CFI_type_half_float;
case 32:
return CFI_type_float;
case 64:
return CFI_type_double;
case 80:
return CFI_type_extended_double;
case 128:
return CFI_type_float128;
}
llvm_unreachable("unsupported real type");
}
if (fir::isa_complex(ty)) {
if (mlir::ComplexType complexTy = mlir::dyn_cast<mlir::ComplexType>(ty)) {
mlir::FloatType floatTy =
mlir::cast<mlir::FloatType>(complexTy.getElementType());
if (floatTy.isBF16())
return CFI_type_bfloat_Complex;
width = floatTy.getWidth();
} else if (fir::ComplexType complexTy =
mlir::dyn_cast<fir::ComplexType>(ty)) {
auto FKind = complexTy.getFKind();
if (FKind == 3)
return CFI_type_bfloat_Complex;
width = kindMap.getRealBitsize(FKind);
}
switch (width) {
case 16:
return CFI_type_half_float_Complex;
case 32:
return CFI_type_float_Complex;
case 64:
return CFI_type_double_Complex;
case 80:
return CFI_type_extended_double_Complex;
case 128:
return CFI_type_float128_Complex;
}
llvm_unreachable("unsupported complex size");
}
if (fir::CharacterType charTy = mlir::dyn_cast<fir::CharacterType>(ty)) {
switch (kindMap.getCharacterBitsize(charTy.getFKind())) {
case 8:
return CFI_type_char;
case 16:
return CFI_type_char16_t;
case 32:
return CFI_type_char32_t;
}
llvm_unreachable("unsupported character type");
}
if (fir::isa_ref_type(ty))
return CFI_type_cptr;
if (mlir::isa<fir::RecordType>(ty))
return CFI_type_struct;
llvm_unreachable("unsupported type");
}
std::string getTypeAsString(mlir::Type ty, const fir::KindMapping &kindMap,
llvm::StringRef prefix) {
std::string buf;
llvm::raw_string_ostream name{buf};
name << prefix.str();
if (!prefix.empty())
name << "_";
while (ty) {
if (fir::isa_trivial(ty)) {
if (mlir::isa<mlir::IndexType>(ty)) {
name << "idx";
} else if (ty.isIntOrIndex()) {
name << 'i' << ty.getIntOrFloatBitWidth();
} else if (mlir::isa<mlir::FloatType>(ty)) {
name << 'f' << ty.getIntOrFloatBitWidth();
} else if (fir::isa_complex(ty)) {
name << 'z';
if (auto cplxTy = mlir::dyn_cast_or_null<mlir::ComplexType>(ty)) {
auto floatTy = mlir::cast<mlir::FloatType>(cplxTy.getElementType());
name << floatTy.getWidth();
} else if (auto cplxTy = mlir::dyn_cast_or_null<fir::ComplexType>(ty)) {
name << kindMap.getRealBitsize(cplxTy.getFKind());
}
} else if (auto logTy = mlir::dyn_cast_or_null<fir::LogicalType>(ty)) {
name << 'l' << kindMap.getLogicalBitsize(logTy.getFKind());
} else {
llvm::report_fatal_error("unsupported type");
}
break;
} else if (mlir::isa<mlir::NoneType>(ty)) {
name << "none";
break;
} else if (auto charTy = mlir::dyn_cast_or_null<fir::CharacterType>(ty)) {
name << 'c' << kindMap.getCharacterBitsize(charTy.getFKind());
if (charTy.getLen() == fir::CharacterType::unknownLen())
name << "xU";
else if (charTy.getLen() != fir::CharacterType::singleton())
name << "x" << charTy.getLen();
break;
} else if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(ty)) {
for (auto extent : seqTy.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
name << "Ux";
else
name << extent << 'x';
}
ty = seqTy.getEleTy();
} else if (auto refTy = mlir::dyn_cast_or_null<fir::ReferenceType>(ty)) {
name << "ref_";
ty = refTy.getEleTy();
} else if (auto ptrTy = mlir::dyn_cast_or_null<fir::PointerType>(ty)) {
name << "ptr_";
ty = ptrTy.getEleTy();
} else if (auto ptrTy = mlir::dyn_cast_or_null<fir::LLVMPointerType>(ty)) {
name << "llvmptr_";
ty = ptrTy.getEleTy();
} else if (auto heapTy = mlir::dyn_cast_or_null<fir::HeapType>(ty)) {
name << "heap_";
ty = heapTy.getEleTy();
} else if (auto classTy = mlir::dyn_cast_or_null<fir::ClassType>(ty)) {
name << "class_";
ty = classTy.getEleTy();
} else if (auto boxTy = mlir::dyn_cast_or_null<fir::BoxType>(ty)) {
name << "box_";
ty = boxTy.getEleTy();
} else if (auto boxcharTy = mlir::dyn_cast_or_null<fir::BoxCharType>(ty)) {
name << "boxchar_";
ty = boxcharTy.getEleTy();
} else if (auto recTy = mlir::dyn_cast_or_null<fir::RecordType>(ty)) {
name << "rec_" << recTy.getName();
break;
} else {
llvm::report_fatal_error("unsupported type");
}
}
return name.str();
}
mlir::Type changeElementType(mlir::Type type, mlir::Type newElementType,
bool turnBoxIntoClass) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(type)
.Case<fir::SequenceType>([&](fir::SequenceType seqTy) -> mlir::Type {
return fir::SequenceType::get(seqTy.getShape(), newElementType);
})
.Case<fir::PointerType, fir::HeapType, fir::ReferenceType,
fir::ClassType>([&](auto t) -> mlir::Type {
using FIRT = decltype(t);
return FIRT::get(
changeElementType(t.getEleTy(), newElementType, turnBoxIntoClass));
})
.Case<fir::BoxType>([&](fir::BoxType t) -> mlir::Type {
mlir::Type newInnerType =
changeElementType(t.getEleTy(), newElementType, false);
if (turnBoxIntoClass)
return fir::ClassType::get(newInnerType);
return fir::BoxType::get(newInnerType);
})
.Default([&](mlir::Type t) -> mlir::Type {
assert((fir::isa_trivial(t) || llvm::isa<fir::RecordType>(t) ||
llvm::isa<mlir::NoneType>(t)) &&
"unexpected FIR leaf type");
return newElementType;
});
}
} // namespace fir
namespace {
static llvm::SmallPtrSet<detail::RecordTypeStorage const *, 4>
recordTypeVisited;
} // namespace
void fir::verifyIntegralType(mlir::Type type) {
if (isaIntegerType(type) || mlir::isa<mlir::IndexType>(type))
return;
llvm::report_fatal_error("expected integral type");
}
void fir::printFirType(FIROpsDialect *, mlir::Type ty,
mlir::DialectAsmPrinter &p) {
if (mlir::failed(generatedTypePrinter(ty, p)))
llvm::report_fatal_error("unknown type to print");
}
bool fir::isa_unknown_size_box(mlir::Type t) {
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(t)) {
auto valueType = fir::unwrapPassByRefType(boxTy);
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(valueType))
if (seqTy.hasUnknownShape())
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// BoxProcType
//===----------------------------------------------------------------------===//
// `boxproc` `<` return-type `>`
mlir::Type BoxProcType::parse(mlir::AsmParser &parser) {
mlir::Type ty;
if (parser.parseLess() || parser.parseType(ty) || parser.parseGreater())
return {};
return get(parser.getContext(), ty);
}
void fir::BoxProcType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getEleTy() << '>';
}
mlir::LogicalResult
BoxProcType::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (mlir::isa<mlir::FunctionType>(eleTy))
return mlir::success();
if (auto refTy = mlir::dyn_cast<ReferenceType>(eleTy))
if (mlir::isa<mlir::FunctionType>(refTy))
return mlir::success();
return emitError() << "invalid type for boxproc" << eleTy << '\n';
}
static bool cannotBePointerOrHeapElementType(mlir::Type eleTy) {
return mlir::isa<BoxType, BoxCharType, BoxProcType, ShapeType, ShapeShiftType,
SliceType, FieldType, LenType, HeapType, PointerType,
ReferenceType, TypeDescType>(eleTy);
}
//===----------------------------------------------------------------------===//
// BoxType
//===----------------------------------------------------------------------===//
mlir::LogicalResult
fir::BoxType::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (mlir::isa<fir::BaseBoxType>(eleTy))
return emitError() << "invalid element type\n";
// TODO
return mlir::success();
}
//===----------------------------------------------------------------------===//
// BoxCharType
//===----------------------------------------------------------------------===//
mlir::Type fir::BoxCharType::parse(mlir::AsmParser &parser) {
return parseKindSingleton<fir::BoxCharType>(parser);
}
void fir::BoxCharType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getKind() << ">";
}
CharacterType
fir::BoxCharType::getElementType(mlir::MLIRContext *context) const {
return CharacterType::getUnknownLen(context, getKind());
}
CharacterType fir::BoxCharType::getEleTy() const {
return getElementType(getContext());
}
//===----------------------------------------------------------------------===//
// CharacterType
//===----------------------------------------------------------------------===//
// `char` `<` kind [`,` `len`] `>`
mlir::Type fir::CharacterType::parse(mlir::AsmParser &parser) {
int kind = 0;
if (parser.parseLess() || parser.parseInteger(kind))
return {};
CharacterType::LenType len = 1;
if (mlir::succeeded(parser.parseOptionalComma())) {
if (mlir::succeeded(parser.parseOptionalQuestion())) {
len = fir::CharacterType::unknownLen();
} else if (!mlir::succeeded(parser.parseInteger(len))) {
return {};
}
}
if (parser.parseGreater())
return {};
return get(parser.getContext(), kind, len);
}
void fir::CharacterType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getFKind();
auto len = getLen();
if (len != fir::CharacterType::singleton()) {
printer << ',';
if (len == fir::CharacterType::unknownLen())
printer << '?';
else
printer << len;
}
printer << '>';
}
//===----------------------------------------------------------------------===//
// ClassType
//===----------------------------------------------------------------------===//
mlir::LogicalResult
fir::ClassType::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (mlir::isa<fir::RecordType, fir::SequenceType, fir::HeapType,
fir::PointerType, mlir::NoneType, mlir::IntegerType,
mlir::FloatType, fir::CharacterType, fir::LogicalType,
fir::ComplexType, mlir::ComplexType>(eleTy))
return mlir::success();
return emitError() << "invalid element type\n";
}
//===----------------------------------------------------------------------===//
// ComplexType
//===----------------------------------------------------------------------===//
mlir::Type fir::ComplexType::parse(mlir::AsmParser &parser) {
return parseKindSingleton<fir::ComplexType>(parser);
}
void fir::ComplexType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getFKind() << '>';
}
mlir::Type fir::ComplexType::getElementType() const {
return fir::RealType::get(getContext(), getFKind());
}
// Return the MLIR float type of the complex element type.
mlir::Type fir::ComplexType::getEleType(const fir::KindMapping &kindMap) const {
auto fkind = getFKind();
auto realTypeID = kindMap.getRealTypeID(fkind);
return fir::fromRealTypeID(getContext(), realTypeID, fkind);
}
//===----------------------------------------------------------------------===//
// HeapType
//===----------------------------------------------------------------------===//
// `heap` `<` type `>`
mlir::Type fir::HeapType::parse(mlir::AsmParser &parser) {
return parseTypeSingleton<HeapType>(parser);
}
void fir::HeapType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getEleTy() << '>';
}
mlir::LogicalResult
fir::HeapType::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (cannotBePointerOrHeapElementType(eleTy))
return emitError() << "cannot build a heap pointer to type: " << eleTy
<< '\n';
return mlir::success();
}
//===----------------------------------------------------------------------===//
// IntegerType
//===----------------------------------------------------------------------===//
// `int` `<` kind `>`
mlir::Type fir::IntegerType::parse(mlir::AsmParser &parser) {
return parseKindSingleton<fir::IntegerType>(parser);
}
void fir::IntegerType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getFKind() << '>';
}
//===----------------------------------------------------------------------===//
// LogicalType
//===----------------------------------------------------------------------===//
// `logical` `<` kind `>`
mlir::Type fir::LogicalType::parse(mlir::AsmParser &parser) {
return parseKindSingleton<fir::LogicalType>(parser);
}
void fir::LogicalType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getFKind() << '>';
}
//===----------------------------------------------------------------------===//
// PointerType
//===----------------------------------------------------------------------===//
// `ptr` `<` type `>`
mlir::Type fir::PointerType::parse(mlir::AsmParser &parser) {
return parseTypeSingleton<fir::PointerType>(parser);
}
void fir::PointerType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getEleTy() << '>';
}
mlir::LogicalResult fir::PointerType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (cannotBePointerOrHeapElementType(eleTy))
return emitError() << "cannot build a pointer to type: " << eleTy << '\n';
return mlir::success();
}
//===----------------------------------------------------------------------===//
// RealType
//===----------------------------------------------------------------------===//
// `real` `<` kind `>`
mlir::Type fir::RealType::parse(mlir::AsmParser &parser) {
return parseKindSingleton<fir::RealType>(parser);
}
void fir::RealType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getFKind() << '>';
}
mlir::LogicalResult
fir::RealType::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
KindTy fKind) {
// TODO
return mlir::success();
}
mlir::Type fir::RealType::getFloatType(const fir::KindMapping &kindMap) const {
auto fkind = getFKind();
auto realTypeID = kindMap.getRealTypeID(fkind);
return fir::fromRealTypeID(getContext(), realTypeID, fkind);
}
//===----------------------------------------------------------------------===//
// RecordType
//===----------------------------------------------------------------------===//
// Fortran derived type
// `type` `<` name
// (`(` id `:` type (`,` id `:` type)* `)`)?
// (`{` id `:` type (`,` id `:` type)* `}`)? '>'
mlir::Type fir::RecordType::parse(mlir::AsmParser &parser) {
llvm::StringRef name;
if (parser.parseLess() || parser.parseKeyword(&name))
return {};
RecordType result = RecordType::get(parser.getContext(), name);
RecordType::TypeList lenParamList;
if (!parser.parseOptionalLParen()) {
while (true) {
llvm::StringRef lenparam;
mlir::Type intTy;
if (parser.parseKeyword(&lenparam) || parser.parseColon() ||
parser.parseType(intTy)) {
parser.emitError(parser.getNameLoc(), "expected LEN parameter list");
return {};
}
lenParamList.emplace_back(lenparam, intTy);
if (parser.parseOptionalComma())
break;
}
if (parser.parseRParen())
return {};
}
RecordType::TypeList typeList;
if (!parser.parseOptionalLBrace()) {
while (true) {
llvm::StringRef field;
mlir::Type fldTy;
if (parser.parseKeyword(&field) || parser.parseColon() ||
parser.parseType(fldTy)) {
parser.emitError(parser.getNameLoc(), "expected field type list");
return {};
}
typeList.emplace_back(field, fldTy);
if (parser.parseOptionalComma())
break;
}
if (parser.parseRBrace())
return {};
}
if (parser.parseGreater())
return {};
if (lenParamList.empty() && typeList.empty())
return result;
result.finalize(lenParamList, typeList);
return verifyDerived(parser, result, lenParamList, typeList);
}
void fir::RecordType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getName();
if (!recordTypeVisited.count(uniqueKey())) {
recordTypeVisited.insert(uniqueKey());
if (getLenParamList().size()) {
char ch = '(';
for (auto p : getLenParamList()) {
printer << ch << p.first << ':';
p.second.print(printer.getStream());
ch = ',';
}
printer << ')';
}
if (getTypeList().size()) {
char ch = '{';
for (auto p : getTypeList()) {
printer << ch << p.first << ':';
p.second.print(printer.getStream());
ch = ',';
}
printer << '}';
}
recordTypeVisited.erase(uniqueKey());
}
printer << '>';
}
void fir::RecordType::finalize(llvm::ArrayRef<TypePair> lenPList,
llvm::ArrayRef<TypePair> typeList) {
getImpl()->finalize(lenPList, typeList);
}
llvm::StringRef fir::RecordType::getName() const {
return getImpl()->getName();
}
RecordType::TypeList fir::RecordType::getTypeList() const {
return getImpl()->getTypeList();
}
RecordType::TypeList fir::RecordType::getLenParamList() const {
return getImpl()->getLenParamList();
}
bool fir::RecordType::isFinalized() const { return getImpl()->isFinalized(); }
detail::RecordTypeStorage const *fir::RecordType::uniqueKey() const {
return getImpl();
}
mlir::LogicalResult fir::RecordType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
llvm::StringRef name) {
if (name.size() == 0)
return emitError() << "record types must have a name";
return mlir::success();
}
mlir::Type fir::RecordType::getType(llvm::StringRef ident) {
for (auto f : getTypeList())
if (ident == f.first)
return f.second;
return {};
}
unsigned fir::RecordType::getFieldIndex(llvm::StringRef ident) {
for (auto f : llvm::enumerate(getTypeList()))
if (ident == f.value().first)
return f.index();
return std::numeric_limits<unsigned>::max();
}
//===----------------------------------------------------------------------===//
// ReferenceType
//===----------------------------------------------------------------------===//
// `ref` `<` type `>`
mlir::Type fir::ReferenceType::parse(mlir::AsmParser &parser) {
return parseTypeSingleton<fir::ReferenceType>(parser);
}
void fir::ReferenceType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getEleTy() << '>';
}
mlir::LogicalResult fir::ReferenceType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (mlir::isa<ShapeType, ShapeShiftType, SliceType, FieldType, LenType,
ReferenceType, TypeDescType>(eleTy))
return emitError() << "cannot build a reference to type: " << eleTy << '\n';
return mlir::success();
}
//===----------------------------------------------------------------------===//
// SequenceType
//===----------------------------------------------------------------------===//
// `array` `<` `*` | bounds (`x` bounds)* `:` type (',' affine-map)? `>`
// bounds ::= `?` | int-lit
mlir::Type fir::SequenceType::parse(mlir::AsmParser &parser) {
if (parser.parseLess())
return {};
SequenceType::Shape shape;
if (parser.parseOptionalStar()) {
if (parser.parseDimensionList(shape, /*allowDynamic=*/true))
return {};
} else if (parser.parseColon()) {
return {};
}
mlir::Type eleTy;
if (parser.parseType(eleTy))
return {};
mlir::AffineMapAttr map;
if (!parser.parseOptionalComma()) {
if (parser.parseAttribute(map)) {
parser.emitError(parser.getNameLoc(), "expecting affine map");
return {};
}
}
if (parser.parseGreater())
return {};
return SequenceType::get(parser.getContext(), shape, eleTy, map);
}
void fir::SequenceType::print(mlir::AsmPrinter &printer) const {
auto shape = getShape();
if (shape.size()) {
printer << '<';
for (const auto &b : shape) {
if (b >= 0)
printer << b << 'x';
else
printer << "?x";
}
} else {
printer << "<*:";
}
printer << getEleTy();
if (auto map = getLayoutMap()) {
printer << ", ";
map.print(printer.getStream());
}
printer << '>';
}
unsigned fir::SequenceType::getConstantRows() const {
if (hasDynamicSize(getEleTy()))
return 0;
auto shape = getShape();
unsigned count = 0;
for (auto d : shape) {
if (d == getUnknownExtent())
break;
++count;
}
return count;
}
mlir::LogicalResult fir::SequenceType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
llvm::ArrayRef<int64_t> shape, mlir::Type eleTy,
mlir::AffineMapAttr layoutMap) {
// DIMENSION attribute can only be applied to an intrinsic or record type
if (mlir::isa<BoxType, BoxCharType, BoxProcType, ShapeType, ShapeShiftType,
ShiftType, SliceType, FieldType, LenType, HeapType, PointerType,
ReferenceType, TypeDescType, SequenceType>(eleTy))
return emitError() << "cannot build an array of this element type: "
<< eleTy << '\n';
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ShapeType
//===----------------------------------------------------------------------===//
mlir::Type fir::ShapeType::parse(mlir::AsmParser &parser) {
return parseRankSingleton<fir::ShapeType>(parser);
}
void fir::ShapeType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getImpl()->rank << ">";
}
//===----------------------------------------------------------------------===//
// ShapeShiftType
//===----------------------------------------------------------------------===//
mlir::Type fir::ShapeShiftType::parse(mlir::AsmParser &parser) {
return parseRankSingleton<fir::ShapeShiftType>(parser);
}
void fir::ShapeShiftType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getRank() << ">";
}
//===----------------------------------------------------------------------===//
// ShiftType
//===----------------------------------------------------------------------===//
mlir::Type fir::ShiftType::parse(mlir::AsmParser &parser) {
return parseRankSingleton<fir::ShiftType>(parser);
}
void fir::ShiftType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getRank() << ">";
}
//===----------------------------------------------------------------------===//
// SliceType
//===----------------------------------------------------------------------===//
// `slice` `<` rank `>`
mlir::Type fir::SliceType::parse(mlir::AsmParser &parser) {
return parseRankSingleton<fir::SliceType>(parser);
}
void fir::SliceType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getRank() << '>';
}
//===----------------------------------------------------------------------===//
// TypeDescType
//===----------------------------------------------------------------------===//
// `tdesc` `<` type `>`
mlir::Type fir::TypeDescType::parse(mlir::AsmParser &parser) {
return parseTypeSingleton<fir::TypeDescType>(parser);
}
void fir::TypeDescType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getOfTy() << '>';
}
mlir::LogicalResult fir::TypeDescType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
mlir::Type eleTy) {
if (mlir::isa<BoxType, BoxCharType, BoxProcType, ShapeType, ShapeShiftType,
ShiftType, SliceType, FieldType, LenType, ReferenceType,
TypeDescType>(eleTy))
return emitError() << "cannot build a type descriptor of type: " << eleTy
<< '\n';
return mlir::success();
}
//===----------------------------------------------------------------------===//
// VectorType
//===----------------------------------------------------------------------===//
// `vector` `<` len `:` type `>`
mlir::Type fir::VectorType::parse(mlir::AsmParser &parser) {
int64_t len = 0;
mlir::Type eleTy;
if (parser.parseLess() || parser.parseInteger(len) || parser.parseColon() ||
parser.parseType(eleTy) || parser.parseGreater())
return {};
return fir::VectorType::get(len, eleTy);
}
void fir::VectorType::print(mlir::AsmPrinter &printer) const {
printer << "<" << getLen() << ':' << getEleTy() << '>';
}
mlir::LogicalResult fir::VectorType::verify(
llvm::function_ref<mlir::InFlightDiagnostic()> emitError, uint64_t len,
mlir::Type eleTy) {
if (!(fir::isa_real(eleTy) || fir::isa_integer(eleTy)))
return emitError() << "cannot build a vector of type " << eleTy << '\n';
return mlir::success();
}
bool fir::VectorType::isValidElementType(mlir::Type t) {
return isa_real(t) || isa_integer(t);
}
bool fir::isCharacterProcedureTuple(mlir::Type ty, bool acceptRawFunc) {
mlir::TupleType tuple = mlir::dyn_cast<mlir::TupleType>(ty);
return tuple && tuple.size() == 2 &&
(mlir::isa<fir::BoxProcType>(tuple.getType(0)) ||
(acceptRawFunc && mlir::isa<mlir::FunctionType>(tuple.getType(0)))) &&
fir::isa_integer(tuple.getType(1));
}
bool fir::hasAbstractResult(mlir::FunctionType ty) {
if (ty.getNumResults() == 0)
return false;
auto resultType = ty.getResult(0);
return mlir::isa<fir::SequenceType, fir::BaseBoxType, fir::RecordType>(
resultType);
}
/// Convert llvm::Type::TypeID to mlir::Type. \p kind is provided for error
/// messages only.
mlir::Type fir::fromRealTypeID(mlir::MLIRContext *context,
llvm::Type::TypeID typeID, fir::KindTy kind) {
switch (typeID) {
case llvm::Type::TypeID::HalfTyID:
return mlir::FloatType::getF16(context);
case llvm::Type::TypeID::BFloatTyID:
return mlir::FloatType::getBF16(context);
case llvm::Type::TypeID::FloatTyID:
return mlir::FloatType::getF32(context);
case llvm::Type::TypeID::DoubleTyID:
return mlir::FloatType::getF64(context);
case llvm::Type::TypeID::X86_FP80TyID:
return mlir::FloatType::getF80(context);
case llvm::Type::TypeID::FP128TyID:
return mlir::FloatType::getF128(context);
default:
mlir::emitError(mlir::UnknownLoc::get(context))
<< "unsupported type: !fir.real<" << kind << ">";
return {};
}
}
//===----------------------------------------------------------------------===//
// BaseBoxType
//===----------------------------------------------------------------------===//
mlir::Type BaseBoxType::getEleTy() const {
return llvm::TypeSwitch<fir::BaseBoxType, mlir::Type>(*this)
.Case<fir::BoxType, fir::ClassType>(
[](auto type) { return type.getEleTy(); });
}
mlir::Type BaseBoxType::unwrapInnerType() const {
return fir::unwrapInnerType(getEleTy());
}
static mlir::Type
changeTypeShape(mlir::Type type,
std::optional<fir::SequenceType::ShapeRef> newShape) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(type)
.Case<fir::SequenceType>([&](fir::SequenceType seqTy) -> mlir::Type {
if (newShape)
return fir::SequenceType::get(*newShape, seqTy.getEleTy());
return seqTy.getEleTy();
})
.Case<fir::PointerType, fir::HeapType, fir::ReferenceType, fir::BoxType,
fir::ClassType>([&](auto t) -> mlir::Type {
using FIRT = decltype(t);
return FIRT::get(changeTypeShape(t.getEleTy(), newShape));
})
.Default([&](mlir::Type t) -> mlir::Type {
assert((fir::isa_trivial(t) || llvm::isa<fir::RecordType>(t) ||
llvm::isa<mlir::NoneType>(t)) &&
"unexpected FIR leaf type");
if (newShape)
return fir::SequenceType::get(*newShape, t);
return t;
});
}
fir::BaseBoxType
fir::BaseBoxType::getBoxTypeWithNewShape(mlir::Type shapeMold) const {
fir::SequenceType seqTy = fir::unwrapUntilSeqType(shapeMold);
std::optional<fir::SequenceType::ShapeRef> newShape;
if (seqTy)
newShape = seqTy.getShape();
return mlir::cast<fir::BaseBoxType>(changeTypeShape(*this, newShape));
}
bool fir::BaseBoxType::isAssumedRank() const {
if (auto seqTy =
mlir::dyn_cast<fir::SequenceType>(fir::unwrapRefType(getEleTy())))
return seqTy.hasUnknownShape();
return false;
}
//===----------------------------------------------------------------------===//
// FIROpsDialect
//===----------------------------------------------------------------------===//
void FIROpsDialect::registerTypes() {
addTypes<BoxType, BoxCharType, BoxProcType, CharacterType, ClassType,
fir::ComplexType, FieldType, HeapType, fir::IntegerType, LenType,
LogicalType, LLVMPointerType, PointerType, RealType, RecordType,
ReferenceType, SequenceType, ShapeType, ShapeShiftType, ShiftType,
SliceType, TypeDescType, fir::VectorType, fir::DummyScopeType>();
fir::ReferenceType::attachInterface<
OpenMPPointerLikeModel<fir::ReferenceType>>(*getContext());
fir::ReferenceType::attachInterface<
OpenACCPointerLikeModel<fir::ReferenceType>>(*getContext());
fir::PointerType::attachInterface<OpenMPPointerLikeModel<fir::PointerType>>(
*getContext());
fir::PointerType::attachInterface<OpenACCPointerLikeModel<fir::PointerType>>(
*getContext());
fir::HeapType::attachInterface<OpenMPPointerLikeModel<fir::HeapType>>(
*getContext());
fir::HeapType::attachInterface<OpenACCPointerLikeModel<fir::HeapType>>(
*getContext());
fir::LLVMPointerType::attachInterface<
OpenMPPointerLikeModel<fir::LLVMPointerType>>(*getContext());
fir::LLVMPointerType::attachInterface<
OpenACCPointerLikeModel<fir::LLVMPointerType>>(*getContext());
}
std::pair<std::uint64_t, unsigned short>
fir::getTypeSizeAndAlignment(mlir::Location loc, mlir::Type ty,
const mlir::DataLayout &dl,
const fir::KindMapping &kindMap) {
if (mlir::isa<mlir::IntegerType, mlir::FloatType, mlir::ComplexType>(ty)) {
llvm::TypeSize size = dl.getTypeSize(ty);
unsigned short alignment = dl.getTypeABIAlignment(ty);
return {size, alignment};
}
if (auto firCmplx = mlir::dyn_cast<fir::ComplexType>(ty)) {
auto [floatSize, floatAlign] =
getTypeSizeAndAlignment(loc, firCmplx.getEleType(kindMap), dl, kindMap);
return {llvm::alignTo(floatSize, floatAlign) + floatSize, floatAlign};
}
if (auto real = mlir::dyn_cast<fir::RealType>(ty))
return getTypeSizeAndAlignment(loc, real.getFloatType(kindMap), dl,
kindMap);
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty)) {
auto [eleSize, eleAlign] =
getTypeSizeAndAlignment(loc, seqTy.getEleTy(), dl, kindMap);
std::uint64_t size =
llvm::alignTo(eleSize, eleAlign) * seqTy.getConstantArraySize();
return {size, eleAlign};
}
if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) {
std::uint64_t size = 0;
unsigned short align = 1;
for (auto component : recTy.getTypeList()) {
auto [compSize, compAlign] =
getTypeSizeAndAlignment(loc, component.second, dl, kindMap);
size =
llvm::alignTo(size, compAlign) + llvm::alignTo(compSize, compAlign);
align = std::max(align, compAlign);
}
return {size, align};
}
if (auto logical = mlir::dyn_cast<fir::LogicalType>(ty)) {
mlir::Type intTy = mlir::IntegerType::get(
logical.getContext(), kindMap.getLogicalBitsize(logical.getFKind()));
return getTypeSizeAndAlignment(loc, intTy, dl, kindMap);
}
if (auto character = mlir::dyn_cast<fir::CharacterType>(ty)) {
mlir::Type intTy = mlir::IntegerType::get(
character.getContext(),
kindMap.getCharacterBitsize(character.getFKind()));
return getTypeSizeAndAlignment(loc, intTy, dl, kindMap);
}
TODO(loc, "computing size of a component");
}