| //===-- FIROps.cpp --------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Optimizer/Dialect/FIROps.h" |
| #include "flang/Optimizer/Dialect/FIRAttr.h" |
| #include "flang/Optimizer/Dialect/FIRDialect.h" |
| #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| #include "flang/Optimizer/Dialect/FIRType.h" |
| #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| #include "flang/Optimizer/Dialect/Support/KindMapping.h" |
| #include "flang/Optimizer/Support/Utils.h" |
| #include "mlir/Dialect/CommonFolders.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/OpenACC/OpenACC.h" |
| #include "mlir/Dialect/OpenMP/OpenMPDialect.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/BuiltinAttributes.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/Diagnostics.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/OpDefinition.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| |
| namespace { |
| #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc" |
| } // namespace |
| |
| static void propagateAttributes(mlir::Operation *fromOp, |
| mlir::Operation *toOp) { |
| if (!fromOp || !toOp) |
| return; |
| |
| for (mlir::NamedAttribute attr : fromOp->getAttrs()) { |
| if (attr.getName().getValue().starts_with( |
| mlir::acc::OpenACCDialect::getDialectNamespace())) |
| toOp->setAttr(attr.getName(), attr.getValue()); |
| } |
| } |
| |
| /// Return true if a sequence type is of some incomplete size or a record type |
| /// is malformed or contains an incomplete sequence type. An incomplete sequence |
| /// type is one with more unknown extents in the type than have been provided |
| /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by |
| /// definition. |
| static bool verifyInType(mlir::Type inType, |
| llvm::SmallVectorImpl<llvm::StringRef> &visited, |
| unsigned dynamicExtents = 0) { |
| if (auto st = mlir::dyn_cast<fir::SequenceType>(inType)) { |
| auto shape = st.getShape(); |
| if (shape.size() == 0) |
| return true; |
| for (std::size_t i = 0, end = shape.size(); i < end; ++i) { |
| if (shape[i] != fir::SequenceType::getUnknownExtent()) |
| continue; |
| if (dynamicExtents-- == 0) |
| return true; |
| } |
| } else if (auto rt = mlir::dyn_cast<fir::RecordType>(inType)) { |
| // don't recurse if we're already visiting this one |
| if (llvm::is_contained(visited, rt.getName())) |
| return false; |
| // keep track of record types currently being visited |
| visited.push_back(rt.getName()); |
| for (auto &field : rt.getTypeList()) |
| if (verifyInType(field.second, visited)) |
| return true; |
| visited.pop_back(); |
| } |
| return false; |
| } |
| |
| static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) { |
| auto ty = fir::unwrapSequenceType(inType); |
| if (numParams > 0) { |
| if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) |
| return numParams != recTy.getNumLenParams(); |
| if (auto chrTy = mlir::dyn_cast<fir::CharacterType>(ty)) |
| return !(numParams == 1 && chrTy.hasDynamicLen()); |
| return true; |
| } |
| if (auto chrTy = mlir::dyn_cast<fir::CharacterType>(ty)) |
| return !chrTy.hasConstantLen(); |
| return false; |
| } |
| |
| /// Parser shared by Alloca and Allocmem |
| /// |
| /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type |
| /// ( `(` $typeparams `)` )? ( `,` $shape )? |
| /// attr-dict-without-keyword |
| template <typename FN> |
| static mlir::ParseResult parseAllocatableOp(FN wrapResultType, |
| mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| mlir::Type intype; |
| if (parser.parseType(intype)) |
| return mlir::failure(); |
| auto &builder = parser.getBuilder(); |
| result.addAttribute("in_type", mlir::TypeAttr::get(intype)); |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands; |
| llvm::SmallVector<mlir::Type> typeVec; |
| bool hasOperands = false; |
| std::int32_t typeparamsSize = 0; |
| if (!parser.parseOptionalLParen()) { |
| // parse the LEN params of the derived type. (<params> : <types>) |
| if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || |
| parser.parseColonTypeList(typeVec) || parser.parseRParen()) |
| return mlir::failure(); |
| typeparamsSize = operands.size(); |
| hasOperands = true; |
| } |
| std::int32_t shapeSize = 0; |
| if (!parser.parseOptionalComma()) { |
| // parse size to scale by, vector of n dimensions of type index |
| if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None)) |
| return mlir::failure(); |
| shapeSize = operands.size() - typeparamsSize; |
| auto idxTy = builder.getIndexType(); |
| for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i) |
| typeVec.push_back(idxTy); |
| hasOperands = true; |
| } |
| if (hasOperands && |
| parser.resolveOperands(operands, typeVec, parser.getNameLoc(), |
| result.operands)) |
| return mlir::failure(); |
| mlir::Type restype = wrapResultType(intype); |
| if (!restype) { |
| parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype; |
| return mlir::failure(); |
| } |
| result.addAttribute("operandSegmentSizes", builder.getDenseI32ArrayAttr( |
| {typeparamsSize, shapeSize})); |
| if (parser.parseOptionalAttrDict(result.attributes) || |
| parser.addTypeToList(restype, result.types)) |
| return mlir::failure(); |
| return mlir::success(); |
| } |
| |
| template <typename OP> |
| static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) { |
| p << ' ' << op.getInType(); |
| if (!op.getTypeparams().empty()) { |
| p << '(' << op.getTypeparams() << " : " << op.getTypeparams().getTypes() |
| << ')'; |
| } |
| // print the shape of the allocation (if any); all must be index type |
| for (auto sh : op.getShape()) { |
| p << ", "; |
| p.printOperand(sh); |
| } |
| p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operandSegmentSizes"}); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocaOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a legal memory reference as return type |
| static mlir::Type wrapAllocaResultType(mlir::Type intype) { |
| // FIR semantics: memory references to memory references are disallowed |
| if (mlir::isa<fir::ReferenceType>(intype)) |
| return {}; |
| return fir::ReferenceType::get(intype); |
| } |
| |
| mlir::Type fir::AllocaOp::getAllocatedType() { |
| return mlir::cast<fir::ReferenceType>(getType()).getEleTy(); |
| } |
| |
| mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { |
| return fir::ReferenceType::get(ty); |
| } |
| |
| void fir::AllocaOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| llvm::StringRef uniqName, mlir::ValueRange typeparams, |
| mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| auto nameAttr = builder.getStringAttr(uniqName); |
| build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, |
| /*pinned=*/false, typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocaOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| llvm::StringRef uniqName, bool pinned, |
| mlir::ValueRange typeparams, mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| auto nameAttr = builder.getStringAttr(uniqName); |
| build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, |
| pinned, typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocaOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| llvm::StringRef uniqName, llvm::StringRef bindcName, |
| mlir::ValueRange typeparams, mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| auto nameAttr = |
| uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); |
| auto bindcAttr = |
| bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); |
| build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, |
| bindcAttr, /*pinned=*/false, typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocaOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| llvm::StringRef uniqName, llvm::StringRef bindcName, |
| bool pinned, mlir::ValueRange typeparams, |
| mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| auto nameAttr = |
| uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); |
| auto bindcAttr = |
| bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); |
| build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, |
| bindcAttr, pinned, typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocaOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| mlir::ValueRange typeparams, mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, |
| /*pinned=*/false, typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocaOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| bool pinned, mlir::ValueRange typeparams, |
| mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned, |
| typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| mlir::ParseResult fir::AllocaOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| return parseAllocatableOp(wrapAllocaResultType, parser, result); |
| } |
| |
| void fir::AllocaOp::print(mlir::OpAsmPrinter &p) { |
| printAllocatableOp(p, *this); |
| } |
| |
| llvm::LogicalResult fir::AllocaOp::verify() { |
| llvm::SmallVector<llvm::StringRef> visited; |
| if (verifyInType(getInType(), visited, numShapeOperands())) |
| return emitOpError("invalid type for allocation"); |
| if (verifyTypeParamCount(getInType(), numLenParams())) |
| return emitOpError("LEN params do not correspond to type"); |
| mlir::Type outType = getType(); |
| if (!mlir::isa<fir::ReferenceType>(outType)) |
| return emitOpError("must be a !fir.ref type"); |
| return mlir::success(); |
| } |
| |
| bool fir::AllocaOp::ownsNestedAlloca(mlir::Operation *op) { |
| return op->hasTrait<mlir::OpTrait::IsIsolatedFromAbove>() || |
| op->hasTrait<mlir::OpTrait::AutomaticAllocationScope>() || |
| mlir::isa<mlir::LoopLikeOpInterface>(*op); |
| } |
| |
| mlir::Region *fir::AllocaOp::getOwnerRegion() { |
| mlir::Operation *currentOp = getOperation(); |
| while (mlir::Operation *parentOp = currentOp->getParentOp()) { |
| // If the operation was not registered, inquiries about its traits will be |
| // incorrect and it is not possible to reason about the operation. This |
| // should not happen in a normal Fortran compilation flow, but be foolproof. |
| if (!parentOp->isRegistered()) |
| return nullptr; |
| if (fir::AllocaOp::ownsNestedAlloca(parentOp)) |
| return currentOp->getParentRegion(); |
| currentOp = parentOp; |
| } |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocMemOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a legal heap reference as return type |
| static mlir::Type wrapAllocMemResultType(mlir::Type intype) { |
| // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER |
| // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well |
| // FIR semantics: one may not allocate a memory reference value |
| if (mlir::isa<fir::ReferenceType, fir::HeapType, fir::PointerType, |
| mlir::FunctionType>(intype)) |
| return {}; |
| return fir::HeapType::get(intype); |
| } |
| |
| mlir::Type fir::AllocMemOp::getAllocatedType() { |
| return mlir::cast<fir::HeapType>(getType()).getEleTy(); |
| } |
| |
| mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { |
| return fir::HeapType::get(ty); |
| } |
| |
| void fir::AllocMemOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| llvm::StringRef uniqName, |
| mlir::ValueRange typeparams, mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| auto nameAttr = builder.getStringAttr(uniqName); |
| build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {}, |
| typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocMemOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| llvm::StringRef uniqName, llvm::StringRef bindcName, |
| mlir::ValueRange typeparams, mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| auto nameAttr = builder.getStringAttr(uniqName); |
| auto bindcAttr = builder.getStringAttr(bindcName); |
| build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, |
| bindcAttr, typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| void fir::AllocMemOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Type inType, |
| mlir::ValueRange typeparams, mlir::ValueRange shape, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| build(builder, result, wrapAllocMemResultType(inType), inType, {}, {}, |
| typeparams, shape); |
| result.addAttributes(attributes); |
| } |
| |
| mlir::ParseResult fir::AllocMemOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| return parseAllocatableOp(wrapAllocMemResultType, parser, result); |
| } |
| |
| void fir::AllocMemOp::print(mlir::OpAsmPrinter &p) { |
| printAllocatableOp(p, *this); |
| } |
| |
| llvm::LogicalResult fir::AllocMemOp::verify() { |
| llvm::SmallVector<llvm::StringRef> visited; |
| if (verifyInType(getInType(), visited, numShapeOperands())) |
| return emitOpError("invalid type for allocation"); |
| if (verifyTypeParamCount(getInType(), numLenParams())) |
| return emitOpError("LEN params do not correspond to type"); |
| mlir::Type outType = getType(); |
| if (!mlir::dyn_cast<fir::HeapType>(outType)) |
| return emitOpError("must be a !fir.heap type"); |
| if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) |
| return emitOpError("cannot allocate !fir.box of unknown rank or type"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayCoorOp |
| //===----------------------------------------------------------------------===// |
| |
| // CHARACTERs and derived types with LEN PARAMETERs are dependent types that |
| // require runtime values to fully define the type of an object. |
| static bool validTypeParams(mlir::Type dynTy, mlir::ValueRange typeParams) { |
| dynTy = fir::unwrapAllRefAndSeqType(dynTy); |
| // A box value will contain type parameter values itself. |
| if (mlir::isa<fir::BoxType>(dynTy)) |
| return typeParams.size() == 0; |
| // Derived type must have all type parameters satisfied. |
| if (auto recTy = mlir::dyn_cast<fir::RecordType>(dynTy)) |
| return typeParams.size() == recTy.getNumLenParams(); |
| // Characters with non-constant LEN must have a type parameter value. |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(dynTy)) |
| if (charTy.hasDynamicLen()) |
| return typeParams.size() == 1; |
| // Otherwise, any type parameters are invalid. |
| return typeParams.size() == 0; |
| } |
| |
| llvm::LogicalResult fir::ArrayCoorOp::verify() { |
| auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); |
| auto arrTy = mlir::dyn_cast<fir::SequenceType>(eleTy); |
| if (!arrTy) |
| return emitOpError("must be a reference to an array"); |
| auto arrDim = arrTy.getDimension(); |
| |
| if (auto shapeOp = getShape()) { |
| auto shapeTy = shapeOp.getType(); |
| unsigned shapeTyRank = 0; |
| if (auto s = mlir::dyn_cast<fir::ShapeType>(shapeTy)) { |
| shapeTyRank = s.getRank(); |
| } else if (auto ss = mlir::dyn_cast<fir::ShapeShiftType>(shapeTy)) { |
| shapeTyRank = ss.getRank(); |
| } else { |
| auto s = mlir::cast<fir::ShiftType>(shapeTy); |
| shapeTyRank = s.getRank(); |
| // TODO: it looks like PreCGRewrite and CodeGen can support |
| // fir.shift with plain array reference, so we may consider |
| // removing this check. |
| if (!mlir::isa<fir::BaseBoxType>(getMemref().getType())) |
| return emitOpError("shift can only be provided with fir.box memref"); |
| } |
| if (arrDim && arrDim != shapeTyRank) |
| return emitOpError("rank of dimension mismatched"); |
| // TODO: support slicing with changing the number of dimensions, |
| // e.g. when array_coor represents an element access to array(:,1,:) |
| // slice: the shape is 3D and the number of indices is 2 in this case. |
| if (shapeTyRank != getIndices().size()) |
| return emitOpError("number of indices do not match dim rank"); |
| } |
| |
| if (auto sliceOp = getSlice()) { |
| if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) |
| if (!sl.getSubstr().empty()) |
| return emitOpError("array_coor cannot take a slice with substring"); |
| if (auto sliceTy = mlir::dyn_cast<fir::SliceType>(sliceOp.getType())) |
| if (sliceTy.getRank() != arrDim) |
| return emitOpError("rank of dimension in slice mismatched"); |
| } |
| if (!validTypeParams(getMemref().getType(), getTypeparams())) |
| return emitOpError("invalid type parameters"); |
| |
| return mlir::success(); |
| } |
| |
| // Pull in fir.embox and fir.rebox into fir.array_coor when possible. |
| struct SimplifyArrayCoorOp : public mlir::OpRewritePattern<fir::ArrayCoorOp> { |
| using mlir::OpRewritePattern<fir::ArrayCoorOp>::OpRewritePattern; |
| llvm::LogicalResult |
| matchAndRewrite(fir::ArrayCoorOp op, |
| mlir::PatternRewriter &rewriter) const override { |
| mlir::Value memref = op.getMemref(); |
| if (!mlir::isa<fir::BaseBoxType>(memref.getType())) |
| return mlir::failure(); |
| |
| mlir::Value boxedMemref, boxedShape, boxedSlice; |
| if (auto emboxOp = |
| mlir::dyn_cast_or_null<fir::EmboxOp>(memref.getDefiningOp())) { |
| boxedMemref = emboxOp.getMemref(); |
| boxedShape = emboxOp.getShape(); |
| boxedSlice = emboxOp.getSlice(); |
| // If any of operands, that are not currently supported for migration |
| // to ArrayCoorOp, is present, don't rewrite. |
| if (!emboxOp.getTypeparams().empty() || emboxOp.getSourceBox() || |
| emboxOp.getAccessMap()) |
| return mlir::failure(); |
| } else if (auto reboxOp = mlir::dyn_cast_or_null<fir::ReboxOp>( |
| memref.getDefiningOp())) { |
| boxedMemref = reboxOp.getBox(); |
| boxedShape = reboxOp.getShape(); |
| // Avoid pulling in rebox that performs reshaping. |
| // There is no way to represent box reshaping with array_coor. |
| if (boxedShape && !mlir::isa<fir::ShiftType>(boxedShape.getType())) |
| return mlir::failure(); |
| boxedSlice = reboxOp.getSlice(); |
| } else { |
| return mlir::failure(); |
| } |
| |
| bool boxedShapeIsShift = |
| boxedShape && mlir::isa<fir::ShiftType>(boxedShape.getType()); |
| bool boxedShapeIsShape = |
| boxedShape && mlir::isa<fir::ShapeType>(boxedShape.getType()); |
| bool boxedShapeIsShapeShift = |
| boxedShape && mlir::isa<fir::ShapeShiftType>(boxedShape.getType()); |
| |
| // Slices changing the number of dimensions are not supported |
| // for array_coor yet. |
| unsigned origBoxRank; |
| if (mlir::isa<fir::BaseBoxType>(boxedMemref.getType())) |
| origBoxRank = fir::getBoxRank(boxedMemref.getType()); |
| else if (auto arrTy = mlir::dyn_cast<fir::SequenceType>( |
| fir::unwrapRefType(boxedMemref.getType()))) |
| origBoxRank = arrTy.getDimension(); |
| else |
| return mlir::failure(); |
| |
| if (fir::getBoxRank(memref.getType()) != origBoxRank) |
| return mlir::failure(); |
| |
| // Slices with substring are not supported by array_coor. |
| if (boxedSlice) |
| if (auto sliceOp = |
| mlir::dyn_cast_or_null<fir::SliceOp>(boxedSlice.getDefiningOp())) |
| if (!sliceOp.getSubstr().empty()) |
| return mlir::failure(); |
| |
| // If embox/rebox and array_coor have conflicting shapes or slices, |
| // do nothing. |
| if (op.getShape() && boxedShape && boxedShape != op.getShape()) |
| return mlir::failure(); |
| if (op.getSlice() && boxedSlice && boxedSlice != op.getSlice()) |
| return mlir::failure(); |
| |
| std::optional<IndicesVectorTy> shiftedIndices; |
| // The embox/rebox and array_coor either have compatible |
| // shape/slice at this point or shape/slice is null |
| // in one of them but not in the other. |
| // The compatibility means they are equal or both null. |
| if (!op.getShape()) { |
| if (boxedShape) { |
| if (op.getSlice()) { |
| if (!boxedSlice) { |
| if (boxedShapeIsShift) { |
| // %0 = fir.rebox %arg(%shift) |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // Both the slice indices and %idx are 1-based, so the rebox |
| // may be pulled in as: |
| // %1 = fir.array_coor %arg [%slice] %idx |
| boxedShape = nullptr; |
| } else if (boxedShapeIsShape) { |
| // %0 = fir.embox %arg(%shape) |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| } else if (boxedShapeIsShapeShift) { |
| // %0 = fir.embox %arg(%shapeshift) |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // Pull in as: |
| // %shape = fir.shape <extents from the %shapeshift> |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| boxedShape = getShapeFromShapeShift(boxedShape, rewriter); |
| if (!boxedShape) |
| return mlir::failure(); |
| } else { |
| return mlir::failure(); |
| } |
| } else { |
| if (boxedShapeIsShift) { |
| // %0 = fir.rebox %arg(%shift) [%slice] |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // This FIR may only be valid if the shape specifies |
| // that all lower bounds are 1s and the slice's start indices |
| // and strides are all 1s. |
| // We could pull in the rebox as: |
| // %1 = fir.array_coor %arg [%slice] %idx |
| // Do not do anything for the time being. |
| return mlir::failure(); |
| } else if (boxedShapeIsShape) { |
| // %0 = fir.embox %arg(%shape) [%slice] |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // This FIR may only be valid if the slice's start indices |
| // and strides are all 1s. |
| // We could pull in the embox as: |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| return mlir::failure(); |
| } else if (boxedShapeIsShapeShift) { |
| // %0 = fir.embox %arg(%shapeshift) [%slice] |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // This FIR may only be valid if the shape specifies |
| // that all lower bounds are 1s and the slice's start indices |
| // and strides are all 1s. |
| // We could pull in the embox as: |
| // %shape = fir.shape <extents from the %shapeshift> |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| return mlir::failure(); |
| } else { |
| return mlir::failure(); |
| } |
| } |
| } else { // !op.getSlice() |
| if (!boxedSlice) { |
| if (boxedShapeIsShift) { |
| // %0 = fir.rebox %arg(%shift) |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg %idx |
| boxedShape = nullptr; |
| } else if (boxedShapeIsShape) { |
| // %0 = fir.embox %arg(%shape) |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) %idx |
| } else if (boxedShapeIsShapeShift) { |
| // %0 = fir.embox %arg(%shapeshift) |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %shape = fir.shape <extents from the %shapeshift> |
| // %1 = fir.array_coor %arg(%shape) %idx |
| boxedShape = getShapeFromShapeShift(boxedShape, rewriter); |
| if (!boxedShape) |
| return mlir::failure(); |
| } else { |
| return mlir::failure(); |
| } |
| } else { |
| if (boxedShapeIsShift) { |
| // %0 = fir.embox %arg(%shift) [%slice] |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %tmp = arith.addi %idx, %shift.origin |
| // %idx_shifted = arith.subi %tmp, 1 |
| // %1 = fir.array_coor %arg(%shift) %[slice] %idx_shifted |
| shiftedIndices = |
| getShiftedIndices(boxedShape, op.getIndices(), rewriter); |
| if (!shiftedIndices) |
| return mlir::failure(); |
| } else if (boxedShapeIsShape) { |
| // %0 = fir.embox %arg(%shape) [%slice] |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) %[slice] %idx |
| } else if (boxedShapeIsShapeShift) { |
| // %0 = fir.embox %arg(%shapeshift) [%slice] |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %tmp = arith.addi %idx, %shapeshift.lb |
| // %idx_shifted = arith.subi %tmp, 1 |
| // %1 = fir.array_coor %arg(%shapeshift) %[slice] %idx_shifted |
| shiftedIndices = |
| getShiftedIndices(boxedShape, op.getIndices(), rewriter); |
| if (!shiftedIndices) |
| return mlir::failure(); |
| } else { |
| return mlir::failure(); |
| } |
| } |
| } |
| } else { // !boxedShape |
| if (op.getSlice()) { |
| if (!boxedSlice) { |
| // %0 = fir.rebox %arg |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg [%slice] %idx |
| } else { |
| // %0 = fir.rebox %arg [%slice] |
| // %1 = fir.array_coor %0 [%slice] %idx |
| // This is a valid FIR iff the slice's lower bounds |
| // and strides are all 1s. |
| // Pull in as: |
| // %1 = fir.array_coor %arg [%slice] %idx |
| } |
| } else { // !op.getSlice() |
| if (!boxedSlice) { |
| // %0 = fir.rebox %arg |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg %idx |
| } else { |
| // %0 = fir.rebox %arg [%slice] |
| // %1 = fir.array_coor %0 %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg [%slice] %idx |
| } |
| } |
| } |
| } else { // op.getShape() |
| if (boxedShape) { |
| // Check if pulling in non-default shape is correct. |
| if (op.getSlice()) { |
| if (!boxedSlice) { |
| // %0 = fir.embox %arg(%shape) |
| // %1 = fir.array_coor %0(%shape) [%slice] %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| } else { |
| // %0 = fir.embox %arg(%shape) [%slice] |
| // %1 = fir.array_coor %0(%shape) [%slice] %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| } |
| } else { // !op.getSlice() |
| if (!boxedSlice) { |
| // %0 = fir.embox %arg(%shape) |
| // %1 = fir.array_coor %0(%shape) %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) %idx |
| } else { |
| // %0 = fir.embox %arg(%shape) [%slice] |
| // %1 = fir.array_coor %0(%shape) %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| } |
| } |
| } else { // !boxedShape |
| if (op.getSlice()) { |
| if (!boxedSlice) { |
| // %0 = fir.rebox %arg |
| // %1 = fir.array_coor %0(%shape) [%slice] %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) [%slice] %idx |
| } else { |
| // %0 = fir.rebox %arg [%slice] |
| // %1 = fir.array_coor %0(%shape) [%slice] %idx |
| return mlir::failure(); |
| } |
| } else { // !op.getSlice() |
| if (!boxedSlice) { |
| // %0 = fir.rebox %arg |
| // %1 = fir.array_coor %0(%shape) %idx |
| // Pull in as: |
| // %1 = fir.array_coor %arg(%shape) %idx |
| } else { |
| // %0 = fir.rebox %arg [%slice] |
| // %1 = fir.array_coor %0(%shape) %idx |
| // Cannot pull in without adjusting the slice indices. |
| return mlir::failure(); |
| } |
| } |
| } |
| } |
| |
| // TODO: temporarily avoid producing array_coor with the shape shift |
| // and plain array reference (it seems to be a limitation of |
| // ArrayCoorOp verifier). |
| if (!mlir::isa<fir::BaseBoxType>(boxedMemref.getType())) { |
| if (boxedShape) { |
| if (mlir::isa<fir::ShiftType>(boxedShape.getType())) |
| return mlir::failure(); |
| } else if (op.getShape() && |
| mlir::isa<fir::ShiftType>(op.getShape().getType())) { |
| return mlir::failure(); |
| } |
| } |
| |
| rewriter.modifyOpInPlace(op, [&]() { |
| op.getMemrefMutable().assign(boxedMemref); |
| if (boxedShape) |
| op.getShapeMutable().assign(boxedShape); |
| if (boxedSlice) |
| op.getSliceMutable().assign(boxedSlice); |
| if (shiftedIndices) |
| op.getIndicesMutable().assign(*shiftedIndices); |
| }); |
| return mlir::success(); |
| } |
| |
| private: |
| using IndicesVectorTy = std::vector<mlir::Value>; |
| |
| // If v is a shape_shift operation: |
| // fir.shape_shift %l1, %e1, %l2, %e2, ... |
| // create: |
| // fir.shape %e1, %e2, ... |
| static mlir::Value getShapeFromShapeShift(mlir::Value v, |
| mlir::PatternRewriter &rewriter) { |
| auto shapeShiftOp = |
| mlir::dyn_cast_or_null<fir::ShapeShiftOp>(v.getDefiningOp()); |
| if (!shapeShiftOp) |
| return nullptr; |
| mlir::OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPoint(shapeShiftOp); |
| return rewriter.create<fir::ShapeOp>(shapeShiftOp.getLoc(), |
| shapeShiftOp.getExtents()); |
| } |
| |
| static std::optional<IndicesVectorTy> |
| getShiftedIndices(mlir::Value v, mlir::ValueRange indices, |
| mlir::PatternRewriter &rewriter) { |
| auto insertAdjustments = [&](mlir::Operation *op, mlir::ValueRange lbs) { |
| // Compute the shifted indices using the extended type. |
| // Note that this can probably result in less efficient |
| // MLIR and further LLVM IR due to the extra conversions. |
| mlir::OpBuilder::InsertPoint savedIP = rewriter.saveInsertionPoint(); |
| rewriter.setInsertionPoint(op); |
| mlir::Location loc = op->getLoc(); |
| mlir::Type idxTy = rewriter.getIndexType(); |
| mlir::Value one = rewriter.create<mlir::arith::ConstantOp>( |
| loc, idxTy, rewriter.getIndexAttr(1)); |
| rewriter.restoreInsertionPoint(savedIP); |
| auto nsw = mlir::arith::IntegerOverflowFlags::nsw; |
| |
| IndicesVectorTy shiftedIndices; |
| for (auto [lb, idx] : llvm::zip(lbs, indices)) { |
| mlir::Value extLb = rewriter.create<fir::ConvertOp>(loc, idxTy, lb); |
| mlir::Value extIdx = rewriter.create<fir::ConvertOp>(loc, idxTy, idx); |
| mlir::Value add = |
| rewriter.create<mlir::arith::AddIOp>(loc, extIdx, extLb, nsw); |
| mlir::Value sub = |
| rewriter.create<mlir::arith::SubIOp>(loc, add, one, nsw); |
| shiftedIndices.push_back(sub); |
| } |
| |
| return shiftedIndices; |
| }; |
| |
| if (auto shiftOp = |
| mlir::dyn_cast_or_null<fir::ShiftOp>(v.getDefiningOp())) { |
| return insertAdjustments(shiftOp.getOperation(), shiftOp.getOrigins()); |
| } else if (auto shapeShiftOp = mlir::dyn_cast_or_null<fir::ShapeShiftOp>( |
| v.getDefiningOp())) { |
| return insertAdjustments(shapeShiftOp.getOperation(), |
| shapeShiftOp.getOrigins()); |
| } |
| |
| return std::nullopt; |
| } |
| }; |
| |
| void fir::ArrayCoorOp::getCanonicalizationPatterns( |
| mlir::RewritePatternSet &patterns, mlir::MLIRContext *context) { |
| // TODO: !fir.shape<1> operand may be removed from array_coor always. |
| patterns.add<SimplifyArrayCoorOp>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayLoadOp |
| //===----------------------------------------------------------------------===// |
| |
| static mlir::Type adjustedElementType(mlir::Type t) { |
| if (auto ty = mlir::dyn_cast<fir::ReferenceType>(t)) { |
| auto eleTy = ty.getEleTy(); |
| if (fir::isa_char(eleTy)) |
| return eleTy; |
| if (fir::isa_derived(eleTy)) |
| return eleTy; |
| if (mlir::isa<fir::SequenceType>(eleTy)) |
| return eleTy; |
| } |
| return t; |
| } |
| |
| std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { |
| if (auto sh = getShape()) |
| if (auto *op = sh.getDefiningOp()) { |
| if (auto shOp = mlir::dyn_cast<fir::ShapeOp>(op)) { |
| auto extents = shOp.getExtents(); |
| return {extents.begin(), extents.end()}; |
| } |
| return mlir::cast<fir::ShapeShiftOp>(op).getExtents(); |
| } |
| return {}; |
| } |
| |
| llvm::LogicalResult fir::ArrayLoadOp::verify() { |
| auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); |
| auto arrTy = mlir::dyn_cast<fir::SequenceType>(eleTy); |
| if (!arrTy) |
| return emitOpError("must be a reference to an array"); |
| auto arrDim = arrTy.getDimension(); |
| |
| if (auto shapeOp = getShape()) { |
| auto shapeTy = shapeOp.getType(); |
| unsigned shapeTyRank = 0u; |
| if (auto s = mlir::dyn_cast<fir::ShapeType>(shapeTy)) { |
| shapeTyRank = s.getRank(); |
| } else if (auto ss = mlir::dyn_cast<fir::ShapeShiftType>(shapeTy)) { |
| shapeTyRank = ss.getRank(); |
| } else { |
| auto s = mlir::cast<fir::ShiftType>(shapeTy); |
| shapeTyRank = s.getRank(); |
| if (!mlir::isa<fir::BaseBoxType>(getMemref().getType())) |
| return emitOpError("shift can only be provided with fir.box memref"); |
| } |
| if (arrDim && arrDim != shapeTyRank) |
| return emitOpError("rank of dimension mismatched"); |
| } |
| |
| if (auto sliceOp = getSlice()) { |
| if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) |
| if (!sl.getSubstr().empty()) |
| return emitOpError("array_load cannot take a slice with substring"); |
| if (auto sliceTy = mlir::dyn_cast<fir::SliceType>(sliceOp.getType())) |
| if (sliceTy.getRank() != arrDim) |
| return emitOpError("rank of dimension in slice mismatched"); |
| } |
| |
| if (!validTypeParams(getMemref().getType(), getTypeparams())) |
| return emitOpError("invalid type parameters"); |
| |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayMergeStoreOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::ArrayMergeStoreOp::verify() { |
| if (!mlir::isa<fir::ArrayLoadOp>(getOriginal().getDefiningOp())) |
| return emitOpError("operand #0 must be result of a fir.array_load op"); |
| if (auto sl = getSlice()) { |
| if (auto sliceOp = |
| mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) { |
| if (!sliceOp.getSubstr().empty()) |
| return emitOpError( |
| "array_merge_store cannot take a slice with substring"); |
| if (!sliceOp.getFields().empty()) { |
| // This is an intra-object merge, where the slice is projecting the |
| // subfields that are to be overwritten by the merge operation. |
| auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); |
| if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(eleTy)) { |
| auto projTy = |
| fir::applyPathToType(seqTy.getEleTy(), sliceOp.getFields()); |
| if (fir::unwrapSequenceType(getOriginal().getType()) != projTy) |
| return emitOpError( |
| "type of origin does not match sliced memref type"); |
| if (fir::unwrapSequenceType(getSequence().getType()) != projTy) |
| return emitOpError( |
| "type of sequence does not match sliced memref type"); |
| return mlir::success(); |
| } |
| return emitOpError("referenced type is not an array"); |
| } |
| } |
| return mlir::success(); |
| } |
| auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); |
| if (getOriginal().getType() != eleTy) |
| return emitOpError("type of origin does not match memref element type"); |
| if (getSequence().getType() != eleTy) |
| return emitOpError("type of sequence does not match memref element type"); |
| if (!validTypeParams(getMemref().getType(), getTypeparams())) |
| return emitOpError("invalid type parameters"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayFetchOp |
| //===----------------------------------------------------------------------===// |
| |
| // Template function used for both array_fetch and array_update verification. |
| template <typename A> |
| mlir::Type validArraySubobject(A op) { |
| auto ty = op.getSequence().getType(); |
| return fir::applyPathToType(ty, op.getIndices()); |
| } |
| |
| llvm::LogicalResult fir::ArrayFetchOp::verify() { |
| auto arrTy = mlir::cast<fir::SequenceType>(getSequence().getType()); |
| auto indSize = getIndices().size(); |
| if (indSize < arrTy.getDimension()) |
| return emitOpError("number of indices != dimension of array"); |
| if (indSize == arrTy.getDimension() && |
| ::adjustedElementType(getElement().getType()) != arrTy.getEleTy()) |
| return emitOpError("return type does not match array"); |
| auto ty = validArraySubobject(*this); |
| if (!ty || ty != ::adjustedElementType(getType())) |
| return emitOpError("return type and/or indices do not type check"); |
| if (!mlir::isa<fir::ArrayLoadOp>(getSequence().getDefiningOp())) |
| return emitOpError("argument #0 must be result of fir.array_load"); |
| if (!validTypeParams(arrTy, getTypeparams())) |
| return emitOpError("invalid type parameters"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayAccessOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::ArrayAccessOp::verify() { |
| auto arrTy = mlir::cast<fir::SequenceType>(getSequence().getType()); |
| std::size_t indSize = getIndices().size(); |
| if (indSize < arrTy.getDimension()) |
| return emitOpError("number of indices != dimension of array"); |
| if (indSize == arrTy.getDimension() && |
| getElement().getType() != fir::ReferenceType::get(arrTy.getEleTy())) |
| return emitOpError("return type does not match array"); |
| mlir::Type ty = validArraySubobject(*this); |
| if (!ty || fir::ReferenceType::get(ty) != getType()) |
| return emitOpError("return type and/or indices do not type check"); |
| if (!validTypeParams(arrTy, getTypeparams())) |
| return emitOpError("invalid type parameters"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayUpdateOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::ArrayUpdateOp::verify() { |
| if (fir::isa_ref_type(getMerge().getType())) |
| return emitOpError("does not support reference type for merge"); |
| auto arrTy = mlir::cast<fir::SequenceType>(getSequence().getType()); |
| auto indSize = getIndices().size(); |
| if (indSize < arrTy.getDimension()) |
| return emitOpError("number of indices != dimension of array"); |
| if (indSize == arrTy.getDimension() && |
| ::adjustedElementType(getMerge().getType()) != arrTy.getEleTy()) |
| return emitOpError("merged value does not have element type"); |
| auto ty = validArraySubobject(*this); |
| if (!ty || ty != ::adjustedElementType(getMerge().getType())) |
| return emitOpError("merged value and/or indices do not type check"); |
| if (!validTypeParams(arrTy, getTypeparams())) |
| return emitOpError("invalid type parameters"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayModifyOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::ArrayModifyOp::verify() { |
| auto arrTy = mlir::cast<fir::SequenceType>(getSequence().getType()); |
| auto indSize = getIndices().size(); |
| if (indSize < arrTy.getDimension()) |
| return emitOpError("number of indices must match array dimension"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BoxAddrOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::BoxAddrOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Value val) { |
| mlir::Type type = |
| llvm::TypeSwitch<mlir::Type, mlir::Type>(val.getType()) |
| .Case<fir::BaseBoxType>([&](fir::BaseBoxType ty) -> mlir::Type { |
| mlir::Type eleTy = ty.getEleTy(); |
| if (fir::isa_ref_type(eleTy)) |
| return eleTy; |
| return fir::ReferenceType::get(eleTy); |
| }) |
| .Case<fir::BoxCharType>([&](fir::BoxCharType ty) -> mlir::Type { |
| return fir::ReferenceType::get(ty.getEleTy()); |
| }) |
| .Case<fir::BoxProcType>( |
| [&](fir::BoxProcType ty) { return ty.getEleTy(); }) |
| .Default([&](const auto &) { return mlir::Type{}; }); |
| assert(type && "bad val type"); |
| build(builder, result, type, val); |
| } |
| |
| mlir::OpFoldResult fir::BoxAddrOp::fold(FoldAdaptor adaptor) { |
| if (auto *v = getVal().getDefiningOp()) { |
| if (auto box = mlir::dyn_cast<fir::EmboxOp>(v)) { |
| // Fold only if not sliced |
| if (!box.getSlice() && box.getMemref().getType() == getType()) { |
| propagateAttributes(getOperation(), box.getMemref().getDefiningOp()); |
| return box.getMemref(); |
| } |
| } |
| if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v)) |
| if (box.getMemref().getType() == getType()) |
| return box.getMemref(); |
| } |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BoxCharLenOp |
| //===----------------------------------------------------------------------===// |
| |
| mlir::OpFoldResult fir::BoxCharLenOp::fold(FoldAdaptor adaptor) { |
| if (auto v = getVal().getDefiningOp()) { |
| if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v)) |
| return box.getLen(); |
| } |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BoxDimsOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Get the result types packed in a tuple tuple |
| mlir::Type fir::BoxDimsOp::getTupleType() { |
| // note: triple, but 4 is nearest power of 2 |
| llvm::SmallVector<mlir::Type> triple{ |
| getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; |
| return mlir::TupleType::get(getContext(), triple); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BoxRankOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::BoxRankOp::getEffects( |
| llvm::SmallVectorImpl< |
| mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
| &effects) { |
| mlir::OpOperand &inputBox = getBoxMutable(); |
| if (fir::isBoxAddress(inputBox.get().getType())) |
| effects.emplace_back(mlir::MemoryEffects::Read::get(), &inputBox, |
| mlir::SideEffects::DefaultResource::get()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CallOp |
| //===----------------------------------------------------------------------===// |
| |
| mlir::FunctionType fir::CallOp::getFunctionType() { |
| return mlir::FunctionType::get(getContext(), getOperandTypes(), |
| getResultTypes()); |
| } |
| |
| void fir::CallOp::print(mlir::OpAsmPrinter &p) { |
| bool isDirect = getCallee().has_value(); |
| p << ' '; |
| if (isDirect) |
| p << *getCallee(); |
| else |
| p << getOperand(0); |
| p << '(' << (*this)->getOperands().drop_front(isDirect ? 0 : 1) << ')'; |
| |
| // Print `proc_attrs<...>`, if present. |
| fir::FortranProcedureFlagsEnumAttr procAttrs = getProcedureAttrsAttr(); |
| if (procAttrs && |
| procAttrs.getValue() != fir::FortranProcedureFlagsEnum::none) { |
| p << ' ' << fir::FortranProcedureFlagsEnumAttr::getMnemonic(); |
| p.printStrippedAttrOrType(procAttrs); |
| } |
| |
| // Print 'fastmath<...>' (if it has non-default value) before |
| // any other attributes. |
| mlir::arith::FastMathFlagsAttr fmfAttr = getFastmathAttr(); |
| if (fmfAttr.getValue() != mlir::arith::FastMathFlags::none) { |
| p << ' ' << mlir::arith::FastMathFlagsAttr::getMnemonic(); |
| p.printStrippedAttrOrType(fmfAttr); |
| } |
| |
| p.printOptionalAttrDict((*this)->getAttrs(), |
| {fir::CallOp::getCalleeAttrNameStr(), |
| getFastmathAttrName(), getProcedureAttrsAttrName()}); |
| auto resultTypes{getResultTypes()}; |
| llvm::SmallVector<mlir::Type> argTypes( |
| llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1)); |
| p << " : " << mlir::FunctionType::get(getContext(), argTypes, resultTypes); |
| } |
| |
| mlir::ParseResult fir::CallOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands; |
| if (parser.parseOperandList(operands)) |
| return mlir::failure(); |
| |
| mlir::NamedAttrList attrs; |
| mlir::SymbolRefAttr funcAttr; |
| bool isDirect = operands.empty(); |
| if (isDirect) |
| if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(), |
| attrs)) |
| return mlir::failure(); |
| |
| mlir::Type type; |
| if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren)) |
| return mlir::failure(); |
| |
| // Parse `proc_attrs<...>`, if present. |
| fir::FortranProcedureFlagsEnumAttr procAttr; |
| if (mlir::succeeded(parser.parseOptionalKeyword( |
| fir::FortranProcedureFlagsEnumAttr::getMnemonic()))) |
| if (parser.parseCustomAttributeWithFallback( |
| procAttr, mlir::Type{}, getProcedureAttrsAttrName(result.name), |
| attrs)) |
| return mlir::failure(); |
| |
| // Parse 'fastmath<...>', if present. |
| mlir::arith::FastMathFlagsAttr fmfAttr; |
| llvm::StringRef fmfAttrName = getFastmathAttrName(result.name); |
| if (mlir::succeeded(parser.parseOptionalKeyword(fmfAttrName))) |
| if (parser.parseCustomAttributeWithFallback(fmfAttr, mlir::Type{}, |
| fmfAttrName, attrs)) |
| return mlir::failure(); |
| |
| if (parser.parseOptionalAttrDict(attrs) || parser.parseColon() || |
| parser.parseType(type)) |
| return mlir::failure(); |
| |
| auto funcType = mlir::dyn_cast<mlir::FunctionType>(type); |
| if (!funcType) |
| return parser.emitError(parser.getNameLoc(), "expected function type"); |
| if (isDirect) { |
| if (parser.resolveOperands(operands, funcType.getInputs(), |
| parser.getNameLoc(), result.operands)) |
| return mlir::failure(); |
| } else { |
| auto funcArgs = |
| llvm::ArrayRef<mlir::OpAsmParser::UnresolvedOperand>(operands) |
| .drop_front(); |
| if (parser.resolveOperand(operands[0], funcType, result.operands) || |
| parser.resolveOperands(funcArgs, funcType.getInputs(), |
| parser.getNameLoc(), result.operands)) |
| return mlir::failure(); |
| } |
| result.addTypes(funcType.getResults()); |
| result.attributes = attrs; |
| return mlir::success(); |
| } |
| |
| void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, |
| mlir::func::FuncOp callee, mlir::ValueRange operands) { |
| result.addOperands(operands); |
| result.addAttribute(getCalleeAttrNameStr(), mlir::SymbolRefAttr::get(callee)); |
| result.addTypes(callee.getFunctionType().getResults()); |
| } |
| |
| void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, |
| mlir::SymbolRefAttr callee, |
| llvm::ArrayRef<mlir::Type> results, |
| mlir::ValueRange operands) { |
| result.addOperands(operands); |
| if (callee) |
| result.addAttribute(getCalleeAttrNameStr(), callee); |
| result.addTypes(results); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CharConvertOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::CharConvertOp::verify() { |
| auto unwrap = [&](mlir::Type t) { |
| t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t)); |
| return mlir::dyn_cast<fir::CharacterType>(t); |
| }; |
| auto inTy = unwrap(getFrom().getType()); |
| auto outTy = unwrap(getTo().getType()); |
| if (!(inTy && outTy)) |
| return emitOpError("not a reference to a character"); |
| if (inTy.getFKind() == outTy.getFKind()) |
| return emitOpError("buffers must have different KIND values"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CmpOp |
| //===----------------------------------------------------------------------===// |
| |
| template <typename OPTY> |
| static void printCmpOp(mlir::OpAsmPrinter &p, OPTY op) { |
| p << ' '; |
| auto predSym = mlir::arith::symbolizeCmpFPredicate( |
| op->template getAttrOfType<mlir::IntegerAttr>( |
| OPTY::getPredicateAttrName()) |
| .getInt()); |
| assert(predSym.has_value() && "invalid symbol value for predicate"); |
| p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.value()) << '"' |
| << ", "; |
| p.printOperand(op.getLhs()); |
| p << ", "; |
| p.printOperand(op.getRhs()); |
| p.printOptionalAttrDict(op->getAttrs(), |
| /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); |
| p << " : " << op.getLhs().getType(); |
| } |
| |
| template <typename OPTY> |
| static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> ops; |
| mlir::NamedAttrList attrs; |
| mlir::Attribute predicateNameAttr; |
| mlir::Type type; |
| if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), |
| attrs) || |
| parser.parseComma() || parser.parseOperandList(ops, 2) || |
| parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || |
| parser.resolveOperands(ops, type, result.operands)) |
| return mlir::failure(); |
| |
| if (!mlir::isa<mlir::StringAttr>(predicateNameAttr)) |
| return parser.emitError(parser.getNameLoc(), |
| "expected string comparison predicate attribute"); |
| |
| // Rewrite string attribute to an enum value. |
| llvm::StringRef predicateName = |
| mlir::cast<mlir::StringAttr>(predicateNameAttr).getValue(); |
| auto predicate = fir::CmpcOp::getPredicateByName(predicateName); |
| auto builder = parser.getBuilder(); |
| mlir::Type i1Type = builder.getI1Type(); |
| attrs.set(OPTY::getPredicateAttrName(), |
| builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate))); |
| result.attributes = attrs; |
| result.addTypes({i1Type}); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CmpcOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::buildCmpCOp(mlir::OpBuilder &builder, mlir::OperationState &result, |
| mlir::arith::CmpFPredicate predicate, mlir::Value lhs, |
| mlir::Value rhs) { |
| result.addOperands({lhs, rhs}); |
| result.types.push_back(builder.getI1Type()); |
| result.addAttribute( |
| fir::CmpcOp::getPredicateAttrName(), |
| builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate))); |
| } |
| |
| mlir::arith::CmpFPredicate |
| fir::CmpcOp::getPredicateByName(llvm::StringRef name) { |
| auto pred = mlir::arith::symbolizeCmpFPredicate(name); |
| assert(pred.has_value() && "invalid predicate name"); |
| return pred.value(); |
| } |
| |
| void fir::CmpcOp::print(mlir::OpAsmPrinter &p) { printCmpOp(p, *this); } |
| |
| mlir::ParseResult fir::CmpcOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| return parseCmpOp<fir::CmpcOp>(parser, result); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConvertOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::ConvertOp::getCanonicalizationPatterns( |
| mlir::RewritePatternSet &results, mlir::MLIRContext *context) { |
| results.insert<ConvertConvertOptPattern, ConvertAscendingIndexOptPattern, |
| ConvertDescendingIndexOptPattern, RedundantConvertOptPattern, |
| CombineConvertOptPattern, CombineConvertTruncOptPattern, |
| ForwardConstantConvertPattern, ChainedPointerConvertsPattern>( |
| context); |
| } |
| |
| mlir::OpFoldResult fir::ConvertOp::fold(FoldAdaptor adaptor) { |
| if (getValue().getType() == getType()) |
| return getValue(); |
| if (matchPattern(getValue(), mlir::m_Op<fir::ConvertOp>())) { |
| auto inner = mlir::cast<fir::ConvertOp>(getValue().getDefiningOp()); |
| // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a |
| if (auto toTy = mlir::dyn_cast<fir::LogicalType>(getType())) |
| if (auto fromTy = |
| mlir::dyn_cast<fir::LogicalType>(inner.getValue().getType())) |
| if (mlir::isa<mlir::IntegerType>(inner.getType()) && (toTy == fromTy)) |
| return inner.getValue(); |
| // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a |
| if (auto toTy = mlir::dyn_cast<mlir::IntegerType>(getType())) |
| if (auto fromTy = |
| mlir::dyn_cast<mlir::IntegerType>(inner.getValue().getType())) |
| if (mlir::isa<fir::LogicalType>(inner.getType()) && (toTy == fromTy) && |
| (fromTy.getWidth() == 1)) |
| return inner.getValue(); |
| } |
| return {}; |
| } |
| |
| bool fir::ConvertOp::isInteger(mlir::Type ty) { |
| return mlir::isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType>(ty); |
| } |
| |
| bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { |
| return isInteger(ty) || mlir::isa<fir::LogicalType>(ty); |
| } |
| |
| bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { |
| return mlir::isa<mlir::FloatType>(ty); |
| } |
| |
| bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { |
| return mlir::isa<fir::ReferenceType, fir::PointerType, fir::HeapType, |
| fir::LLVMPointerType, mlir::MemRefType, mlir::FunctionType, |
| fir::TypeDescType, mlir::LLVM::LLVMPointerType>(ty); |
| } |
| |
| static std::optional<mlir::Type> getVectorElementType(mlir::Type ty) { |
| mlir::Type elemTy; |
| if (mlir::isa<fir::VectorType>(ty)) |
| elemTy = mlir::dyn_cast<fir::VectorType>(ty).getElementType(); |
| else if (mlir::isa<mlir::VectorType>(ty)) |
| elemTy = mlir::dyn_cast<mlir::VectorType>(ty).getElementType(); |
| else |
| return std::nullopt; |
| |
| // e.g. fir.vector<4:ui32> => mlir.vector<4xi32> |
| // e.g. mlir.vector<4xui32> => mlir.vector<4xi32> |
| if (elemTy.isUnsignedInteger()) { |
| elemTy = mlir::IntegerType::get( |
| ty.getContext(), mlir::dyn_cast<mlir::IntegerType>(elemTy).getWidth()); |
| } |
| return elemTy; |
| } |
| |
| static std::optional<uint64_t> getVectorLen(mlir::Type ty) { |
| if (mlir::isa<fir::VectorType>(ty)) |
| return mlir::dyn_cast<fir::VectorType>(ty).getLen(); |
| else if (mlir::isa<mlir::VectorType>(ty)) { |
| // fir.vector only supports 1-D vector |
| if (!(mlir::dyn_cast<mlir::VectorType>(ty).isScalable())) |
| return mlir::dyn_cast<mlir::VectorType>(ty).getShape()[0]; |
| } |
| |
| return std::nullopt; |
| } |
| |
| bool fir::ConvertOp::areVectorsCompatible(mlir::Type inTy, mlir::Type outTy) { |
| if (!(mlir::isa<fir::VectorType>(inTy) && |
| mlir::isa<mlir::VectorType>(outTy)) && |
| !(mlir::isa<mlir::VectorType>(inTy) && mlir::isa<fir::VectorType>(outTy))) |
| return false; |
| |
| // Only support integer, unsigned and real vector |
| // Both vectors must have the same element type |
| std::optional<mlir::Type> inElemTy = getVectorElementType(inTy); |
| std::optional<mlir::Type> outElemTy = getVectorElementType(outTy); |
| if (!inElemTy.has_value() || !outElemTy.has_value() || |
| inElemTy.value() != outElemTy.value()) |
| return false; |
| |
| // Both vectors must have the same number of elements |
| std::optional<uint64_t> inLen = getVectorLen(inTy); |
| std::optional<uint64_t> outLen = getVectorLen(outTy); |
| if (!inLen.has_value() || !outLen.has_value() || |
| inLen.value() != outLen.value()) |
| return false; |
| |
| return true; |
| } |
| |
| static bool areRecordsCompatible(mlir::Type inTy, mlir::Type outTy) { |
| // Both records must have the same field types. |
| // Trust frontend semantics for in-depth checks, such as if both records |
| // have the BIND(C) attribute. |
| auto inRecTy = mlir::dyn_cast<fir::RecordType>(inTy); |
| auto outRecTy = mlir::dyn_cast<fir::RecordType>(outTy); |
| return inRecTy && outRecTy && inRecTy.getTypeList() == outRecTy.getTypeList(); |
| } |
| |
| bool fir::ConvertOp::canBeConverted(mlir::Type inType, mlir::Type outType) { |
| if (inType == outType) |
| return true; |
| return (isPointerCompatible(inType) && isPointerCompatible(outType)) || |
| (isIntegerCompatible(inType) && isIntegerCompatible(outType)) || |
| (isInteger(inType) && isFloatCompatible(outType)) || |
| (isFloatCompatible(inType) && isInteger(outType)) || |
| (isFloatCompatible(inType) && isFloatCompatible(outType)) || |
| (isIntegerCompatible(inType) && isPointerCompatible(outType)) || |
| (isPointerCompatible(inType) && isIntegerCompatible(outType)) || |
| (mlir::isa<fir::BoxType>(inType) && |
| mlir::isa<fir::BoxType>(outType)) || |
| (mlir::isa<fir::BoxProcType>(inType) && |
| mlir::isa<fir::BoxProcType>(outType)) || |
| (fir::isa_complex(inType) && fir::isa_complex(outType)) || |
| (fir::isBoxedRecordType(inType) && fir::isPolymorphicType(outType)) || |
| (fir::isPolymorphicType(inType) && fir::isPolymorphicType(outType)) || |
| (fir::isPolymorphicType(inType) && mlir::isa<BoxType>(outType)) || |
| areVectorsCompatible(inType, outType) || |
| areRecordsCompatible(inType, outType); |
| } |
| |
| llvm::LogicalResult fir::ConvertOp::verify() { |
| if (canBeConverted(getValue().getType(), getType())) |
| return mlir::success(); |
| return emitOpError("invalid type conversion") |
| << getValue().getType() << " / " << getType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CoordinateOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::CoordinateOp::print(mlir::OpAsmPrinter &p) { |
| p << ' ' << getRef() << ", " << getCoor(); |
| p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{"baseType"}); |
| p << " : "; |
| p.printFunctionalType(getOperandTypes(), (*this)->getResultTypes()); |
| } |
| |
| mlir::ParseResult fir::CoordinateOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| mlir::OpAsmParser::UnresolvedOperand memref; |
| if (parser.parseOperand(memref) || parser.parseComma()) |
| return mlir::failure(); |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> coorOperands; |
| if (parser.parseOperandList(coorOperands)) |
| return mlir::failure(); |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> allOperands; |
| allOperands.push_back(memref); |
| allOperands.append(coorOperands.begin(), coorOperands.end()); |
| mlir::FunctionType funcTy; |
| auto loc = parser.getCurrentLocation(); |
| if (parser.parseOptionalAttrDict(result.attributes) || |
| parser.parseColonType(funcTy) || |
| parser.resolveOperands(allOperands, funcTy.getInputs(), loc, |
| result.operands) || |
| parser.addTypesToList(funcTy.getResults(), result.types)) |
| return mlir::failure(); |
| result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); |
| return mlir::success(); |
| } |
| |
| llvm::LogicalResult fir::CoordinateOp::verify() { |
| const mlir::Type refTy = getRef().getType(); |
| if (fir::isa_ref_type(refTy)) { |
| auto eleTy = fir::dyn_cast_ptrEleTy(refTy); |
| if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(eleTy)) { |
| if (arrTy.hasUnknownShape()) |
| return emitOpError("cannot find coordinate in unknown shape"); |
| if (arrTy.getConstantRows() < arrTy.getDimension() - 1) |
| return emitOpError("cannot find coordinate with unknown extents"); |
| } |
| if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || |
| fir::isa_char_string(eleTy))) |
| return emitOpError("cannot apply to this element type"); |
| } |
| auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(refTy); |
| unsigned dimension = 0; |
| const unsigned numCoors = getCoor().size(); |
| for (auto coorOperand : llvm::enumerate(getCoor())) { |
| auto co = coorOperand.value(); |
| if (dimension == 0 && mlir::isa<fir::SequenceType>(eleTy)) { |
| dimension = mlir::cast<fir::SequenceType>(eleTy).getDimension(); |
| if (dimension == 0) |
| return emitOpError("cannot apply to array of unknown rank"); |
| } |
| if (auto *defOp = co.getDefiningOp()) { |
| if (auto index = mlir::dyn_cast<fir::LenParamIndexOp>(defOp)) { |
| // Recovering a LEN type parameter only makes sense from a boxed |
| // value. For a bare reference, the LEN type parameters must be |
| // passed as additional arguments to `index`. |
| if (mlir::isa<fir::BoxType>(refTy)) { |
| if (coorOperand.index() != numCoors - 1) |
| return emitOpError("len_param_index must be last argument"); |
| if (getNumOperands() != 2) |
| return emitOpError("too many operands for len_param_index case"); |
| } |
| if (eleTy != index.getOnType()) |
| emitOpError( |
| "len_param_index type not compatible with reference type"); |
| return mlir::success(); |
| } else if (auto index = mlir::dyn_cast<fir::FieldIndexOp>(defOp)) { |
| if (eleTy != index.getOnType()) |
| emitOpError("field_index type not compatible with reference type"); |
| if (auto recTy = mlir::dyn_cast<fir::RecordType>(eleTy)) { |
| eleTy = recTy.getType(index.getFieldName()); |
| continue; |
| } |
| return emitOpError("field_index not applied to !fir.type"); |
| } |
| } |
| if (dimension) { |
| if (--dimension == 0) |
| eleTy = mlir::cast<fir::SequenceType>(eleTy).getElementType(); |
| } else { |
| if (auto t = mlir::dyn_cast<mlir::TupleType>(eleTy)) { |
| // FIXME: Generally, we don't know which field of the tuple is being |
| // referred to unless the operand is a constant. Just assume everything |
| // is good in the tuple case for now. |
| return mlir::success(); |
| } else if (auto t = mlir::dyn_cast<fir::RecordType>(eleTy)) { |
| // FIXME: This is the same as the tuple case. |
| return mlir::success(); |
| } else if (auto t = mlir::dyn_cast<mlir::ComplexType>(eleTy)) { |
| eleTy = t.getElementType(); |
| } else if (auto t = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| if (t.getLen() == fir::CharacterType::singleton()) |
| return emitOpError("cannot apply to character singleton"); |
| eleTy = fir::CharacterType::getSingleton(t.getContext(), t.getFKind()); |
| if (fir::unwrapRefType(getType()) != eleTy) |
| return emitOpError("character type mismatch"); |
| } else { |
| return emitOpError("invalid parameters (too many)"); |
| } |
| } |
| } |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DispatchOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::DispatchOp::verify() { |
| // Check that pass_arg_pos is in range of actual operands. pass_arg_pos is |
| // unsigned so check for less than zero is not needed. |
| if (getPassArgPos() && *getPassArgPos() > (getArgOperands().size() - 1)) |
| return emitOpError( |
| "pass_arg_pos must be smaller than the number of operands"); |
| |
| // Operand pointed by pass_arg_pos must have polymorphic type. |
| if (getPassArgPos() && |
| !fir::isPolymorphicType(getArgOperands()[*getPassArgPos()].getType())) |
| return emitOpError("pass_arg_pos must be a polymorphic operand"); |
| return mlir::success(); |
| } |
| |
| mlir::FunctionType fir::DispatchOp::getFunctionType() { |
| return mlir::FunctionType::get(getContext(), getOperandTypes(), |
| getResultTypes()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TypeInfoOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::TypeInfoOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, fir::RecordType type, |
| fir::RecordType parentType, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| result.addRegion(); |
| result.addRegion(); |
| result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), |
| builder.getStringAttr(type.getName())); |
| result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type)); |
| if (parentType) |
| result.addAttribute(getParentTypeAttrName(result.name), |
| mlir::TypeAttr::get(parentType)); |
| result.addAttributes(attrs); |
| } |
| |
| llvm::LogicalResult fir::TypeInfoOp::verify() { |
| if (!getDispatchTable().empty()) |
| for (auto &op : getDispatchTable().front().without_terminator()) |
| if (!mlir::isa<fir::DTEntryOp>(op)) |
| return op.emitOpError("dispatch table must contain dt_entry"); |
| |
| if (!mlir::isa<fir::RecordType>(getType())) |
| return emitOpError("type must be a fir.type"); |
| |
| if (getParentType() && !mlir::isa<fir::RecordType>(*getParentType())) |
| return emitOpError("parent_type must be a fir.type"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // EmboxOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::EmboxOp::verify() { |
| auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType()); |
| bool isArray = false; |
| if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(eleTy)) { |
| eleTy = seqTy.getEleTy(); |
| isArray = true; |
| } |
| if (hasLenParams()) { |
| auto lenPs = numLenParams(); |
| if (auto rt = mlir::dyn_cast<fir::RecordType>(eleTy)) { |
| if (lenPs != rt.getNumLenParams()) |
| return emitOpError("number of LEN params does not correspond" |
| " to the !fir.type type"); |
| } else if (auto strTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| if (strTy.getLen() != fir::CharacterType::unknownLen()) |
| return emitOpError("CHARACTER already has static LEN"); |
| } else { |
| return emitOpError("LEN parameters require CHARACTER or derived type"); |
| } |
| for (auto lp : getTypeparams()) |
| if (!fir::isa_integer(lp.getType())) |
| return emitOpError("LEN parameters must be integral type"); |
| } |
| if (getShape() && !isArray) |
| return emitOpError("shape must not be provided for a scalar"); |
| if (getSlice() && !isArray) |
| return emitOpError("slice must not be provided for a scalar"); |
| if (getSourceBox() && !mlir::isa<fir::ClassType>(getResult().getType())) |
| return emitOpError("source_box must be used with fir.class result type"); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // EmboxCharOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::EmboxCharOp::verify() { |
| auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType()); |
| if (!mlir::dyn_cast_or_null<fir::CharacterType>(eleTy)) |
| return mlir::failure(); |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // EmboxProcOp |
| //===----------------------------------------------------------------------===// |
| |
| llvm::LogicalResult fir::EmboxProcOp::verify() { |
| // host bindings (optional) must be a reference to a tuple |
| if (auto h = getHost()) { |
| if (auto r = mlir::dyn_cast<fir::ReferenceType>(h.getType())) |
| if (mlir::isa<mlir::TupleType>(r.getEleTy())) |
| return mlir::success(); |
| return mlir::failure(); |
| } |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TypeDescOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::TypeDescOp::build(mlir::OpBuilder &, mlir::OperationState &result, |
| mlir::TypeAttr inty) { |
| result.addAttribute("in_type", inty); |
| result.addTypes(TypeDescType::get(inty.getValue())); |
| } |
| |
| mlir::ParseResult fir::TypeDescOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| mlir::Type intype; |
| if (parser.parseType(intype)) |
| return mlir::failure(); |
| result.addAttribute("in_type", mlir::TypeAttr::get(intype)); |
| mlir::Type restype = fir::TypeDescType::get(intype); |
| if (parser.addTypeToList(restype, result.types)) |
| return mlir::failure(); |
| return mlir::success(); |
| } |
| |
| void fir::TypeDescOp::print(mlir::OpAsmPrinter &p) { |
| p << ' ' << getOperation()->getAttr("in_type"); |
| p.printOptionalAttrDict(getOperation()->getAttrs(), {"in_type"}); |
| } |
| |
| llvm::LogicalResult fir::TypeDescOp::verify() { |
| mlir::Type resultTy = getType(); |
| if (auto tdesc = mlir::dyn_cast<fir::TypeDescType>(resultTy)) { |
| if (tdesc.getOfTy() != getInType()) |
| return emitOpError("wrapped type mismatched"); |
| return mlir::success(); |
| } |
| return emitOpError("must be !fir.tdesc type"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalOp |
| //===----------------------------------------------------------------------===// |
| |
| mlir::Type fir::GlobalOp::resultType() { |
| return wrapAllocaResultType(getType()); |
| } |
| |
| mlir::ParseResult fir::GlobalOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| // Parse the optional linkage |
| llvm::StringRef linkage; |
| auto &builder = parser.getBuilder(); |
| if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { |
| if (fir::GlobalOp::verifyValidLinkage(linkage)) |
| return mlir::failure(); |
| mlir::StringAttr linkAttr = builder.getStringAttr(linkage); |
| result.addAttribute(fir::GlobalOp::getLinkNameAttrName(result.name), |
| linkAttr); |
| } |
| |
| // Parse the name as a symbol reference attribute. |
| mlir::SymbolRefAttr nameAttr; |
| if (parser.parseAttribute(nameAttr, |
| fir::GlobalOp::getSymrefAttrName(result.name), |
| result.attributes)) |
| return mlir::failure(); |
| result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), |
| nameAttr.getRootReference()); |
| |
| bool simpleInitializer = false; |
| if (mlir::succeeded(parser.parseOptionalLParen())) { |
| mlir::Attribute attr; |
| if (parser.parseAttribute(attr, getInitValAttrName(result.name), |
| result.attributes) || |
| parser.parseRParen()) |
| return mlir::failure(); |
| simpleInitializer = true; |
| } |
| |
| if (parser.parseOptionalAttrDict(result.attributes)) |
| return mlir::failure(); |
| |
| if (succeeded( |
| parser.parseOptionalKeyword(getConstantAttrName(result.name)))) { |
| // if "constant" keyword then mark this as a constant, not a variable |
| result.addAttribute(getConstantAttrName(result.name), |
| builder.getUnitAttr()); |
| } |
| |
| if (succeeded(parser.parseOptionalKeyword(getTargetAttrName(result.name)))) |
| result.addAttribute(getTargetAttrName(result.name), builder.getUnitAttr()); |
| |
| mlir::Type globalType; |
| if (parser.parseColonType(globalType)) |
| return mlir::failure(); |
| |
| result.addAttribute(fir::GlobalOp::getTypeAttrName(result.name), |
| mlir::TypeAttr::get(globalType)); |
| |
| if (simpleInitializer) { |
| result.addRegion(); |
| } else { |
| // Parse the optional initializer body. |
| auto parseResult = |
| parser.parseOptionalRegion(*result.addRegion(), /*arguments=*/{}); |
| if (parseResult.has_value() && mlir::failed(*parseResult)) |
| return mlir::failure(); |
| } |
| return mlir::success(); |
| } |
| |
| void fir::GlobalOp::print(mlir::OpAsmPrinter &p) { |
| if (getLinkName()) |
| p << ' ' << *getLinkName(); |
| p << ' '; |
| p.printAttributeWithoutType(getSymrefAttr()); |
| if (auto val = getValueOrNull()) |
| p << '(' << val << ')'; |
| // Print all other attributes that are not pretty printed here. |
| p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{ |
| getSymNameAttrName(), getSymrefAttrName(), |
| getTypeAttrName(), getConstantAttrName(), |
| getTargetAttrName(), getLinkNameAttrName(), |
| getInitValAttrName()}); |
| if (getOperation()->getAttr(getConstantAttrName())) |
| p << " " << getConstantAttrName().strref(); |
| if (getOperation()->getAttr(getTargetAttrName())) |
| p << " " << getTargetAttrName().strref(); |
| p << " : "; |
| p.printType(getType()); |
| if (hasInitializationBody()) { |
| p << ' '; |
| p.printRegion(getOperation()->getRegion(0), |
| /*printEntryBlockArgs=*/false, |
| /*printBlockTerminators=*/true); |
| } |
| } |
| |
| void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { |
| getBlock().getOperations().push_back(op); |
| } |
| |
| void fir::GlobalOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, llvm::StringRef name, |
| bool isConstant, bool isTarget, mlir::Type type, |
| mlir::Attribute initialVal, mlir::StringAttr linkage, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| result.addRegion(); |
| result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type)); |
| result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), |
| builder.getStringAttr(name)); |
| result.addAttribute(getSymrefAttrName(result.name), |
| mlir::SymbolRefAttr::get(builder.getContext(), name)); |
| if (isConstant) |
| result.addAttribute(getConstantAttrName(result.name), |
| builder.getUnitAttr()); |
| if (isTarget) |
| result.addAttribute(getTargetAttrName(result.name), builder.getUnitAttr()); |
| if (initialVal) |
| result.addAttribute(getInitValAttrName(result.name), initialVal); |
| if (linkage) |
| result.addAttribute(getLinkNameAttrName(result.name), linkage); |
| result.attributes.append(attrs.begin(), attrs.end()); |
| } |
| |
| void fir::GlobalOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, llvm::StringRef name, |
| mlir::Type type, mlir::Attribute initialVal, |
| mlir::StringAttr linkage, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| build(builder, result, name, /*isConstant=*/false, /*isTarget=*/false, type, |
| {}, linkage, attrs); |
| } |
| |
| void fir::GlobalOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, llvm::StringRef name, |
| bool isConstant, bool isTarget, mlir::Type type, |
| mlir::StringAttr linkage, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| build(builder, result, name, isConstant, isTarget, type, {}, linkage, attrs); |
| } |
| |
| void fir::GlobalOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, llvm::StringRef name, |
| mlir::Type type, mlir::StringAttr linkage, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| build(builder, result, name, /*isConstant=*/false, /*isTarget=*/false, type, |
| {}, linkage, attrs); |
| } |
| |
| void fir::GlobalOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, llvm::StringRef name, |
| bool isConstant, bool isTarget, mlir::Type type, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| build(builder, result, name, isConstant, isTarget, type, mlir::StringAttr{}, |
| attrs); |
| } |
| |
| void fir::GlobalOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, llvm::StringRef name, |
| mlir::Type type, |
| llvm::ArrayRef<mlir::NamedAttribute> attrs) { |
| build(builder, result, name, /*isConstant=*/false, /*isTarget=*/false, type, |
| attrs); |
| } |
| |
| mlir::ParseResult fir::GlobalOp::verifyValidLinkage(llvm::StringRef linkage) { |
| // Supporting only a subset of the LLVM linkage types for now |
| static const char *validNames[] = {"common", "internal", "linkonce", |
| "linkonce_odr", "weak"}; |
| return mlir::success(llvm::is_contained(validNames, linkage)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalLenOp |
| //===----------------------------------------------------------------------===// |
| |
| mlir::ParseResult fir::GlobalLenOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| llvm::StringRef fieldName; |
| if (failed(parser.parseOptionalKeyword(&fieldName))) { |
| mlir::StringAttr fieldAttr; |
| if (parser.parseAttribute(fieldAttr, |
| fir::GlobalLenOp::getLenParamAttrName(), |
| result.attributes)) |
| return mlir::failure(); |
| } else { |
| result.addAttribute(fir::GlobalLenOp::getLenParamAttrName(), |
| parser.getBuilder().getStringAttr(fieldName)); |
| } |
| mlir::IntegerAttr constant; |
| if (parser.parseComma() || |
| parser.parseAttribute(constant, fir::GlobalLenOp::getIntAttrName(), |
| result.attributes)) |
| return mlir::failure(); |
| return mlir::success(); |
| } |
| |
| void fir::GlobalLenOp::print(mlir::OpAsmPrinter &p) { |
| p << ' ' << getOperation()->getAttr(fir::GlobalLenOp::getLenParamAttrName()) |
| << ", " << getOperation()->getAttr(fir::GlobalLenOp::getIntAttrName()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FieldIndexOp |
| //===----------------------------------------------------------------------===// |
| |
| template <typename TY> |
| mlir::ParseResult parseFieldLikeOp(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| llvm::StringRef fieldName; |
| auto &builder = parser.getBuilder(); |
| mlir::Type recty; |
| if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || |
| parser.parseType(recty)) |
| return mlir::failure(); |
| result.addAttribute(fir::FieldIndexOp::getFieldAttrName(), |
| builder.getStringAttr(fieldName)); |
| if (!mlir::dyn_cast<fir::RecordType>(recty)) |
| return mlir::failure(); |
| result.addAttribute(fir::FieldIndexOp::getTypeAttrName(), |
| mlir::TypeAttr::get(recty)); |
| if (!parser.parseOptionalLParen()) { |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands; |
| llvm::SmallVector<mlir::Type> types; |
| auto loc = parser.getNameLoc(); |
| if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || |
| parser.parseColonTypeList(types) || parser.parseRParen() || |
| parser.resolveOperands(operands, types, loc, result.operands)) |
| return mlir::failure(); |
| } |
| mlir::Type fieldType = TY::get(builder.getContext()); |
| if (parser.addTypeToList(fieldType, result.types)) |
| return mlir::failure(); |
| return mlir::success(); |
| } |
| |
| mlir::ParseResult fir::FieldIndexOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| return parseFieldLikeOp<fir::FieldType>(parser, result); |
| } |
| |
| template <typename OP> |
| void printFieldLikeOp(mlir::OpAsmPrinter &p, OP &op) { |
| p << ' ' |
| << op.getOperation() |
| ->template getAttrOfType<mlir::StringAttr>( |
| fir::FieldIndexOp::getFieldAttrName()) |
| .getValue() |
| << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::getTypeAttrName()); |
| if (op.getNumOperands()) { |
| p << '('; |
| p.printOperands(op.getTypeparams()); |
| auto sep = ") : "; |
| for (auto op : op.getTypeparams()) { |
| p << sep; |
| if (op) |
| p.printType(op.getType()); |
| else |
| p << "()"; |
| sep = ", "; |
| } |
| } |
| } |
| |
| void fir::FieldIndexOp::print(mlir::OpAsmPrinter &p) { |
| printFieldLikeOp(p, *this); |
| } |
| |
| void fir::FieldIndexOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, |
| llvm::StringRef fieldName, mlir::Type recTy, |
| mlir::ValueRange operands) { |
| result.addAttribute(getFieldAttrName(), builder.getStringAttr(fieldName)); |
| result.addAttribute(getTypeAttrName(), mlir::TypeAttr::get(recTy)); |
| result.addOperands(operands); |
| } |
| |
| llvm::SmallVector<mlir::Attribute> fir::FieldIndexOp::getAttributes() { |
| llvm::SmallVector<mlir::Attribute> attrs; |
| attrs.push_back(getFieldIdAttr()); |
| attrs.push_back(getOnTypeAttr()); |
| return attrs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InsertOnRangeOp |
| //===----------------------------------------------------------------------===// |
| |
| static mlir::ParseResult |
| parseCustomRangeSubscript(mlir::OpAsmParser &parser, |
| mlir::DenseIntElementsAttr &coord) { |
| llvm::SmallVector<std::int64_t> lbounds; |
| llvm::SmallVector<std::int64_t> ubounds; |
| if (parser.parseKeyword("from") || |
| parser.parseCommaSeparatedList( |
| mlir::AsmParser::Delimiter::Paren, |
| [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) || |
| parser.parseKeyword("to") || |
| parser.parseCommaSeparatedList(mlir::AsmParser::Delimiter::Paren, [&] { |
| return parser.parseInteger(ubounds.emplace_back(0)); |
| })) |
| return mlir::failure(); |
| llvm::SmallVector<std::int64_t> zippedBounds; |
| for (auto zip : llvm::zip(lbounds, ubounds)) { |
| zippedBounds.push_back(std::get<0>(zip)); |
| zippedBounds.push_back(std::get<1>(zip)); |
| } |
| coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds); |
| return mlir::success(); |
| } |
| |
| static void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, |
| fir::InsertOnRangeOp op, |
| mlir::DenseIntElementsAttr coord) { |
| printer << "from ("; |
| auto enumerate = llvm::enumerate(coord.getValues<std::int64_t>()); |
| // Even entries are the lower bounds. |
| llvm::interleaveComma( |
| make_filter_range( |
| enumerate, |
| [](auto indexed_value) { return indexed_value.index() % 2 == 0; }), |
| printer, [&](auto indexed_value) { printer << indexed_value.value(); }); |
| printer << ") to ("; |
| // Odd entries are the upper bounds. |
| llvm::interleaveComma( |
| make_filter_range( |
| enumerate, |
| [](auto indexed_value) { return indexed_value.index() % 2 != 0; }), |
| printer, [&](auto indexed_value) { printer << indexed_value.value(); }); |
| printer << ")"; |
| } |
| |
| /// Range bounds must be nonnegative, and the range must not be empty. |
| llvm::LogicalResult fir::InsertOnRangeOp::verify() { |
| if (fir::hasDynamicSize(getSeq().getType())) |
| return emitOpError("must have constant shape and size"); |
| mlir::DenseIntElementsAttr coorAttr = getCoor(); |
| if (coorAttr.size() < 2 || coorAttr.size() % 2 != 0) |
| return emitOpError("has uneven number of values in ranges"); |
| bool rangeIsKnownToBeNonempty = false; |
| for (auto i = coorAttr.getValues<std::int64_t>().end(), |
| b = coorAttr.getValues<std::int64_t>().begin(); |
| i != b;) { |
| int64_t ub = (*--i); |
| int64_t lb = (*--i); |
| if (lb < 0 || ub < 0) |
| return emitOpError("negative range bound"); |
| if (rangeIsKnownToBeNonempty) |
| continue; |
| if (lb > ub) |
| return emitOpError("empty range"); |
| rangeIsKnownToBeNonempty = lb < ub; |
| } |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InsertValueOp |
| //===----------------------------------------------------------------------===// |
| |
| static bool checkIsIntegerConstant(mlir::Attribute attr, std::int64_t conVal) { |
| if (auto iattr = mlir::dyn_cast<mlir::IntegerAttr>(attr)) |
| return iattr.getInt() == conVal; |
| return false; |
| } |
| |
| static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); } |
| static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); } |
| |
| // Undo some complex patterns created in the front-end and turn them back into |
| // complex ops. |
| template <typename FltOp, typename CpxOp> |
| struct UndoComplexPattern : public mlir::RewritePattern { |
| UndoComplexPattern(mlir::MLIRContext *ctx) |
| : mlir::RewritePattern("fir.insert_value", 2, ctx) {} |
| |
| llvm::LogicalResult |
| matchAndRewrite(mlir::Operation *op, |
| mlir::PatternRewriter &rewriter) const override { |
| auto insval = mlir::dyn_cast_or_null<fir::InsertValueOp>(op); |
| if (!insval || !mlir::isa<mlir::ComplexType>(insval.getType())) |
| return mlir::failure(); |
| auto insval2 = mlir::dyn_cast_or_null<fir::InsertValueOp>( |
| insval.getAdt().getDefiningOp()); |
| if (!insval2) |
| return mlir::failure(); |
| auto binf = mlir::dyn_cast_or_null<FltOp>(insval.getVal().getDefiningOp()); |
| auto binf2 = |
| mlir::dyn_cast_or_null<FltOp>(insval2.getVal().getDefiningOp()); |
| if (!binf || !binf2 || insval.getCoor().size() != 1 || |
| !isOne(insval.getCoor()[0]) || insval2.getCoor().size() != 1 || |
| !isZero(insval2.getCoor()[0])) |
| return mlir::failure(); |
| auto eai = mlir::dyn_cast_or_null<fir::ExtractValueOp>( |
| binf.getLhs().getDefiningOp()); |
| auto ebi = mlir::dyn_cast_or_null<fir::ExtractValueOp>( |
| binf.getRhs().getDefiningOp()); |
| auto ear = mlir::dyn_cast_or_null<fir::ExtractValueOp>( |
| binf2.getLhs().getDefiningOp()); |
| auto ebr = mlir::dyn_cast_or_null<fir::ExtractValueOp>( |
| binf2.getRhs().getDefiningOp()); |
| if (!eai || !ebi || !ear || !ebr || ear.getAdt() != eai.getAdt() || |
| ebr.getAdt() != ebi.getAdt() || eai.getCoor().size() != 1 || |
| !isOne(eai.getCoor()[0]) || ebi.getCoor().size() != 1 || |
| !isOne(ebi.getCoor()[0]) || ear.getCoor().size() != 1 || |
| !isZero(ear.getCoor()[0]) || ebr.getCoor().size() != 1 || |
| !isZero(ebr.getCoor()[0])) |
| return mlir::failure(); |
| rewriter.replaceOpWithNewOp<CpxOp>(op, ear.getAdt(), ebr.getAdt()); |
| return mlir::success(); |
| } |
| }; |
| |
| void fir::InsertValueOp::getCanonicalizationPatterns( |
| mlir::RewritePatternSet &results, mlir::MLIRContext *context) { |
| results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>, |
| UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IterWhileOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::IterWhileOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Value lb, |
| mlir::Value ub, mlir::Value step, |
| mlir::Value iterate, bool finalCountValue, |
| mlir::ValueRange iterArgs, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| result.addOperands({lb, ub, step, iterate}); |
| if (finalCountValue) { |
| result.addTypes(builder.getIndexType()); |
| result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr()); |
| } |
| result.addTypes(iterate.getType()); |
| result.addOperands(iterArgs); |
| for (auto v : iterArgs) |
| result.addTypes(v.getType()); |
| mlir::Region *bodyRegion = result.addRegion(); |
| bodyRegion->push_back(new mlir::Block{}); |
| bodyRegion->front().addArgument(builder.getIndexType(), result.location); |
| bodyRegion->front().addArgument(iterate.getType(), result.location); |
| bodyRegion->front().addArguments( |
| iterArgs.getTypes(), |
| llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location)); |
| result.addAttributes(attributes); |
| } |
| |
| mlir::ParseResult fir::IterWhileOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| auto &builder = parser.getBuilder(); |
| mlir::OpAsmParser::Argument inductionVariable, iterateVar; |
| mlir::OpAsmParser::UnresolvedOperand lb, ub, step, iterateInput; |
| if (parser.parseLParen() || parser.parseArgument(inductionVariable) || |
| parser.parseEqual()) |
| return mlir::failure(); |
| |
| // Parse loop bounds. |
| auto indexType = builder.getIndexType(); |
| auto i1Type = builder.getIntegerType(1); |
| if (parser.parseOperand(lb) || |
| parser.resolveOperand(lb, indexType, result.operands) || |
| parser.parseKeyword("to") || parser.parseOperand(ub) || |
| parser.resolveOperand(ub, indexType, result.operands) || |
| parser.parseKeyword("step") || parser.parseOperand(step) || |
| parser.parseRParen() || |
| parser.resolveOperand(step, indexType, result.operands) || |
| parser.parseKeyword("and") || parser.parseLParen() || |
| parser.parseArgument(iterateVar) || parser.parseEqual() || |
| parser.parseOperand(iterateInput) || parser.parseRParen() || |
| parser.resolveOperand(iterateInput, i1Type, result.operands)) |
| return mlir::failure(); |
| |
| // Parse the initial iteration arguments. |
| auto prependCount = false; |
| |
| // Induction variable. |
| llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs; |
| regionArgs.push_back(inductionVariable); |
| regionArgs.push_back(iterateVar); |
| |
| if (succeeded(parser.parseOptionalKeyword("iter_args"))) { |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands; |
| llvm::SmallVector<mlir::Type> regionTypes; |
| // Parse assignment list and results type list. |
| if (parser.parseAssignmentList(regionArgs, operands) || |
| parser.parseArrowTypeList(regionTypes)) |
| return mlir::failure(); |
| if (regionTypes.size() == operands.size() + 2) |
| prependCount = true; |
| llvm::ArrayRef<mlir::Type> resTypes = regionTypes; |
| resTypes = prependCount ? resTypes.drop_front(2) : resTypes; |
| // Resolve input operands. |
| for (auto operandType : llvm::zip(operands, resTypes)) |
| if (parser.resolveOperand(std::get<0>(operandType), |
| std::get<1>(operandType), result.operands)) |
| return mlir::failure(); |
| if (prependCount) { |
| result.addTypes(regionTypes); |
| } else { |
| result.addTypes(i1Type); |
| result.addTypes(resTypes); |
| } |
| } else if (succeeded(parser.parseOptionalArrow())) { |
| llvm::SmallVector<mlir::Type> typeList; |
| if (parser.parseLParen() || parser.parseTypeList(typeList) || |
| parser.parseRParen()) |
| return mlir::failure(); |
| // Type list must be "(index, i1)". |
| if (typeList.size() != 2 || !mlir::isa<mlir::IndexType>(typeList[0]) || |
| !typeList[1].isSignlessInteger(1)) |
| return mlir::failure(); |
| result.addTypes(typeList); |
| prependCount = true; |
| } else { |
| result.addTypes(i1Type); |
| } |
| |
| if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) |
| return mlir::failure(); |
| |
| llvm::SmallVector<mlir::Type> argTypes; |
| // Induction variable (hidden) |
| if (prependCount) |
| result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(), |
| builder.getUnitAttr()); |
| else |
| argTypes.push_back(indexType); |
| // Loop carried variables (including iterate) |
| argTypes.append(result.types.begin(), result.types.end()); |
| // Parse the body region. |
| auto *body = result.addRegion(); |
| if (regionArgs.size() != argTypes.size()) |
| return parser.emitError( |
| parser.getNameLoc(), |
| "mismatch in number of loop-carried values and defined values"); |
| |
| for (size_t i = 0, e = regionArgs.size(); i != e; ++i) |
| regionArgs[i].type = argTypes[i]; |
| |
| if (parser.parseRegion(*body, regionArgs)) |
| return mlir::failure(); |
| |
| fir::IterWhileOp::ensureTerminator(*body, builder, result.location); |
| return mlir::success(); |
| } |
| |
| llvm::LogicalResult fir::IterWhileOp::verify() { |
| // Check that the body defines as single block argument for the induction |
| // variable. |
| auto *body = getBody(); |
| if (!body->getArgument(1).getType().isInteger(1)) |
| return emitOpError( |
| "expected body second argument to be an index argument for " |
| "the induction variable"); |
| if (!body->getArgument(0).getType().isIndex()) |
| return emitOpError( |
| "expected body first argument to be an index argument for " |
| "the induction variable"); |
| |
| auto opNumResults = getNumResults(); |
| if (getFinalValue()) { |
| // Result type must be "(index, i1, ...)". |
| if (!mlir::isa<mlir::IndexType>(getResult(0).getType())) |
| return emitOpError("result #0 expected to be index"); |
| if (!getResult(1).getType().isSignlessInteger(1)) |
| return emitOpError("result #1 expected to be i1"); |
| opNumResults--; |
| } else { |
| // iterate_while always returns the early exit induction value. |
| // Result type must be "(i1, ...)" |
| if (!getResult(0).getType().isSignlessInteger(1)) |
| return emitOpError("result #0 expected to be i1"); |
| } |
| if (opNumResults == 0) |
| return mlir::failure(); |
| if (getNumIterOperands() != opNumResults) |
| return emitOpError( |
| "mismatch in number of loop-carried values and defined values"); |
| if (getNumRegionIterArgs() != opNumResults) |
| return emitOpError( |
| "mismatch in number of basic block args and defined values"); |
| auto iterOperands = getIterOperands(); |
| auto iterArgs = getRegionIterArgs(); |
| auto opResults = getFinalValue() ? getResults().drop_front() : getResults(); |
| unsigned i = 0u; |
| for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { |
| if (std::get<0>(e).getType() != std::get<2>(e).getType()) |
| return emitOpError() << "types mismatch between " << i |
| << "th iter operand and defined value"; |
| if (std::get<1>(e).getType() != std::get<2>(e).getType()) |
| return emitOpError() << "types mismatch between " << i |
| << "th iter region arg and defined value"; |
| |
| i++; |
| } |
| return mlir::success(); |
| } |
| |
| void fir::IterWhileOp::print(mlir::OpAsmPrinter &p) { |
| p << " (" << getInductionVar() << " = " << getLowerBound() << " to " |
| << getUpperBound() << " step " << getStep() << ") and ("; |
| assert(hasIterOperands()); |
| auto regionArgs = getRegionIterArgs(); |
| auto operands = getIterOperands(); |
| p << regionArgs.front() << " = " << *operands.begin() << ")"; |
| if (regionArgs.size() > 1) { |
| p << " iter_args("; |
| llvm::interleaveComma( |
| llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, |
| [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); |
| p << ") -> ("; |
| llvm::interleaveComma( |
| llvm::drop_begin(getResultTypes(), getFinalValue() ? 0 : 1), p); |
| p << ")"; |
| } else if (getFinalValue()) { |
| p << " -> (" << getResultTypes() << ')'; |
| } |
| p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), |
| {getFinalValueAttrNameStr()}); |
| p << ' '; |
| p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, |
| /*printBlockTerminators=*/true); |
| } |
| |
| llvm::SmallVector<mlir::Region *> fir::IterWhileOp::getLoopRegions() { |
| return {&getRegion()}; |
| } |
| |
| mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { |
| for (auto i : llvm::enumerate(getInitArgs())) |
| if (iterArg == i.value()) |
| return getRegion().front().getArgument(i.index() + 1); |
| return {}; |
| } |
| |
| void fir::IterWhileOp::resultToSourceOps( |
| llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { |
| auto oper = getFinalValue() ? resultNum + 1 : resultNum; |
| auto *term = getRegion().front().getTerminator(); |
| if (oper < term->getNumOperands()) |
| results.push_back(term->getOperand(oper)); |
| } |
| |
| mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { |
| if (blockArgNum > 0 && blockArgNum <= getInitArgs().size()) |
| return getInitArgs()[blockArgNum - 1]; |
| return {}; |
| } |
| |
| std::optional<llvm::MutableArrayRef<mlir::OpOperand>> |
| fir::IterWhileOp::getYieldedValuesMutable() { |
| auto *term = getRegion().front().getTerminator(); |
| return getFinalValue() ? term->getOpOperands().drop_front() |
| : term->getOpOperands(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LenParamIndexOp |
| //===----------------------------------------------------------------------===// |
| |
| mlir::ParseResult fir::LenParamIndexOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| return parseFieldLikeOp<fir::LenType>(parser, result); |
| } |
| |
| void fir::LenParamIndexOp::print(mlir::OpAsmPrinter &p) { |
| printFieldLikeOp(p, *this); |
| } |
| |
| void fir::LenParamIndexOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, |
| llvm::StringRef fieldName, mlir::Type recTy, |
| mlir::ValueRange operands) { |
| result.addAttribute(getFieldAttrName(), builder.getStringAttr(fieldName)); |
| result.addAttribute(getTypeAttrName(), mlir::TypeAttr::get(recTy)); |
| result.addOperands(operands); |
| } |
| |
| llvm::SmallVector<mlir::Attribute> fir::LenParamIndexOp::getAttributes() { |
| llvm::SmallVector<mlir::Attribute> attrs; |
| attrs.push_back(getFieldIdAttr()); |
| attrs.push_back(getOnTypeAttr()); |
| return attrs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoadOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, |
| mlir::Value refVal) { |
| if (!refVal) { |
| mlir::emitError(result.location, "LoadOp has null argument"); |
| return; |
| } |
| auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType()); |
| if (!eleTy) { |
| mlir::emitError(result.location, "not a memory reference type"); |
| return; |
| } |
| build(builder, result, eleTy, refVal); |
| } |
| |
| void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, |
| mlir::Type resTy, mlir::Value refVal) { |
| |
| if (!refVal) { |
| mlir::emitError(result.location, "LoadOp has null argument"); |
| return; |
| } |
| result.addOperands(refVal); |
| result.addTypes(resTy); |
| } |
| |
| mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { |
| if ((ele = fir::dyn_cast_ptrEleTy(ref))) |
| return mlir::success(); |
| return mlir::failure(); |
| } |
| |
| mlir::ParseResult fir::LoadOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| mlir::Type type; |
| mlir::OpAsmParser::UnresolvedOperand oper; |
| if (parser.parseOperand(oper) || |
| parser.parseOptionalAttrDict(result.attributes) || |
| parser.parseColonType(type) || |
| parser.resolveOperand(oper, type, result.operands)) |
| return mlir::failure(); |
| mlir::Type eleTy; |
| if (fir::LoadOp::getElementOf(eleTy, type) || |
| parser.addTypeToList(eleTy, result.types)) |
| return mlir::failure(); |
| return mlir::success(); |
| } |
| |
| void fir::LoadOp::print(mlir::OpAsmPrinter &p) { |
| p << ' '; |
| p.printOperand(getMemref()); |
| p.printOptionalAttrDict(getOperation()->getAttrs(), {}); |
| p << " : " << getMemref().getType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DoLoopOp |
| //===----------------------------------------------------------------------===// |
| |
| void fir::DoLoopOp::build(mlir::OpBuilder &builder, |
| mlir::OperationState &result, mlir::Value lb, |
| mlir::Value ub, mlir::Value step, bool unordered, |
| bool finalCountValue, mlir::ValueRange iterArgs, |
| mlir::ValueRange reduceOperands, |
| llvm::ArrayRef<mlir::Attribute> reduceAttrs, |
| llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
| result.addOperands({lb, ub, step}); |
| result.addOperands(reduceOperands); |
| result.addOperands(iterArgs); |
| result.addAttribute(getOperandSegmentSizeAttr(), |
| builder.getDenseI32ArrayAttr( |
| {1, 1, 1, static_cast<int32_t>(reduceOperands.size()), |
| static_cast<int32_t>(iterArgs.size())})); |
| if (finalCountValue) { |
| result.addTypes(builder.getIndexType()); |
| result.addAttribute(getFinalValueAttrName(result.name), |
| builder.getUnitAttr()); |
| } |
| for (auto v : iterArgs) |
| result.addTypes(v.getType()); |
| mlir::Region *bodyRegion = result.addRegion(); |
| bodyRegion->push_back(new mlir::Block{}); |
| if (iterArgs.empty() && !finalCountValue) |
| fir::DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); |
| bodyRegion->front().addArgument(builder.getIndexType(), result.location); |
| bodyRegion->front().addArguments( |
| iterArgs.getTypes(), |
| llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location)); |
| if (unordered) |
| result.addAttribute(getUnorderedAttrName(result.name), |
| builder.getUnitAttr()); |
| if (!reduceAttrs.empty()) |
| result.addAttribute(getReduceAttrsAttrName(result.name), |
| builder.getArrayAttr(reduceAttrs)); |
| result.addAttributes(attributes); |
| } |
| |
| mlir::ParseResult fir::DoLoopOp::parse(mlir::OpAsmParser &parser, |
| mlir::OperationState &result) { |
| auto &builder = parser.getBuilder(); |
| mlir::OpAsmParser::Argument inductionVariable; |
| mlir::OpAsmParser::UnresolvedOperand lb, ub, step; |
| // Parse the induction variable followed by '='. |
| if (parser.parseArgument(inductionVariable) || parser.parseEqual()) |
| return mlir::failure(); |
| |
| // Parse loop bounds. |
| auto indexType = builder.getIndexType(); |
| if (parser.parseOperand(lb) || |
| parser.resolveOperand(lb, indexType, result.operands) || |
| parser.parseKeyword("to") || parser.parseOperand(ub) || |
| parser.resolveOperand(ub, indexType, result.operands) || |
| parser.parseKeyword("step") || parser.parseOperand(step) || |
| parser.resolveOperand(step, indexType, result.operands)) |
| return mlir::failure(); |
| |
| if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) |
| result.addAttribute("unordered", builder.getUnitAttr()); |
| |
| // Parse the reduction arguments. |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> reduceOperands; |
| llvm::SmallVector<mlir::Type> reduceArgTypes; |
| if (succeeded(parser.parseOptionalKeyword("reduce"))) { |
| // Parse reduction attributes and variables. |
| llvm::SmallVector<ReduceAttr> attributes; |
| if (failed(parser.parseCommaSeparatedList( |
| mlir::AsmParser::Delimiter::Paren, [&]() { |
| if (parser.parseAttribute(attributes.emplace_back()) || |
| parser.parseArrow() || |
| parser.parseOperand(reduceOperands.emplace_back()) || |
| parser.parseColonType(reduceArgTypes.emplace_back())) |
| return mlir::failure(); |
| return mlir::success(); |
| }))) |
| return mlir::failure(); |
| // Resolve input operands. |
| for (auto operand_type : llvm::zip(reduceOperands, reduceArgTypes)) |
| if (parser.resolveOperand(std::get<0>(operand_type), |
| std::get<1>(operand_type), result.operands)) |
| return mlir::failure(); |
| llvm::SmallVector<mlir::Attribute> arrayAttr(attributes.begin(), |
| attributes.end()); |
| result.addAttribute(getReduceAttrsAttrName(result.name), |
| builder.getArrayAttr(arrayAttr)); |
| } |
| |
| // Parse the optional initial iteration arguments. |
| llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs; |
| llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> iterOperands; |
| llvm::SmallVector<mlir::Type> argTypes; |
| bool prependCount = false; |
| regionArgs.push_back(inductionVariable); |
| |
| if (succeeded(parser.parseOptionalKeyword( |