| //===-- ConvertExpr.cpp ---------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Lower/ConvertExpr.h" |
| #include "flang/Common/unwrap.h" |
| #include "flang/Evaluate/fold.h" |
| #include "flang/Evaluate/real.h" |
| #include "flang/Evaluate/traverse.h" |
| #include "flang/Lower/Allocatable.h" |
| #include "flang/Lower/Bridge.h" |
| #include "flang/Lower/BuiltinModules.h" |
| #include "flang/Lower/CallInterface.h" |
| #include "flang/Lower/Coarray.h" |
| #include "flang/Lower/ComponentPath.h" |
| #include "flang/Lower/ConvertCall.h" |
| #include "flang/Lower/ConvertConstant.h" |
| #include "flang/Lower/ConvertProcedureDesignator.h" |
| #include "flang/Lower/ConvertType.h" |
| #include "flang/Lower/ConvertVariable.h" |
| #include "flang/Lower/CustomIntrinsicCall.h" |
| #include "flang/Lower/Mangler.h" |
| #include "flang/Lower/Runtime.h" |
| #include "flang/Lower/Support/Utils.h" |
| #include "flang/Optimizer/Builder/Character.h" |
| #include "flang/Optimizer/Builder/Complex.h" |
| #include "flang/Optimizer/Builder/Factory.h" |
| #include "flang/Optimizer/Builder/IntrinsicCall.h" |
| #include "flang/Optimizer/Builder/Runtime/Assign.h" |
| #include "flang/Optimizer/Builder/Runtime/Character.h" |
| #include "flang/Optimizer/Builder/Runtime/Derived.h" |
| #include "flang/Optimizer/Builder/Runtime/Inquiry.h" |
| #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" |
| #include "flang/Optimizer/Builder/Runtime/Ragged.h" |
| #include "flang/Optimizer/Builder/Todo.h" |
| #include "flang/Optimizer/Dialect/FIRAttr.h" |
| #include "flang/Optimizer/Dialect/FIRDialect.h" |
| #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| #include "flang/Optimizer/Support/FatalError.h" |
| #include "flang/Runtime/support.h" |
| #include "flang/Semantics/dump-expr.h" |
| #include "flang/Semantics/expression.h" |
| #include "flang/Semantics/symbol.h" |
| #include "flang/Semantics/tools.h" |
| #include "flang/Semantics/type.h" |
| #include "flang/Support/default-kinds.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <optional> |
| |
| #define DEBUG_TYPE "flang-lower-expr" |
| |
| using namespace Fortran::runtime; |
| |
| //===----------------------------------------------------------------------===// |
| // The composition and structure of Fortran::evaluate::Expr is defined in |
| // the various header files in include/flang/Evaluate. You are referred |
| // there for more information on these data structures. Generally speaking, |
| // these data structures are a strongly typed family of abstract data types |
| // that, composed as trees, describe the syntax of Fortran expressions. |
| // |
| // This part of the bridge can traverse these tree structures and lower them |
| // to the correct FIR representation in SSA form. |
| //===----------------------------------------------------------------------===// |
| |
| static llvm::cl::opt<bool> generateArrayCoordinate( |
| "gen-array-coor", |
| llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"), |
| llvm::cl::init(false)); |
| |
| // The default attempts to balance a modest allocation size with expected user |
| // input to minimize bounds checks and reallocations during dynamic array |
| // construction. Some user codes may have very large array constructors for |
| // which the default can be increased. |
| static llvm::cl::opt<unsigned> clInitialBufferSize( |
| "array-constructor-initial-buffer-size", |
| llvm::cl::desc( |
| "set the incremental array construction buffer size (default=32)"), |
| llvm::cl::init(32u)); |
| |
| // Lower TRANSPOSE as an "elemental" function that swaps the array |
| // expression's iteration space, so that no runtime call is needed. |
| // This lowering may help get rid of unnecessary creation of temporary |
| // arrays. Note that the runtime TRANSPOSE implementation may be different |
| // from the "inline" FIR, e.g. it may diagnose out-of-memory conditions |
| // during the temporary allocation whereas the inline implementation |
| // relies on AllocMemOp that will silently return null in case |
| // there is not enough memory. |
| // |
| // If it is set to false, then TRANSPOSE will be lowered using |
| // a runtime call. If it is set to true, then the lowering is controlled |
| // by LoweringOptions::optimizeTranspose bit (see isTransposeOptEnabled |
| // function in this file). |
| static llvm::cl::opt<bool> optimizeTranspose( |
| "opt-transpose", |
| llvm::cl::desc("lower transpose without using a runtime call"), |
| llvm::cl::init(true)); |
| |
| // When copy-in/copy-out is generated for a boxed object we may |
| // either produce loops to copy the data or call the Fortran runtime's |
| // Assign function. Since the data copy happens under a runtime check |
| // (for IsContiguous) the copy loops can hardly provide any value |
| // to optimizations, instead, the optimizer just wastes compilation |
| // time on these loops. |
| // |
| // This internal option will force the loops generation, when set |
| // to true. It is false by default. |
| // |
| // Note that for copy-in/copy-out of non-boxed objects (e.g. for passing |
| // arguments by value) we always generate loops. Since the memory for |
| // such objects is contiguous, it may be better to expose them |
| // to the optimizer. |
| static llvm::cl::opt<bool> inlineCopyInOutForBoxes( |
| "inline-copyinout-for-boxes", |
| llvm::cl::desc( |
| "generate loops for copy-in/copy-out of objects with descriptors"), |
| llvm::cl::init(false)); |
| |
| /// The various semantics of a program constituent (or a part thereof) as it may |
| /// appear in an expression. |
| /// |
| /// Given the following Fortran declarations. |
| /// ```fortran |
| /// REAL :: v1, v2, v3 |
| /// REAL, POINTER :: vp1 |
| /// REAL :: a1(c), a2(c) |
| /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array |
| /// FUNCTION f2(arg) ! array -> array |
| /// vp1 => v3 ! 1 |
| /// v1 = v2 * vp1 ! 2 |
| /// a1 = a1 + a2 ! 3 |
| /// a1 = f1(a2) ! 4 |
| /// a1 = f2(a2) ! 5 |
| /// ``` |
| /// |
| /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is |
| /// constructed from the DataAddr of `v3`. |
| /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed |
| /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double |
| /// dereference in the `vp1` case. |
| /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs |
| /// is CopyInCopyOut as `a1` is replaced elementally by the additions. |
| /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if |
| /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/ |
| /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut. |
| /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational. |
| /// `a1` on the lhs is again CopyInCopyOut. |
| enum class ConstituentSemantics { |
| // Scalar data reference semantics. |
| // |
| // For these let `v` be the location in memory of a variable with value `x` |
| DataValue, // refers to the value `x` |
| DataAddr, // refers to the address `v` |
| BoxValue, // refers to a box value containing `v` |
| BoxAddr, // refers to the address of a box value containing `v` |
| |
| // Array data reference semantics. |
| // |
| // For these let `a` be the location in memory of a sequence of value `[xs]`. |
| // Let `x_i` be the `i`-th value in the sequence `[xs]`. |
| |
| // Referentially transparent. Refers to the array's value, `[xs]`. |
| RefTransparent, |
| // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7 |
| // note 2). (Passing a copy by reference to simulate pass-by-value.) |
| ByValueArg, |
| // Refers to the merge of array value `[xs]` with another array value `[ys]`. |
| // This merged array value will be written into memory location `a`. |
| CopyInCopyOut, |
| // Similar to CopyInCopyOut but `a` may be a transient projection (rather than |
| // a whole array). |
| ProjectedCopyInCopyOut, |
| // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned |
| // automatically by the framework. Instead, and address for `[xs]` is made |
| // accessible so that custom assignments to `[xs]` can be implemented. |
| CustomCopyInCopyOut, |
| // Referentially opaque. Refers to the address of `x_i`. |
| RefOpaque |
| }; |
| |
| /// Convert parser's INTEGER relational operators to MLIR. TODO: using |
| /// unordered, but we may want to cons ordered in certain situation. |
| static mlir::arith::CmpIPredicate |
| translateSignedRelational(Fortran::common::RelationalOperator rop) { |
| switch (rop) { |
| case Fortran::common::RelationalOperator::LT: |
| return mlir::arith::CmpIPredicate::slt; |
| case Fortran::common::RelationalOperator::LE: |
| return mlir::arith::CmpIPredicate::sle; |
| case Fortran::common::RelationalOperator::EQ: |
| return mlir::arith::CmpIPredicate::eq; |
| case Fortran::common::RelationalOperator::NE: |
| return mlir::arith::CmpIPredicate::ne; |
| case Fortran::common::RelationalOperator::GT: |
| return mlir::arith::CmpIPredicate::sgt; |
| case Fortran::common::RelationalOperator::GE: |
| return mlir::arith::CmpIPredicate::sge; |
| } |
| llvm_unreachable("unhandled INTEGER relational operator"); |
| } |
| |
| static mlir::arith::CmpIPredicate |
| translateUnsignedRelational(Fortran::common::RelationalOperator rop) { |
| switch (rop) { |
| case Fortran::common::RelationalOperator::LT: |
| return mlir::arith::CmpIPredicate::ult; |
| case Fortran::common::RelationalOperator::LE: |
| return mlir::arith::CmpIPredicate::ule; |
| case Fortran::common::RelationalOperator::EQ: |
| return mlir::arith::CmpIPredicate::eq; |
| case Fortran::common::RelationalOperator::NE: |
| return mlir::arith::CmpIPredicate::ne; |
| case Fortran::common::RelationalOperator::GT: |
| return mlir::arith::CmpIPredicate::ugt; |
| case Fortran::common::RelationalOperator::GE: |
| return mlir::arith::CmpIPredicate::uge; |
| } |
| llvm_unreachable("unhandled UNSIGNED relational operator"); |
| } |
| |
| /// Convert parser's REAL relational operators to MLIR. |
| /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018 |
| /// requirements in the IEEE context (table 17.1 of F2018). This choice is |
| /// also applied in other contexts because it is easier and in line with |
| /// other Fortran compilers. |
| /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not |
| /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee |
| /// whether the comparison will signal or not in case of quiet NaN argument. |
| static mlir::arith::CmpFPredicate |
| translateFloatRelational(Fortran::common::RelationalOperator rop) { |
| switch (rop) { |
| case Fortran::common::RelationalOperator::LT: |
| return mlir::arith::CmpFPredicate::OLT; |
| case Fortran::common::RelationalOperator::LE: |
| return mlir::arith::CmpFPredicate::OLE; |
| case Fortran::common::RelationalOperator::EQ: |
| return mlir::arith::CmpFPredicate::OEQ; |
| case Fortran::common::RelationalOperator::NE: |
| return mlir::arith::CmpFPredicate::UNE; |
| case Fortran::common::RelationalOperator::GT: |
| return mlir::arith::CmpFPredicate::OGT; |
| case Fortran::common::RelationalOperator::GE: |
| return mlir::arith::CmpFPredicate::OGE; |
| } |
| llvm_unreachable("unhandled REAL relational operator"); |
| } |
| |
| static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| fir::ExtendedValue actual) { |
| if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>()) |
| return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, |
| *ptrOrAlloc); |
| // Optional case (not that optional allocatable/pointer cannot be absent |
| // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is |
| // therefore possible to catch them in the `then` case above. |
| return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), |
| fir::getBase(actual)); |
| } |
| |
| /// Convert the array_load, `load`, to an extended value. If `path` is not |
| /// empty, then traverse through the components designated. The base value is |
| /// `newBase`. This does not accept an array_load with a slice operand. |
| static fir::ExtendedValue |
| arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc, |
| fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path, |
| mlir::Value newBase, mlir::Value newLen = {}) { |
| // Recover the extended value from the load. |
| if (load.getSlice()) |
| fir::emitFatalError(loc, "array_load with slice is not allowed"); |
| mlir::Type arrTy = load.getType(); |
| if (!path.empty()) { |
| mlir::Type ty = fir::applyPathToType(arrTy, path); |
| if (!ty) |
| fir::emitFatalError(loc, "path does not apply to type"); |
| if (!mlir::isa<fir::SequenceType>(ty)) { |
| if (fir::isa_char(ty)) { |
| mlir::Value len = newLen; |
| if (!len) |
| len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| load.getMemref()); |
| if (!len) { |
| assert(load.getTypeparams().size() == 1 && |
| "length must be in array_load"); |
| len = load.getTypeparams()[0]; |
| } |
| return fir::CharBoxValue{newBase, len}; |
| } |
| return newBase; |
| } |
| arrTy = mlir::cast<fir::SequenceType>(ty); |
| } |
| |
| auto arrayToExtendedValue = |
| [&](const llvm::SmallVector<mlir::Value> &extents, |
| const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue { |
| mlir::Type eleTy = fir::unwrapSequenceType(arrTy); |
| if (fir::isa_char(eleTy)) { |
| mlir::Value len = newLen; |
| if (!len) |
| len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| load.getMemref()); |
| if (!len) { |
| assert(load.getTypeparams().size() == 1 && |
| "length must be in array_load"); |
| len = load.getTypeparams()[0]; |
| } |
| return fir::CharArrayBoxValue(newBase, len, extents, origins); |
| } |
| return fir::ArrayBoxValue(newBase, extents, origins); |
| }; |
| // Use the shape op, if there is one. |
| mlir::Value shapeVal = load.getShape(); |
| if (shapeVal) { |
| if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) { |
| auto extents = fir::factory::getExtents(shapeVal); |
| auto origins = fir::factory::getOrigins(shapeVal); |
| return arrayToExtendedValue(extents, origins); |
| } |
| if (!fir::isa_box_type(load.getMemref().getType())) |
| fir::emitFatalError(loc, "shift op is invalid in this context"); |
| } |
| |
| // If we're dealing with the array_load op (not a subobject) and the load does |
| // not have any type parameters, then read the extents from the original box. |
| // The origin may be either from the box or a shift operation. Create and |
| // return the array extended value. |
| if (path.empty() && load.getTypeparams().empty()) { |
| auto oldBox = load.getMemref(); |
| fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox); |
| auto extents = fir::factory::getExtents(loc, builder, exv); |
| auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv); |
| if (shapeVal) { |
| // shapeVal is a ShiftOp and load.memref() is a boxed value. |
| newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox, |
| shapeVal, /*slice=*/mlir::Value{}); |
| origins = fir::factory::getOrigins(shapeVal); |
| } |
| return fir::substBase(arrayToExtendedValue(extents, origins), newBase); |
| } |
| TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires " |
| "dereferencing; generating the type parameters is a hard " |
| "requirement for correctness."); |
| } |
| |
| /// Place \p exv in memory if it is not already a memory reference. If |
| /// \p forceValueType is provided, the value is first casted to the provided |
| /// type before being stored (this is mainly intended for logicals whose value |
| /// may be `i1` but needed to be stored as Fortran logicals). |
| static fir::ExtendedValue |
| placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc, |
| const fir::ExtendedValue &exv, |
| mlir::Type storageType) { |
| mlir::Value valBase = fir::getBase(exv); |
| if (fir::conformsWithPassByRef(valBase.getType())) |
| return exv; |
| |
| assert(!fir::hasDynamicSize(storageType) && |
| "only expect statically sized scalars to be by value"); |
| |
| // Since `a` is not itself a valid referent, determine its value and |
| // create a temporary location at the beginning of the function for |
| // referencing. |
| mlir::Value val = builder.createConvert(loc, storageType, valBase); |
| mlir::Value temp = builder.createTemporary( |
| loc, storageType, |
| llvm::ArrayRef<mlir::NamedAttribute>{fir::getAdaptToByRefAttr(builder)}); |
| builder.create<fir::StoreOp>(loc, val, temp); |
| return fir::substBase(exv, temp); |
| } |
| |
| // Copy a copy of scalar \p exv in a new temporary. |
| static fir::ExtendedValue |
| createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc, |
| const fir::ExtendedValue &exv) { |
| assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar"); |
| if (exv.getCharBox() != nullptr) |
| return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv); |
| if (fir::isDerivedWithLenParameters(exv)) |
| TODO(loc, "copy derived type with length parameters"); |
| mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType()); |
| fir::ExtendedValue temp = builder.createTemporary(loc, type); |
| fir::factory::genScalarAssignment(builder, loc, temp, exv); |
| return temp; |
| } |
| |
| // An expression with non-zero rank is an array expression. |
| template <typename A> |
| static bool isArray(const A &x) { |
| return x.Rank() != 0; |
| } |
| |
| /// Is this a variable wrapped in parentheses? |
| template <typename A> |
| static bool isParenthesizedVariable(const A &) { |
| return false; |
| } |
| template <typename T> |
| static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) { |
| using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u); |
| using Parentheses = Fortran::evaluate::Parentheses<T>; |
| if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) { |
| if (const auto *parentheses = std::get_if<Parentheses>(&expr.u)) |
| return Fortran::evaluate::IsVariable(parentheses->left()); |
| return false; |
| } else { |
| return Fortran::common::visit( |
| [&](const auto &x) { return isParenthesizedVariable(x); }, expr.u); |
| } |
| } |
| |
| /// Generate a load of a value from an address. Beware that this will lose |
| /// any dynamic type information for polymorphic entities (note that unlimited |
| /// polymorphic cannot be loaded and must not be provided here). |
| static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| const fir::ExtendedValue &addr) { |
| return addr.match( |
| [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, |
| [&](const fir::PolymorphicValue &p) -> fir::ExtendedValue { |
| if (mlir::isa<fir::RecordType>( |
| fir::unwrapRefType(fir::getBase(p).getType()))) |
| return p; |
| mlir::Value load = builder.create<fir::LoadOp>(loc, fir::getBase(p)); |
| return fir::PolymorphicValue(load, p.getSourceBox()); |
| }, |
| [&](const fir::UnboxedValue &v) -> fir::ExtendedValue { |
| if (mlir::isa<fir::RecordType>( |
| fir::unwrapRefType(fir::getBase(v).getType()))) |
| return v; |
| return builder.create<fir::LoadOp>(loc, fir::getBase(v)); |
| }, |
| [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { |
| return genLoad(builder, loc, |
| fir::factory::genMutableBoxRead(builder, loc, box)); |
| }, |
| [&](const fir::BoxValue &box) -> fir::ExtendedValue { |
| return genLoad(builder, loc, |
| fir::factory::readBoxValue(builder, loc, box)); |
| }, |
| [&](const auto &) -> fir::ExtendedValue { |
| fir::emitFatalError( |
| loc, "attempting to load whole array or procedure address"); |
| }); |
| } |
| |
| /// Create an optional dummy argument value from entity \p exv that may be |
| /// absent. This can only be called with numerical or logical scalar \p exv. |
| /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned |
| /// value is zero (or false), otherwise it is the value of \p exv. |
| static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| const fir::ExtendedValue &exv, |
| mlir::Value isPresent) { |
| mlir::Type eleType = fir::getBaseTypeOf(exv); |
| assert(exv.rank() == 0 && fir::isa_trivial(eleType) && |
| "must be a numerical or logical scalar"); |
| return builder |
| .genIfOp(loc, {eleType}, isPresent, |
| /*withElseRegion=*/true) |
| .genThen([&]() { |
| mlir::Value val = fir::getBase(genLoad(builder, loc, exv)); |
| builder.create<fir::ResultOp>(loc, val); |
| }) |
| .genElse([&]() { |
| mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType); |
| builder.create<fir::ResultOp>(loc, zero); |
| }) |
| .getResults()[0]; |
| } |
| |
| /// Create an optional dummy argument address from entity \p exv that may be |
| /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the |
| /// returned value is a null pointer, otherwise it is the address of \p exv. |
| static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| const fir::ExtendedValue &exv, |
| mlir::Value isPresent) { |
| // If it is an exv pointer/allocatable, then it cannot be absent |
| // because it is passed to a non-pointer/non-allocatable. |
| if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
| return fir::factory::genMutableBoxRead(builder, loc, *box); |
| // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL |
| // address and can be passed directly. |
| return exv; |
| } |
| |
| /// Create an optional dummy argument address from entity \p exv that may be |
| /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the |
| /// returned value is an absent fir.box, otherwise it is a fir.box describing \p |
| /// exv. |
| static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| const fir::ExtendedValue &exv, |
| mlir::Value isPresent) { |
| // Non allocatable/pointer optional box -> simply forward |
| if (exv.getBoxOf<fir::BoxValue>()) |
| return exv; |
| |
| fir::ExtendedValue newExv = exv; |
| // Optional allocatable/pointer -> Cannot be absent, but need to translate |
| // unallocated/diassociated into absent fir.box. |
| if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
| newExv = fir::factory::genMutableBoxRead(builder, loc, *box); |
| |
| // createBox will not do create any invalid memory dereferences if exv is |
| // absent. The created fir.box will not be usable, but the SelectOp below |
| // ensures it won't be. |
| mlir::Value box = builder.createBox(loc, newExv); |
| mlir::Type boxType = box.getType(); |
| auto absent = builder.create<fir::AbsentOp>(loc, boxType); |
| auto boxOrAbsent = builder.create<mlir::arith::SelectOp>( |
| loc, boxType, isPresent, box, absent); |
| return fir::BoxValue(boxOrAbsent); |
| } |
| |
| /// Is this a call to an elemental procedure with at least one array argument? |
| static bool |
| isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) { |
| if (procRef.IsElemental()) |
| for (const std::optional<Fortran::evaluate::ActualArgument> &arg : |
| procRef.arguments()) |
| if (arg && arg->Rank() != 0) |
| return true; |
| return false; |
| } |
| template <typename T> |
| static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) { |
| return false; |
| } |
| template <> |
| bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) { |
| if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u)) |
| return isElementalProcWithArrayArgs(*procRef); |
| return false; |
| } |
| |
| /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the |
| /// \p funcAddr argument to a boxproc value, with the host-association as |
| /// required. Call the factory function to finish creating the tuple value. |
| static mlir::Value |
| createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter, |
| mlir::Type argTy, mlir::Value funcAddr, |
| mlir::Value charLen) { |
| auto boxTy = mlir::cast<fir::BoxProcType>( |
| mlir::cast<mlir::TupleType>(argTy).getType(0)); |
| mlir::Location loc = converter.getCurrentLocation(); |
| auto &builder = converter.getFirOpBuilder(); |
| |
| // While character procedure arguments are expected here, Fortran allows |
| // actual arguments of other types to be passed instead. |
| // To support this, we cast any reference to the expected type or extract |
| // procedures from their boxes if needed. |
| mlir::Type fromTy = funcAddr.getType(); |
| mlir::Type toTy = boxTy.getEleTy(); |
| if (fir::isa_ref_type(fromTy)) |
| funcAddr = builder.createConvert(loc, toTy, funcAddr); |
| else if (mlir::isa<fir::BoxProcType>(fromTy)) |
| funcAddr = builder.create<fir::BoxAddrOp>(loc, toTy, funcAddr); |
| |
| auto boxProc = [&]() -> mlir::Value { |
| if (auto host = Fortran::lower::argumentHostAssocs(converter, funcAddr)) |
| return builder.create<fir::EmboxProcOp>( |
| loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host}); |
| return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr); |
| }(); |
| return fir::factory::createCharacterProcedureTuple(builder, loc, argTy, |
| boxProc, charLen); |
| } |
| |
| /// Given an optional fir.box, returns an fir.box that is the original one if |
| /// it is present and it otherwise an unallocated box. |
| /// Absent fir.box are implemented as a null pointer descriptor. Generated |
| /// code may need to unconditionally read a fir.box that can be absent. |
| /// This helper allows creating a fir.box that can be read in all cases |
| /// outside of a fir.if (isPresent) region. However, the usages of the value |
| /// read from such box should still only be done in a fir.if(isPresent). |
| static fir::ExtendedValue |
| absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc, |
| const fir::ExtendedValue &exv, |
| mlir::Value isPresent) { |
| mlir::Value box = fir::getBase(exv); |
| mlir::Type boxType = box.getType(); |
| assert(mlir::isa<fir::BoxType>(boxType) && "argument must be a fir.box"); |
| mlir::Value emptyBox = |
| fir::factory::createUnallocatedBox(builder, loc, boxType, std::nullopt); |
| auto safeToReadBox = |
| builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox); |
| return fir::substBase(exv, safeToReadBox); |
| } |
| |
| // Helper to get the ultimate first symbol. This works around the fact that |
| // symbol resolution in the front end doesn't always resolve a symbol to its |
| // ultimate symbol but may leave placeholder indirections for use and host |
| // associations. |
| template <typename A> |
| const Fortran::semantics::Symbol &getFirstSym(const A &obj) { |
| const Fortran::semantics::Symbol &sym = obj.GetFirstSymbol(); |
| return sym.HasLocalLocality() ? sym : sym.GetUltimate(); |
| } |
| |
| // Helper to get the ultimate last symbol. |
| template <typename A> |
| const Fortran::semantics::Symbol &getLastSym(const A &obj) { |
| const Fortran::semantics::Symbol &sym = obj.GetLastSymbol(); |
| return sym.HasLocalLocality() ? sym : sym.GetUltimate(); |
| } |
| |
| // Return true if TRANSPOSE should be lowered without a runtime call. |
| static bool |
| isTransposeOptEnabled(const Fortran::lower::AbstractConverter &converter) { |
| return optimizeTranspose && |
| converter.getLoweringOptions().getOptimizeTranspose(); |
| } |
| |
| // A set of visitors to detect if the given expression |
| // is a TRANSPOSE call that should be lowered without using |
| // runtime TRANSPOSE implementation. |
| template <typename T> |
| static bool isOptimizableTranspose(const T &, |
| const Fortran::lower::AbstractConverter &) { |
| return false; |
| } |
| |
| static bool |
| isOptimizableTranspose(const Fortran::evaluate::ProcedureRef &procRef, |
| const Fortran::lower::AbstractConverter &converter) { |
| const Fortran::evaluate::SpecificIntrinsic *intrin = |
| procRef.proc().GetSpecificIntrinsic(); |
| if (isTransposeOptEnabled(converter) && intrin && |
| intrin->name == "transpose") { |
| const std::optional<Fortran::evaluate::ActualArgument> matrix = |
| procRef.arguments().at(0); |
| return !(matrix && matrix->GetType() && matrix->GetType()->IsPolymorphic()); |
| } |
| return false; |
| } |
| |
| template <typename T> |
| static bool |
| isOptimizableTranspose(const Fortran::evaluate::FunctionRef<T> &funcRef, |
| const Fortran::lower::AbstractConverter &converter) { |
| return isOptimizableTranspose( |
| static_cast<const Fortran::evaluate::ProcedureRef &>(funcRef), converter); |
| } |
| |
| template <typename T> |
| static bool |
| isOptimizableTranspose(Fortran::evaluate::Expr<T> expr, |
| const Fortran::lower::AbstractConverter &converter) { |
| // If optimizeTranspose is not enabled, return false right away. |
| if (!isTransposeOptEnabled(converter)) |
| return false; |
| |
| return Fortran::common::visit( |
| [&](const auto &e) { return isOptimizableTranspose(e, converter); }, |
| expr.u); |
| } |
| |
| namespace { |
| |
| /// Lowering of Fortran::evaluate::Expr<T> expressions |
| class ScalarExprLowering { |
| public: |
| using ExtValue = fir::ExtendedValue; |
| |
| explicit ScalarExprLowering(mlir::Location loc, |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx, |
| bool inInitializer = false) |
| : location{loc}, converter{converter}, |
| builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap}, |
| inInitializer{inInitializer} {} |
| |
| ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) { |
| return gen(expr); |
| } |
| |
| /// Lower `expr` to be passed as a fir.box argument. Do not create a temp |
| /// for the expr if it is a variable that can be described as a fir.box. |
| ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) { |
| bool saveUseBoxArg = useBoxArg; |
| useBoxArg = true; |
| ExtValue result = gen(expr); |
| useBoxArg = saveUseBoxArg; |
| return result; |
| } |
| |
| ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) { |
| return genval(expr); |
| } |
| |
| /// Lower an expression that is a pointer or an allocatable to a |
| /// MutableBoxValue. |
| fir::MutableBoxValue |
| genMutableBoxValue(const Fortran::lower::SomeExpr &expr) { |
| // Pointers and allocatables can only be: |
| // - a simple designator "x" |
| // - a component designator "a%b(i,j)%x" |
| // - a function reference "foo()" |
| // - result of NULL() or NULL(MOLD) intrinsic. |
| // NULL() requires some context to be lowered, so it is not handled |
| // here and must be lowered according to the context where it appears. |
| ExtValue exv = Fortran::common::visit( |
| [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); |
| const fir::MutableBoxValue *mutableBox = |
| exv.getBoxOf<fir::MutableBoxValue>(); |
| if (!mutableBox) |
| fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue"); |
| return *mutableBox; |
| } |
| |
| template <typename T> |
| ExtValue genMutableBoxValueImpl(const T &) { |
| // NULL() case should not be handled here. |
| fir::emitFatalError(getLoc(), "NULL() must be lowered in its context"); |
| } |
| |
| /// A `NULL()` in a position where a mutable box is expected has the same |
| /// semantics as an absent optional box value. Note: this code should |
| /// be depreciated because the rank information is not known here. A |
| /// scalar fir.box is created: it should not be cast to an array box type |
| /// later, but there is no way to enforce that here. |
| ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) { |
| mlir::Location loc = getLoc(); |
| mlir::Type noneTy = mlir::NoneType::get(builder.getContext()); |
| mlir::Type polyRefTy = fir::PointerType::get(noneTy); |
| mlir::Type boxType = fir::BoxType::get(polyRefTy); |
| mlir::Value tempBox = |
| fir::factory::genNullBoxStorage(builder, loc, boxType); |
| return fir::MutableBoxValue(tempBox, |
| /*lenParameters=*/mlir::ValueRange{}, |
| /*mutableProperties=*/{}); |
| } |
| |
| template <typename T> |
| ExtValue |
| genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) { |
| return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef))); |
| } |
| |
| template <typename T> |
| ExtValue |
| genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) { |
| return Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue { |
| return converter.getSymbolExtendedValue(*sym, &symMap); |
| }, |
| [&](const Fortran::evaluate::Component &comp) -> ExtValue { |
| return genComponent(comp); |
| }, |
| [&](const auto &) -> ExtValue { |
| fir::emitFatalError(getLoc(), |
| "not an allocatable or pointer designator"); |
| }}, |
| designator.u); |
| } |
| |
| template <typename T> |
| ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) { |
| return Fortran::common::visit( |
| [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); |
| } |
| |
| mlir::Location getLoc() { return location; } |
| |
| template <typename A> |
| mlir::Value genunbox(const A &expr) { |
| ExtValue e = genval(expr); |
| if (const fir::UnboxedValue *r = e.getUnboxed()) |
| return *r; |
| fir::emitFatalError(getLoc(), "unboxed expression expected"); |
| } |
| |
| /// Generate an integral constant of `value` |
| template <int KIND> |
| mlir::Value genIntegerConstant(mlir::MLIRContext *context, |
| std::int64_t value) { |
| mlir::Type type = |
| converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
| return builder.createIntegerConstant(getLoc(), type, value); |
| } |
| |
| /// Generate a logical/boolean constant of `value` |
| mlir::Value genBoolConstant(bool value) { |
| return builder.createBool(getLoc(), value); |
| } |
| |
| mlir::Type getSomeKindInteger() { return builder.getIndexType(); } |
| |
| mlir::func::FuncOp getFunction(llvm::StringRef name, |
| mlir::FunctionType funTy) { |
| if (mlir::func::FuncOp func = builder.getNamedFunction(name)) |
| return func; |
| return builder.createFunction(getLoc(), name, funTy); |
| } |
| |
| template <typename OpTy> |
| mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred, |
| const ExtValue &left, const ExtValue &right, |
| std::optional<int> unsignedKind = std::nullopt) { |
| if (const fir::UnboxedValue *lhs = left.getUnboxed()) { |
| if (const fir::UnboxedValue *rhs = right.getUnboxed()) { |
| auto loc = getLoc(); |
| if (unsignedKind) { |
| mlir::Type signlessType = converter.genType( |
| Fortran::common::TypeCategory::Integer, *unsignedKind); |
| mlir::Value lhsSL = builder.createConvert(loc, signlessType, *lhs); |
| mlir::Value rhsSL = builder.createConvert(loc, signlessType, *rhs); |
| return builder.create<OpTy>(loc, pred, lhsSL, rhsSL); |
| } |
| return builder.create<OpTy>(loc, pred, *lhs, *rhs); |
| } |
| } |
| fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); |
| } |
| template <typename OpTy, typename A> |
| mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred, |
| std::optional<int> unsignedKind = std::nullopt) { |
| ExtValue left = genval(ex.left()); |
| return createCompareOp<OpTy>(pred, left, genval(ex.right()), unsignedKind); |
| } |
| |
| template <typename OpTy> |
| mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred, |
| const ExtValue &left, const ExtValue &right) { |
| if (const fir::UnboxedValue *lhs = left.getUnboxed()) |
| if (const fir::UnboxedValue *rhs = right.getUnboxed()) |
| return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); |
| fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); |
| } |
| template <typename OpTy, typename A> |
| mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) { |
| ExtValue left = genval(ex.left()); |
| return createFltCmpOp<OpTy>(pred, left, genval(ex.right())); |
| } |
| |
| /// Create a call to the runtime to compare two CHARACTER values. |
| /// Precondition: This assumes that the two values have `fir.boxchar` type. |
| mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred, |
| const ExtValue &left, const ExtValue &right) { |
| return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right); |
| } |
| |
| template <typename A> |
| mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) { |
| ExtValue left = genval(ex.left()); |
| return createCharCompare(pred, left, genval(ex.right())); |
| } |
| |
| /// Returns a reference to a symbol or its box/boxChar descriptor if it has |
| /// one. |
| ExtValue gen(Fortran::semantics::SymbolRef sym) { |
| fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap); |
| if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
| return fir::factory::genMutableBoxRead(builder, getLoc(), *box); |
| return exv; |
| } |
| |
| ExtValue genLoad(const ExtValue &exv) { |
| return ::genLoad(builder, getLoc(), exv); |
| } |
| |
| ExtValue genval(Fortran::semantics::SymbolRef sym) { |
| mlir::Location loc = getLoc(); |
| ExtValue var = gen(sym); |
| if (const fir::UnboxedValue *s = var.getUnboxed()) { |
| if (fir::isa_ref_type(s->getType())) { |
| // A function with multiple entry points returning different types |
| // tags all result variables with one of the largest types to allow |
| // them to share the same storage. A reference to a result variable |
| // of one of the other types requires conversion to the actual type. |
| fir::UnboxedValue addr = *s; |
| if (Fortran::semantics::IsFunctionResult(sym)) { |
| mlir::Type resultType = converter.genType(*sym); |
| if (addr.getType() != resultType) |
| addr = builder.createConvert(loc, builder.getRefType(resultType), |
| addr); |
| } else if (sym->test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| // get the corresponding Cray pointer |
| Fortran::semantics::SymbolRef ptrSym{ |
| Fortran::semantics::GetCrayPointer(sym)}; |
| ExtValue ptr = gen(ptrSym); |
| mlir::Value ptrVal = fir::getBase(ptr); |
| mlir::Type ptrTy = converter.genType(*ptrSym); |
| |
| ExtValue pte = gen(sym); |
| mlir::Value pteVal = fir::getBase(pte); |
| |
| mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
| loc, builder, ptrVal, ptrTy, pteVal.getType()); |
| addr = builder.create<fir::LoadOp>(loc, cnvrt); |
| } |
| return genLoad(addr); |
| } |
| } |
| return var; |
| } |
| |
| ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) { |
| TODO(getLoc(), "BOZ"); |
| } |
| |
| /// Return indirection to function designated in ProcedureDesignator. |
| /// The type of the function indirection is not guaranteed to match the one |
| /// of the ProcedureDesignator due to Fortran implicit typing rules. |
| ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) { |
| return Fortran::lower::convertProcedureDesignator(getLoc(), converter, proc, |
| symMap, stmtCtx); |
| } |
| ExtValue genval(const Fortran::evaluate::NullPointer &) { |
| return builder.createNullConstant(getLoc()); |
| } |
| |
| static bool |
| isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol &sym) { |
| if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) |
| if (const Fortran::semantics::DerivedTypeSpec *derived = |
| declTy->AsDerived()) |
| return Fortran::semantics::CountLenParameters(*derived) > 0; |
| return false; |
| } |
| |
| /// A structure constructor is lowered two ways. In an initializer context, |
| /// the entire structure must be constant, so the aggregate value is |
| /// constructed inline. This allows it to be the body of a GlobalOp. |
| /// Otherwise, the structure constructor is in an expression. In that case, a |
| /// temporary object is constructed in the stack frame of the procedure. |
| ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) { |
| mlir::Location loc = getLoc(); |
| if (inInitializer) |
| return Fortran::lower::genInlinedStructureCtorLit(converter, loc, ctor); |
| mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); |
| auto recTy = mlir::cast<fir::RecordType>(ty); |
| auto fieldTy = fir::FieldType::get(ty.getContext()); |
| mlir::Value res = builder.createTemporary(loc, recTy); |
| mlir::Value box = builder.createBox(loc, fir::ExtendedValue{res}); |
| fir::runtime::genDerivedTypeInitialize(builder, loc, box); |
| |
| for (const auto &value : ctor.values()) { |
| const Fortran::semantics::Symbol &sym = *value.first; |
| const Fortran::lower::SomeExpr &expr = value.second.value(); |
| if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) { |
| ExtValue from = gen(expr); |
| mlir::Type fromTy = fir::unwrapPassByRefType( |
| fir::unwrapRefType(fir::getBase(from).getType())); |
| mlir::Value resCast = |
| builder.createConvert(loc, builder.getRefType(fromTy), res); |
| fir::factory::genRecordAssignment(builder, loc, resCast, from); |
| continue; |
| } |
| |
| if (isDerivedTypeWithLenParameters(sym)) |
| TODO(loc, "component with length parameters in structure constructor"); |
| |
| std::string name = converter.getRecordTypeFieldName(sym); |
| // FIXME: type parameters must come from the derived-type-spec |
| mlir::Value field = builder.create<fir::FieldIndexOp>( |
| loc, fieldTy, name, ty, |
| /*typeParams=*/mlir::ValueRange{} /*TODO*/); |
| mlir::Type coorTy = builder.getRefType(recTy.getType(name)); |
| auto coor = builder.create<fir::CoordinateOp>(loc, coorTy, |
| fir::getBase(res), field); |
| ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor); |
| to.match( |
| [&](const fir::UnboxedValue &toPtr) { |
| ExtValue value = genval(expr); |
| fir::factory::genScalarAssignment(builder, loc, to, value); |
| }, |
| [&](const fir::CharBoxValue &) { |
| ExtValue value = genval(expr); |
| fir::factory::genScalarAssignment(builder, loc, to, value); |
| }, |
| [&](const fir::ArrayBoxValue &) { |
| Fortran::lower::createSomeArrayAssignment(converter, to, expr, |
| symMap, stmtCtx); |
| }, |
| [&](const fir::CharArrayBoxValue &) { |
| Fortran::lower::createSomeArrayAssignment(converter, to, expr, |
| symMap, stmtCtx); |
| }, |
| [&](const fir::BoxValue &toBox) { |
| fir::emitFatalError(loc, "derived type components must not be " |
| "represented by fir::BoxValue"); |
| }, |
| [&](const fir::PolymorphicValue &) { |
| TODO(loc, "polymorphic component in derived type assignment"); |
| }, |
| [&](const fir::MutableBoxValue &toBox) { |
| if (toBox.isPointer()) { |
| Fortran::lower::associateMutableBox(converter, loc, toBox, expr, |
| /*lbounds=*/std::nullopt, |
| stmtCtx); |
| return; |
| } |
| // For allocatable components, a deep copy is needed. |
| TODO(loc, "allocatable components in derived type assignment"); |
| }, |
| [&](const fir::ProcBoxValue &toBox) { |
| TODO(loc, "procedure pointer component in derived type assignment"); |
| }); |
| } |
| return res; |
| } |
| |
| /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol. |
| ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) { |
| mlir::Value value = converter.impliedDoBinding(toStringRef(var.name)); |
| // The index value generated by the implied-do has Index type, |
| // while computations based on it inside the loop body are using |
| // the original data type. So we need to cast it appropriately. |
| mlir::Type varTy = converter.genType(toEvExpr(var)); |
| return builder.createConvert(getLoc(), varTy, value); |
| } |
| |
| ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) { |
| ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base())) |
| : gen(desc.base().GetComponent()); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Location loc = getLoc(); |
| auto castResult = [&](mlir::Value v) { |
| using ResTy = Fortran::evaluate::DescriptorInquiry::Result; |
| return builder.createConvert( |
| loc, converter.genType(ResTy::category, ResTy::kind), v); |
| }; |
| switch (desc.field()) { |
| case Fortran::evaluate::DescriptorInquiry::Field::Len: |
| return castResult(fir::factory::readCharLen(builder, loc, exv)); |
| case Fortran::evaluate::DescriptorInquiry::Field::LowerBound: |
| return castResult(fir::factory::readLowerBound( |
| builder, loc, exv, desc.dimension(), |
| builder.createIntegerConstant(loc, idxTy, 1))); |
| case Fortran::evaluate::DescriptorInquiry::Field::Extent: |
| return castResult( |
| fir::factory::readExtent(builder, loc, exv, desc.dimension())); |
| case Fortran::evaluate::DescriptorInquiry::Field::Rank: |
| TODO(loc, "rank inquiry on assumed rank"); |
| case Fortran::evaluate::DescriptorInquiry::Field::Stride: |
| // So far the front end does not generate this inquiry. |
| TODO(loc, "stride inquiry"); |
| } |
| llvm_unreachable("unknown descriptor inquiry"); |
| } |
| |
| ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) { |
| TODO(getLoc(), "type parameter inquiry"); |
| } |
| |
| mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) { |
| return fir::factory::Complex{builder, getLoc()}.extractComplexPart( |
| cplx, isImagPart); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) { |
| return extractComplexPart(genunbox(part.left()), part.isImaginaryPart); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Integer, KIND>> &op) { |
| mlir::Value input = genunbox(op.left()); |
| // Like LLVM, integer negation is the binary op "0 - value" |
| mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); |
| return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Unsigned, KIND>> &op) { |
| auto loc = getLoc(); |
| mlir::Type signlessType = |
| converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
| mlir::Value input = genunbox(op.left()); |
| mlir::Value signless = builder.createConvert(loc, signlessType, input); |
| mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); |
| mlir::Value neg = builder.create<mlir::arith::SubIOp>(loc, zero, signless); |
| return builder.createConvert(loc, input.getType(), neg); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Real, KIND>> &op) { |
| return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left())); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Complex, KIND>> &op) { |
| return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left())); |
| } |
| |
| template <typename OpTy> |
| mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) { |
| assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right)); |
| mlir::Value lhs = fir::getBase(left); |
| mlir::Value rhs = fir::getBase(right); |
| assert(lhs.getType() == rhs.getType() && "types must be the same"); |
| return builder.createUnsigned<OpTy>(getLoc(), lhs.getType(), lhs, rhs); |
| } |
| |
| template <typename OpTy, typename A> |
| mlir::Value createBinaryOp(const A &ex) { |
| ExtValue left = genval(ex.left()); |
| return createBinaryOp<OpTy>(left, genval(ex.right())); |
| } |
| |
| #undef GENBIN |
| #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ |
| template <int KIND> \ |
| ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ |
| Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ |
| return createBinaryOp<GenBinFirOp>(x); \ |
| } |
| |
| GENBIN(Add, Integer, mlir::arith::AddIOp) |
| GENBIN(Add, Unsigned, mlir::arith::AddIOp) |
| GENBIN(Add, Real, mlir::arith::AddFOp) |
| GENBIN(Add, Complex, fir::AddcOp) |
| GENBIN(Subtract, Integer, mlir::arith::SubIOp) |
| GENBIN(Subtract, Unsigned, mlir::arith::SubIOp) |
| GENBIN(Subtract, Real, mlir::arith::SubFOp) |
| GENBIN(Subtract, Complex, fir::SubcOp) |
| GENBIN(Multiply, Integer, mlir::arith::MulIOp) |
| GENBIN(Multiply, Unsigned, mlir::arith::MulIOp) |
| GENBIN(Multiply, Real, mlir::arith::MulFOp) |
| GENBIN(Multiply, Complex, fir::MulcOp) |
| GENBIN(Divide, Integer, mlir::arith::DivSIOp) |
| GENBIN(Divide, Unsigned, mlir::arith::DivUIOp) |
| GENBIN(Divide, Real, mlir::arith::DivFOp) |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Divide<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Complex, KIND>> &op) { |
| mlir::Type ty = |
| converter.genType(Fortran::common::TypeCategory::Complex, KIND); |
| mlir::Value lhs = genunbox(op.left()); |
| mlir::Value rhs = genunbox(op.right()); |
| return fir::genDivC(builder, getLoc(), ty, lhs, rhs); |
| } |
| |
| template <Fortran::common::TypeCategory TC, int KIND> |
| ExtValue genval( |
| const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) { |
| mlir::Type ty = converter.genType(TC, KIND); |
| mlir::Value lhs = genunbox(op.left()); |
| mlir::Value rhs = genunbox(op.right()); |
| return fir::genPow(builder, getLoc(), ty, lhs, rhs); |
| } |
| |
| template <Fortran::common::TypeCategory TC, int KIND> |
| ExtValue genval( |
| const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
| &op) { |
| mlir::Type ty = converter.genType(TC, KIND); |
| mlir::Value lhs = genunbox(op.left()); |
| mlir::Value rhs = genunbox(op.right()); |
| return fir::genPow(builder, getLoc(), ty, lhs, rhs); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) { |
| mlir::Value realPartValue = genunbox(op.left()); |
| return fir::factory::Complex{builder, getLoc()}.createComplex( |
| realPartValue, genunbox(op.right())); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) { |
| ExtValue lhs = genval(op.left()); |
| ExtValue rhs = genval(op.right()); |
| const fir::CharBoxValue *lhsChar = lhs.getCharBox(); |
| const fir::CharBoxValue *rhsChar = rhs.getCharBox(); |
| if (lhsChar && rhsChar) |
| return fir::factory::CharacterExprHelper{builder, getLoc()} |
| .createConcatenate(*lhsChar, *rhsChar); |
| TODO(getLoc(), "character array concatenate"); |
| } |
| |
| /// MIN and MAX operations |
| template <Fortran::common::TypeCategory TC, int KIND> |
| ExtValue |
| genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> |
| &op) { |
| mlir::Value lhs = genunbox(op.left()); |
| mlir::Value rhs = genunbox(op.right()); |
| switch (op.ordering) { |
| case Fortran::evaluate::Ordering::Greater: |
| return fir::genMax(builder, getLoc(), |
| llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| case Fortran::evaluate::Ordering::Less: |
| return fir::genMin(builder, getLoc(), |
| llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| case Fortran::evaluate::Ordering::Equal: |
| llvm_unreachable("Equal is not a valid ordering in this context"); |
| } |
| llvm_unreachable("unknown ordering"); |
| } |
| |
| // Change the dynamic length information without actually changing the |
| // underlying character storage. |
| fir::ExtendedValue |
| replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar, |
| mlir::Value newLenValue) { |
| mlir::Location loc = getLoc(); |
| const fir::CharBoxValue *charBox = scalarChar.getCharBox(); |
| if (!charBox) |
| fir::emitFatalError(loc, "expected scalar character"); |
| mlir::Value charAddr = charBox->getAddr(); |
| auto charType = mlir::cast<fir::CharacterType>( |
| fir::unwrapPassByRefType(charAddr.getType())); |
| if (charType.hasConstantLen()) { |
| // Erase previous constant length from the base type. |
| fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen(); |
| mlir::Type newCharTy = fir::CharacterType::get( |
| builder.getContext(), charType.getFKind(), newLen); |
| mlir::Type newType = fir::ReferenceType::get(newCharTy); |
| charAddr = builder.createConvert(loc, newType, charAddr); |
| return fir::CharBoxValue{charAddr, newLenValue}; |
| } |
| return fir::CharBoxValue{charAddr, newLenValue}; |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) { |
| mlir::Value newLenValue = genunbox(x.right()); |
| fir::ExtendedValue lhs = gen(x.left()); |
| fir::factory::CharacterExprHelper charHelper(builder, getLoc()); |
| fir::CharBoxValue temp = charHelper.createCharacterTemp( |
| charHelper.getCharacterType(fir::getBase(lhs).getType()), newLenValue); |
| charHelper.createAssign(temp, lhs); |
| return fir::ExtendedValue{temp}; |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Integer, KIND>> &op) { |
| return createCompareOp<mlir::arith::CmpIOp>( |
| op, translateSignedRelational(op.opr)); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Unsigned, KIND>> &op) { |
| return createCompareOp<mlir::arith::CmpIOp>( |
| op, translateUnsignedRelational(op.opr), KIND); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Real, KIND>> &op) { |
| return createFltCmpOp<mlir::arith::CmpFOp>( |
| op, translateFloatRelational(op.opr)); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Complex, KIND>> &op) { |
| return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr)); |
| } |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Character, KIND>> &op) { |
| return createCharCompare(op, translateSignedRelational(op.opr)); |
| } |
| |
| ExtValue |
| genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) { |
| return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
| op.u); |
| } |
| |
| template <Fortran::common::TypeCategory TC1, int KIND, |
| Fortran::common::TypeCategory TC2> |
| ExtValue |
| genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, |
| TC2> &convert) { |
| mlir::Type ty = converter.genType(TC1, KIND); |
| auto fromExpr = genval(convert.left()); |
| auto loc = getLoc(); |
| return fromExpr.match( |
| [&](const fir::CharBoxValue &boxchar) -> ExtValue { |
| if constexpr (TC1 == Fortran::common::TypeCategory::Character && |
| TC2 == TC1) { |
| return fir::factory::convertCharacterKind(builder, loc, boxchar, |
| KIND); |
| } else { |
| fir::emitFatalError( |
| loc, "unsupported evaluate::Convert between CHARACTER type " |
| "category and non-CHARACTER category"); |
| } |
| }, |
| [&](const fir::UnboxedValue &value) -> ExtValue { |
| return builder.convertWithSemantics(loc, ty, value); |
| }, |
| [&](auto &) -> ExtValue { |
| fir::emitFatalError(loc, "unsupported evaluate::Convert"); |
| }); |
| } |
| |
| template <typename A> |
| ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) { |
| ExtValue input = genval(op.left()); |
| mlir::Value base = fir::getBase(input); |
| mlir::Value newBase = |
| builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base); |
| return fir::substBase(input, newBase); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Not<KIND> &op) { |
| mlir::Value logical = genunbox(op.left()); |
| mlir::Value one = genBoolConstant(true); |
| mlir::Value val = |
| builder.createConvert(getLoc(), builder.getI1Type(), logical); |
| return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) { |
| mlir::IntegerType i1Type = builder.getI1Type(); |
| mlir::Value slhs = genunbox(op.left()); |
| mlir::Value srhs = genunbox(op.right()); |
| mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs); |
| mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs); |
| switch (op.logicalOperator) { |
| case Fortran::evaluate::LogicalOperator::And: |
| return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs); |
| case Fortran::evaluate::LogicalOperator::Or: |
| return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs); |
| case Fortran::evaluate::LogicalOperator::Eqv: |
| return createCompareOp<mlir::arith::CmpIOp>( |
| mlir::arith::CmpIPredicate::eq, lhs, rhs); |
| case Fortran::evaluate::LogicalOperator::Neqv: |
| return createCompareOp<mlir::arith::CmpIOp>( |
| mlir::arith::CmpIPredicate::ne, lhs, rhs); |
| case Fortran::evaluate::LogicalOperator::Not: |
| // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>. |
| llvm_unreachable(".NOT. is not a binary operator"); |
| } |
| llvm_unreachable("unhandled logical operation"); |
| } |
| |
| template <Fortran::common::TypeCategory TC, int KIND> |
| ExtValue |
| genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> |
| &con) { |
| return Fortran::lower::convertConstant( |
| converter, getLoc(), con, |
| /*outlineBigConstantsInReadOnlyMemory=*/!inInitializer); |
| } |
| |
| fir::ExtendedValue genval( |
| const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { |
| if (auto ctor = con.GetScalarValue()) |
| return genval(*ctor); |
| return Fortran::lower::convertConstant( |
| converter, getLoc(), con, |
| /*outlineBigConstantsInReadOnlyMemory=*/false); |
| } |
| |
| template <typename A> |
| ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) { |
| fir::emitFatalError(getLoc(), "array constructor: should not reach here"); |
| } |
| |
| ExtValue gen(const Fortran::evaluate::ComplexPart &x) { |
| mlir::Location loc = getLoc(); |
| auto idxTy = builder.getI32Type(); |
| ExtValue exv = gen(x.complex()); |
| mlir::Value base = fir::getBase(exv); |
| fir::factory::Complex helper{builder, loc}; |
| mlir::Type eleTy = |
| helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType())); |
| mlir::Value offset = builder.createIntegerConstant( |
| loc, idxTy, |
| x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1); |
| mlir::Value result = builder.create<fir::CoordinateOp>( |
| loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset}); |
| return {result}; |
| } |
| ExtValue genval(const Fortran::evaluate::ComplexPart &x) { |
| return genLoad(gen(x)); |
| } |
| |
| /// Reference to a substring. |
| ExtValue gen(const Fortran::evaluate::Substring &s) { |
| // Get base string |
| auto baseString = Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const Fortran::evaluate::DataRef &x) { return gen(x); }, |
| [&](const Fortran::evaluate::StaticDataObject::Pointer &p) |
| -> ExtValue { |
| if (std::optional<std::string> str = p->AsString()) |
| return fir::factory::createStringLiteral(builder, getLoc(), |
| *str); |
| // TODO: convert StaticDataObject to Constant<T> and use normal |
| // constant path. Beware that StaticDataObject data() takes into |
| // account build machine endianness. |
| TODO(getLoc(), |
| "StaticDataObject::Pointer substring with kind > 1"); |
| }, |
| }, |
| s.parent()); |
| llvm::SmallVector<mlir::Value> bounds; |
| mlir::Value lower = genunbox(s.lower()); |
| bounds.push_back(lower); |
| if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) { |
| mlir::Value upper = genunbox(*upperBound); |
| bounds.push_back(upper); |
| } |
| fir::factory::CharacterExprHelper charHelper{builder, getLoc()}; |
| return baseString.match( |
| [&](const fir::CharBoxValue &x) -> ExtValue { |
| return charHelper.createSubstring(x, bounds); |
| }, |
| [&](const fir::CharArrayBoxValue &) -> ExtValue { |
| fir::emitFatalError( |
| getLoc(), |
| "array substring should be handled in array expression"); |
| }, |
| [&](const auto &) -> ExtValue { |
| fir::emitFatalError(getLoc(), "substring base is not a CharBox"); |
| }); |
| } |
| |
| /// The value of a substring. |
| ExtValue genval(const Fortran::evaluate::Substring &ss) { |
| // FIXME: why is the value of a substring being lowered the same as the |
| // address of a substring? |
| return gen(ss); |
| } |
| |
| ExtValue genval(const Fortran::evaluate::Subscript &subs) { |
| if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>( |
| &subs.u)) { |
| if (s->value().Rank() > 0) |
| fir::emitFatalError(getLoc(), "vector subscript is not scalar"); |
| return {genval(s->value())}; |
| } |
| fir::emitFatalError(getLoc(), "subscript triple notation is not scalar"); |
| } |
| ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) { |
| return genval(subs); |
| } |
| |
| ExtValue gen(const Fortran::evaluate::DataRef &dref) { |
| return Fortran::common::visit([&](const auto &x) { return gen(x); }, |
| dref.u); |
| } |
| ExtValue genval(const Fortran::evaluate::DataRef &dref) { |
| return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
| dref.u); |
| } |
| |
| // Helper function to turn the Component structure into a list of nested |
| // components, ordered from largest/leftmost to smallest/rightmost: |
| // - where only the smallest/rightmost item may be allocatable or a pointer |
| // (nested allocatable/pointer components require nested coordinate_of ops) |
| // - that does not contain any parent components |
| // (the front end places parent components directly in the object) |
| // Return the object used as the base coordinate for the component chain. |
| static Fortran::evaluate::DataRef const * |
| reverseComponents(const Fortran::evaluate::Component &cmpt, |
| std::list<const Fortran::evaluate::Component *> &list) { |
| if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| list.push_front(&cmpt); |
| return Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const Fortran::evaluate::Component &x) { |
| if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x))) |
| return &cmpt.base(); |
| return reverseComponents(x, list); |
| }, |
| [&](auto &) { return &cmpt.base(); }, |
| }, |
| cmpt.base().u); |
| } |
| |
| // Return the coordinate of the component reference |
| ExtValue genComponent(const Fortran::evaluate::Component &cmpt) { |
| std::list<const Fortran::evaluate::Component *> list; |
| const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list); |
| llvm::SmallVector<mlir::Value> coorArgs; |
| ExtValue obj = gen(*base); |
| mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType()); |
| mlir::Location loc = getLoc(); |
| auto fldTy = fir::FieldType::get(&converter.getMLIRContext()); |
| // FIXME: need to thread the LEN type parameters here. |
| for (const Fortran::evaluate::Component *field : list) { |
| auto recTy = mlir::cast<fir::RecordType>(ty); |
| const Fortran::semantics::Symbol &sym = getLastSym(*field); |
| std::string name = converter.getRecordTypeFieldName(sym); |
| coorArgs.push_back(builder.create<fir::FieldIndexOp>( |
| loc, fldTy, name, recTy, fir::getTypeParams(obj))); |
| ty = recTy.getType(name); |
| } |
| // If parent component is referred then it has no coordinate argument. |
| if (coorArgs.size() == 0) |
| return obj; |
| ty = builder.getRefType(ty); |
| return fir::factory::componentToExtendedValue( |
| builder, loc, |
| builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj), |
| coorArgs)); |
| } |
| |
| ExtValue gen(const Fortran::evaluate::Component &cmpt) { |
| // Components may be pointer or allocatable. In the gen() path, the mutable |
| // aspect is lost to simplify handling on the client side. To retain the |
| // mutable aspect, genMutableBoxValue should be used. |
| return genComponent(cmpt).match( |
| [&](const fir::MutableBoxValue &mutableBox) { |
| return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox); |
| }, |
| [](auto &box) -> ExtValue { return box; }); |
| } |
| |
| ExtValue genval(const Fortran::evaluate::Component &cmpt) { |
| return genLoad(gen(cmpt)); |
| } |
| |
| // Determine the result type after removing `dims` dimensions from the array |
| // type `arrTy` |
| mlir::Type genSubType(mlir::Type arrTy, unsigned dims) { |
| mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy); |
| assert(unwrapTy && "must be a pointer or box type"); |
| auto seqTy = mlir::cast<fir::SequenceType>(unwrapTy); |
| llvm::ArrayRef<int64_t> shape = seqTy.getShape(); |
| assert(shape.size() > 0 && "removing columns for sequence sans shape"); |
| assert(dims <= shape.size() && "removing more columns than exist"); |
| fir::SequenceType::Shape newBnds; |
| // follow Fortran semantics and remove columns (from right) |
| std::size_t e = shape.size() - dims; |
| for (decltype(e) i = 0; i < e; ++i) |
| newBnds.push_back(shape[i]); |
| if (!newBnds.empty()) |
| return fir::SequenceType::get(newBnds, seqTy.getEleTy()); |
| return seqTy.getEleTy(); |
| } |
| |
| // Generate the code for a Bound value. |
| ExtValue genval(const Fortran::semantics::Bound &bound) { |
| if (bound.isExplicit()) { |
| Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit(); |
| if (sub.has_value()) |
| return genval(*sub); |
| return genIntegerConstant<8>(builder.getContext(), 1); |
| } |
| TODO(getLoc(), "non explicit semantics::Bound implementation"); |
| } |
| |
| static bool isSlice(const Fortran::evaluate::ArrayRef &aref) { |
| for (const Fortran::evaluate::Subscript &sub : aref.subscript()) |
| if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u)) |
| return true; |
| return false; |
| } |
| |
| /// Lower an ArrayRef to a fir.coordinate_of given its lowered base. |
| ExtValue genCoordinateOp(const ExtValue &array, |
| const Fortran::evaluate::ArrayRef &aref) { |
| mlir::Location loc = getLoc(); |
| // References to array of rank > 1 with non constant shape that are not |
| // fir.box must be collapsed into an offset computation in lowering already. |
| // The same is needed with dynamic length character arrays of all ranks. |
| mlir::Type baseType = |
| fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType()); |
| if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) || |
| fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType))) |
| if (!array.getBoxOf<fir::BoxValue>()) |
| return genOffsetAndCoordinateOp(array, aref); |
| // Generate a fir.coordinate_of with zero based array indexes. |
| llvm::SmallVector<mlir::Value> args; |
| for (const auto &subsc : llvm::enumerate(aref.subscript())) { |
| ExtValue subVal = genSubscript(subsc.value()); |
| assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar"); |
| mlir::Value val = fir::getBase(subVal); |
| mlir::Type ty = val.getType(); |
| mlir::Value lb = getLBound(array, subsc.index(), ty); |
| args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb)); |
| } |
| mlir::Value base = fir::getBase(array); |
| |
| auto baseSym = getFirstSym(aref); |
| if (baseSym.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| // get the corresponding Cray pointer |
| Fortran::semantics::SymbolRef ptrSym{ |
| Fortran::semantics::GetCrayPointer(baseSym)}; |
| fir::ExtendedValue ptr = gen(ptrSym); |
| mlir::Value ptrVal = fir::getBase(ptr); |
| mlir::Type ptrTy = ptrVal.getType(); |
| |
| mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
| loc, builder, ptrVal, ptrTy, base.getType()); |
| base = builder.create<fir::LoadOp>(loc, cnvrt); |
| } |
| |
| mlir::Type eleTy = fir::dyn_cast_ptrOrBoxEleTy(base.getType()); |
| if (auto classTy = mlir::dyn_cast<fir::ClassType>(eleTy)) |
| eleTy = classTy.getEleTy(); |
| auto seqTy = mlir::cast<fir::SequenceType>(eleTy); |
| assert(args.size() == seqTy.getDimension()); |
| mlir::Type ty = builder.getRefType(seqTy.getEleTy()); |
| auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args); |
| return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr); |
| } |
| |
| /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead |
| /// of array indexes. |
| /// This generates offset computation from the indexes and length parameters, |
| /// and use the offset to access the element with a fir.coordinate_of. This |
| /// must only be used if it is not possible to generate a normal |
| /// fir.coordinate_of using array indexes (i.e. when the shape information is |
| /// unavailable in the IR). |
| ExtValue genOffsetAndCoordinateOp(const ExtValue &array, |
| const Fortran::evaluate::ArrayRef &aref) { |
| mlir::Location loc = getLoc(); |
| mlir::Value addr = fir::getBase(array); |
| mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType()); |
| auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy)); |
| mlir::Type refTy = builder.getRefType(eleTy); |
| mlir::Value base = builder.createConvert(loc, seqTy, addr); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
| auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value { |
| return arr.getLBounds().empty() ? one : arr.getLBounds()[dim]; |
| }; |
| auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value { |
| mlir::Value total = zero; |
| assert(arr.getExtents().size() == aref.subscript().size()); |
| delta = builder.createConvert(loc, idxTy, delta); |
| unsigned dim = 0; |
| for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) { |
| ExtValue subVal = genSubscript(sub); |
| assert(fir::isUnboxedValue(subVal)); |
| mlir::Value val = |
| builder.createConvert(loc, idxTy, fir::getBase(subVal)); |
| mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim)); |
| mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb); |
| mlir::Value prod = |
| builder.create<mlir::arith::MulIOp>(loc, delta, diff); |
| total = builder.create<mlir::arith::AddIOp>(loc, prod, total); |
| if (ext) |
| delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext); |
| ++dim; |
| } |
| mlir::Type origRefTy = refTy; |
| if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) { |
| fir::CharacterType chTy = |
| fir::factory::CharacterExprHelper::getCharacterType(refTy); |
| if (fir::characterWithDynamicLen(chTy)) { |
| mlir::MLIRContext *ctx = builder.getContext(); |
| fir::KindTy kind = |
| fir::factory::CharacterExprHelper::getCharacterKind(chTy); |
| fir::CharacterType singleTy = |
| fir::CharacterType::getSingleton(ctx, kind); |
| refTy = builder.getRefType(singleTy); |
| mlir::Type seqRefTy = |
| builder.getRefType(builder.getVarLenSeqTy(singleTy)); |
| base = builder.createConvert(loc, seqRefTy, base); |
| } |
| } |
| auto coor = builder.create<fir::CoordinateOp>( |
| loc, refTy, base, llvm::ArrayRef<mlir::Value>{total}); |
| // Convert to expected, original type after address arithmetic. |
| return builder.createConvert(loc, origRefTy, coor); |
| }; |
| return array.match( |
| [&](const fir::ArrayBoxValue &arr) -> ExtValue { |
| // FIXME: this check can be removed when slicing is implemented |
| if (isSlice(aref)) |
| fir::emitFatalError( |
| getLoc(), |
| "slice should be handled in array expression context"); |
| return genFullDim(arr, one); |
| }, |
| [&](const fir::CharArrayBoxValue &arr) -> ExtValue { |
| mlir::Value delta = arr.getLen(); |
| // If the length is known in the type, fir.coordinate_of will |
| // already take the length into account. |
| if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr)) |
| delta = one; |
| return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen()); |
| }, |
| [&](const fir::BoxValue &arr) -> ExtValue { |
| // CoordinateOp for BoxValue is not generated here. The dimensions |
| // must be kept in the fir.coordinate_op so that potential fir.box |
| // strides can be applied by codegen. |
| fir::emitFatalError( |
| loc, "internal: BoxValue in dim-collapsed fir.coordinate_of"); |
| }, |
| [&](const auto &) -> ExtValue { |
| fir::emitFatalError(loc, "internal: array processing failed"); |
| }); |
| } |
| |
| /// Lower an ArrayRef to a fir.array_coor. |
| ExtValue genArrayCoorOp(const ExtValue &exv, |
| const Fortran::evaluate::ArrayRef &aref) { |
| mlir::Location loc = getLoc(); |
| mlir::Value addr = fir::getBase(exv); |
| mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); |
| mlir::Type eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| mlir::Type refTy = builder.getRefType(eleTy); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| llvm::SmallVector<mlir::Value> arrayCoorArgs; |
| // The ArrayRef is expected to be scalar here, arrays are handled in array |
| // expression lowering. So no vector subscript or triplet is expected here. |
| for (const auto &sub : aref.subscript()) { |
| ExtValue subVal = genSubscript(sub); |
| assert(fir::isUnboxedValue(subVal)); |
| arrayCoorArgs.push_back( |
| builder.createConvert(loc, idxTy, fir::getBase(subVal))); |
| } |
| mlir::Value shape = builder.createShape(loc, exv); |
| mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>( |
| loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs, |
| fir::getTypeParams(exv)); |
| return fir::factory::arrayElementToExtendedValue(builder, loc, exv, |
| elementAddr); |
| } |
| |
| /// Return the coordinate of the array reference. |
| ExtValue gen(const Fortran::evaluate::ArrayRef &aref) { |
| ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base())) |
| : gen(aref.base().GetComponent()); |
| // Check for command-line override to use array_coor op. |
| if (generateArrayCoordinate) |
| return genArrayCoorOp(base, aref); |
| // Otherwise, use coordinate_of op. |
| return genCoordinateOp(base, aref); |
| } |
| |
| /// Return lower bounds of \p box in dimension \p dim. The returned value |
| /// has type \ty. |
| mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) { |
| assert(box.rank() > 0 && "must be an array"); |
| mlir::Location loc = getLoc(); |
| mlir::Value one = builder.createIntegerConstant(loc, ty, 1); |
| mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one); |
| return builder.createConvert(loc, ty, lb); |
| } |
| |
| ExtValue genval(const Fortran::evaluate::ArrayRef &aref) { |
| return genLoad(gen(aref)); |
| } |
| |
| ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) { |
| return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} |
| .genAddr(coref); |
| } |
| |
| ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) { |
| return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} |
| .genValue(coref); |
| } |
| |
| template <typename A> |
| ExtValue gen(const Fortran::evaluate::Designator<A> &des) { |
| return Fortran::common::visit([&](const auto &x) { return gen(x); }, des.u); |
| } |
| template <typename A> |
| ExtValue genval(const Fortran::evaluate::Designator<A> &des) { |
| return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
| des.u); |
| } |
| |
| mlir::Type genType(const Fortran::evaluate::DynamicType &dt) { |
| if (dt.category() != Fortran::common::TypeCategory::Derived) |
| return converter.genType(dt.category(), dt.kind()); |
| if (dt.IsUnlimitedPolymorphic()) |
| return mlir::NoneType::get(&converter.getMLIRContext()); |
| return converter.genType(dt.GetDerivedTypeSpec()); |
| } |
| |
| /// Lower a function reference |
| template <typename A> |
| ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
| if (!funcRef.GetType().has_value()) |
| fir::emitFatalError(getLoc(), "a function must have a type"); |
| mlir::Type resTy = genType(*funcRef.GetType()); |
| return genProcedureRef(funcRef, {resTy}); |
| } |
| |
| /// Lower function call `funcRef` and return a reference to the resultant |
| /// value. This is required for lowering expressions such as `f1(f2(v))`. |
| template <typename A> |
| ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
| ExtValue retVal = genFunctionRef(funcRef); |
| mlir::Type resultType = converter.genType(toEvExpr(funcRef)); |
| return placeScalarValueInMemory(builder, getLoc(), retVal, resultType); |
| } |
| |
| /// Helper to lower intrinsic arguments for inquiry intrinsic. |
| ExtValue |
| lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) { |
| if (Fortran::evaluate::IsAllocatableOrPointerObject(expr)) |
| return genMutableBoxValue(expr); |
| /// Do not create temps for array sections whose properties only need to be |
| /// inquired: create a descriptor that will be inquired. |
| if (Fortran::evaluate::IsVariable(expr) && isArray(expr) && |
| !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)) |
| return lowerIntrinsicArgumentAsBox(expr); |
| return gen(expr); |
| } |
| |
| /// Helper to lower intrinsic arguments to a fir::BoxValue. |
| /// It preserves all the non default lower bounds/non deferred length |
| /// parameter information. |
| ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) { |
| mlir::Location loc = getLoc(); |
| ExtValue exv = genBoxArg(expr); |
| auto exvTy = fir::getBase(exv).getType(); |
| if (mlir::isa<mlir::FunctionType>(exvTy)) { |
| auto boxProcTy = |
| builder.getBoxProcType(mlir::cast<mlir::FunctionType>(exvTy)); |
| return builder.create<fir::EmboxProcOp>(loc, boxProcTy, |
| fir::getBase(exv)); |
| } |
| mlir::Value box = builder.createBox(loc, exv, exv.isPolymorphic()); |
| if (Fortran::lower::isParentComponent(expr)) { |
| fir::ExtendedValue newExv = |
| Fortran::lower::updateBoxForParentComponent(converter, box, expr); |
| box = fir::getBase(newExv); |
| } |
| return fir::BoxValue( |
| box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv), |
| fir::factory::getNonDeferredLenParams(exv)); |
| } |
| |
| /// Generate a call to a Fortran intrinsic or intrinsic module procedure. |
| ExtValue genIntrinsicRef( |
| const Fortran::evaluate::ProcedureRef &procRef, |
| std::optional<mlir::Type> resultType, |
| std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = |
| std::nullopt) { |
| llvm::SmallVector<ExtValue> operands; |
| |
| std::string name = |
| intrinsic ? intrinsic->name |
| : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); |
| mlir::Location loc = getLoc(); |
| if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( |
| procRef, *intrinsic, converter)) { |
| using ExvAndPresence = std::pair<ExtValue, std::optional<mlir::Value>>; |
| llvm::SmallVector<ExvAndPresence, 4> operands; |
| auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { |
| ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr); |
| mlir::Value isPresent = |
| genActualIsPresentTest(builder, loc, optionalArg); |
| operands.emplace_back(optionalArg, isPresent); |
| }; |
| auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr, |
| fir::LowerIntrinsicArgAs lowerAs) { |
| switch (lowerAs) { |
| case fir::LowerIntrinsicArgAs::Value: |
| operands.emplace_back(genval(expr), std::nullopt); |
| return; |
| case fir::LowerIntrinsicArgAs::Addr: |
| operands.emplace_back(gen(expr), std::nullopt); |
| return; |
| case fir::LowerIntrinsicArgAs::Box: |
| operands.emplace_back(lowerIntrinsicArgumentAsBox(expr), |
| std::nullopt); |
| return; |
| case fir::LowerIntrinsicArgAs::Inquired: |
| operands.emplace_back(lowerIntrinsicArgumentAsInquired(expr), |
| std::nullopt); |
| return; |
| } |
| }; |
| Fortran::lower::prepareCustomIntrinsicArgument( |
| procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg, |
| converter); |
| |
| auto getArgument = [&](std::size_t i, bool loadArg) -> ExtValue { |
| if (loadArg && fir::conformsWithPassByRef( |
| fir::getBase(operands[i].first).getType())) |
| return genLoad(operands[i].first); |
| return operands[i].first; |
| }; |
| auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> { |
| return operands[i].second; |
| }; |
| return Fortran::lower::lowerCustomIntrinsic( |
| builder, loc, name, resultType, isPresent, getArgument, |
| operands.size(), stmtCtx); |
| } |
| |
| const fir::IntrinsicArgumentLoweringRules *argLowering = |
| fir::getIntrinsicArgumentLowering(name); |
| for (const auto &arg : llvm::enumerate(procRef.arguments())) { |
| auto *expr = |
| Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); |
| |
| if (!expr && arg.value() && arg.value()->GetAssumedTypeDummy()) { |
| // Assumed type optional. |
| const Fortran::evaluate::Symbol *assumedTypeSym = |
| arg.value()->GetAssumedTypeDummy(); |
| auto symBox = symMap.lookupSymbol(*assumedTypeSym); |
| ExtValue exv = |
| converter.getSymbolExtendedValue(*assumedTypeSym, &symMap); |
| if (argLowering) { |
| fir::ArgLoweringRule argRules = |
| fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
| // Note: usages of TYPE(*) is limited by C710 but C_LOC and |
| // IS_CONTIGUOUS may require an assumed size TYPE(*) to be passed to |
| // the intrinsic library utility as a fir.box. |
| if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box && |
| !mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) { |
| operands.emplace_back( |
| fir::factory::createBoxValue(builder, loc, exv)); |
| continue; |
| } |
| } |
| operands.emplace_back(std::move(exv)); |
| continue; |
| } |
| if (!expr) { |
| // Absent optional. |
| operands.emplace_back(fir::getAbsentIntrinsicArgument()); |
| continue; |
| } |
| if (!argLowering) { |
| // No argument lowering instruction, lower by value. |
| operands.emplace_back(genval(*expr)); |
| continue; |
| } |
| // Ad-hoc argument lowering handling. |
| fir::ArgLoweringRule argRules = |
| fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
| if (argRules.handleDynamicOptional && |
| Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) { |
| ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr); |
| mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional); |
| switch (argRules.lowerAs) { |
| case fir::LowerIntrinsicArgAs::Value: |
| operands.emplace_back( |
| genOptionalValue(builder, loc, optional, isPresent)); |
| continue; |
| case fir::LowerIntrinsicArgAs::Addr: |
| operands.emplace_back( |
| genOptionalAddr(builder, loc, optional, isPresent)); |
| continue; |
| case fir::LowerIntrinsicArgAs::Box: |
| operands.emplace_back( |
| genOptionalBox(builder, loc, optional, isPresent)); |
| continue; |
| case fir::LowerIntrinsicArgAs::Inquired: |
| operands.emplace_back(optional); |
| continue; |
| } |
| llvm_unreachable("bad switch"); |
| } |
| switch (argRules.lowerAs) { |
| case fir::LowerIntrinsicArgAs::Value: |
| operands.emplace_back(genval(*expr)); |
| continue; |
| case fir::LowerIntrinsicArgAs::Addr: |
| operands.emplace_back(gen(*expr)); |
| continue; |
| case fir::LowerIntrinsicArgAs::Box: |
| operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr)); |
| continue; |
| case fir::LowerIntrinsicArgAs::Inquired: |
| operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr)); |
| continue; |
| } |
| llvm_unreachable("bad switch"); |
| } |
| // Let the intrinsic library lower the intrinsic procedure call |
| return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType, |
| operands, stmtCtx, &converter); |
| } |
| |
| /// helper to detect statement functions |
| static bool |
| isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) { |
| if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol()) |
| if (const auto *details = |
| symbol->detailsIf<Fortran::semantics::SubprogramDetails>()) |
| return details->stmtFunction().has_value(); |
| return false; |
| } |
| |
| /// Generate Statement function calls |
| ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) { |
| const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); |
| assert(symbol && "expected symbol in ProcedureRef of statement functions"); |
| const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>(); |
| |
| // Statement functions have their own scope, we just need to associate |
| // the dummy symbols to argument expressions. They are no |
| // optional/alternate return arguments. Statement functions cannot be |
| // recursive (directly or indirectly) so it is safe to add dummy symbols to |
| // the local map here. |
| symMap.pushScope(); |
| for (auto [arg, bind] : |
| llvm::zip(details.dummyArgs(), procRef.arguments())) { |
| assert(arg && "alternate return in statement function"); |
| assert(bind && "optional argument in statement function"); |
| const auto *expr = bind->UnwrapExpr(); |
| // TODO: assumed type in statement function, that surprisingly seems |
| // allowed, probably because nobody thought of restricting this usage. |
| // gfortran/ifort compiles this. |
| assert(expr && "assumed type used as statement function argument"); |
| // As per Fortran 2018 C1580, statement function arguments can only be |
| // scalars, so just pass the box with the address. The only care is to |
| // to use the dummy character explicit length if any instead of the |
| // actual argument length (that can be bigger). |
| if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType()) |
| if (type->category() == Fortran::semantics::DeclTypeSpec::Character) |
| if (const Fortran::semantics::MaybeIntExpr &lenExpr = |
| type->characterTypeSpec().length().GetExplicit()) { |
| mlir::Value len = fir::getBase(genval(*lenExpr)); |
| // F2018 7.4.4.2 point 5. |
| len = fir::factory::genMaxWithZero(builder, getLoc(), len); |
| symMap.addSymbol(*arg, |
| replaceScalarCharacterLength(gen(*expr), len)); |
| continue; |
| } |
| symMap.addSymbol(*arg, gen(*expr)); |
| } |
| |
| // Explicitly map statement function host associated symbols to their |
| // parent scope lowered symbol box. |
| for (const Fortran::semantics::SymbolRef &sym : |
| Fortran::evaluate::CollectSymbols(*details.stmtFunction())) |
| if (const auto *details = |
| sym->detailsIf<Fortran::semantics::HostAssocDetails>()) |
| if (!symMap.lookupSymbol(*sym)) |
| symMap.addSymbol(*sym, gen(details->symbol())); |
| |
| ExtValue result = genval(details.stmtFunction().value()); |
| LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n'); |
| symMap.popScope(); |
| return result; |
| } |
| |
| /// Create a contiguous temporary array with the same shape, |
| /// length parameters and type as mold. It is up to the caller to deallocate |
| /// the temporary. |
| ExtValue genArrayTempFromMold(const ExtValue &mold, |
| llvm::StringRef tempName) { |
| mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType()); |
| assert(type && "expected descriptor or memory type"); |
| mlir::Location loc = getLoc(); |
| llvm::SmallVector<mlir::Value> extents = |
| fir::factory::getExtents(loc, builder, mold); |
| llvm::SmallVector<mlir::Value> allocMemTypeParams = |
| fir::getTypeParams(mold); |
| mlir::Value charLen; |
| mlir::Type elementType = fir::unwrapSequenceType(type); |
| if (auto charType = mlir::dyn_cast<fir::CharacterType>(elementType)) { |
| charLen = allocMemTypeParams.empty() |
| ? fir::factory::readCharLen(builder, loc, mold) |
| : allocMemTypeParams[0]; |
| if (charType.hasDynamicLen() && allocMemTypeParams.empty()) |
| allocMemTypeParams.push_back(charLen); |
| } else if (fir::hasDynamicSize(elementType)) { |
| TODO(loc, "creating temporary for derived type with length parameters"); |
| } |
| |
| mlir::Value temp = builder.create<fir::AllocMemOp>( |
| loc, type, tempName, allocMemTypeParams, extents); |
| if (mlir::isa<fir::CharacterType>(fir::unwrapSequenceType(type))) |
| return fir::CharArrayBoxValue{temp, charLen, extents}; |
| return fir::ArrayBoxValue{temp, extents}; |
| } |
| |
| /// Copy \p source array into \p dest array. Both arrays must be |
| /// conforming, but neither array must be contiguous. |
| void genArrayCopy(ExtValue dest, ExtValue source) { |
| return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx); |
| } |
| |
| /// Lower a non-elemental procedure reference and read allocatable and pointer |
| /// results into normal values. |
| ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, |
| std::optional<mlir::Type> resultType) { |
| ExtValue res = genRawProcedureRef(procRef, resultType); |
| // In most contexts, pointers and allocatable do not appear as allocatable |
| // or pointer variable on the caller side (see 8.5.3 note 1 for |
| // allocatables). The few context where this can happen must call |
| // genRawProcedureRef directly. |
| if (const auto *box = res.getBoxOf<fir::MutableBoxValue>()) |
| return fir::factory::genMutableBoxRead(builder, getLoc(), *box); |
| return res; |
| } |
| |
| /// Like genExtAddr, but ensure the address returned is a temporary even if \p |
| /// expr is variable inside parentheses. |
| ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) { |
| // In general, genExtAddr might not create a temp for variable inside |
| // parentheses to avoid creating array temporary in sub-expressions. It only |
| // ensures the sub-expression is not re-associated with other parts of the |
| // expression. In the call semantics, there is a difference between expr and |
| // variable (see R1524). For expressions, a variable storage must not be |
| // argument associated since it could be modified inside the call, or the |
| // variable could also be modified by other means during the call. |
| if (!isParenthesizedVariable(expr)) |
| return genExtAddr(expr); |
| if (expr.Rank() > 0) |
| return asArray(expr); |
| mlir::Location loc = getLoc(); |
| return genExtValue(expr).match( |
| [&](const fir::CharBoxValue &boxChar) -> ExtValue { |
| return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom( |
| boxChar); |
| }, |
| [&](const fir::UnboxedValue &v) -> ExtValue { |
| mlir::Type type = v.getType(); |
| mlir::Value value = v; |
| if (fir::isa_ref_type(type)) |
| value = builder.create<fir::LoadOp>(loc, value); |
| mlir::Value temp = builder.createTemporary(loc, value.getType()); |
| builder.create<fir::StoreOp>(loc, value, temp); |
| return temp; |
| }, |
| [&](const fir::BoxValue &x) -> ExtValue { |
| // Derived type scalar that may be polymorphic. |
| if (fir::isPolymorphicType(fir::getBase(x).getType())) |
| TODO(loc, "polymorphic array temporary"); |
| assert(!x.hasRank() && x.isDerived()); |
| if (x.isDerivedWithLenParameters()) |
| fir::emitFatalError( |
| loc, "making temps for derived type with length parameters"); |
| // TODO: polymorphic aspects should be kept but for now the temp |
| // created always has the declared type. |
| mlir::Value var = |
| fir::getBase(fir::factory::readBoxValue(builder, loc, x)); |
| auto value = builder.create<fir::LoadOp>(loc, var); |
| mlir::Value temp = builder.createTemporary(loc, value.getType()); |
| builder.create<fir::StoreOp>(loc, value, temp); |
| return temp; |
| }, |
| [&](const fir::PolymorphicValue &p) -> ExtValue { |
| TODO(loc, "creating polymorphic temporary"); |
| }, |
| [&](const auto &) -> ExtValue { |
| fir::emitFatalError(loc, "expr is not a scalar value"); |
| }); |
| } |
| |
| /// Helper structure to track potential copy-in of non contiguous variable |
| /// argument into a contiguous temp. It is used to deallocate the temp that |
| /// may have been created as well as to the copy-out from the temp to the |
| /// variable after the call. |
| struct CopyOutPair { |
| ExtValue var; |
| ExtValue temp; |
| // Flag to indicate if the argument may have been modified by the |
| // callee, in which case it must be copied-out to the variable. |
| bool argMayBeModifiedByCall; |
| // Optional boolean value that, if present and false, prevents |
| // the copy-out and temp deallocation. |
| std::optional<mlir::Value> restrictCopyAndFreeAtRuntime; |
| }; |
| using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>; |
| |
| /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories |
| /// not based on fir.box. |
| /// This will lose any non contiguous stride information and dynamic type and |
| /// should only be called if \p exv is known to be contiguous or if its base |
| /// address will be replaced by a contiguous one. If \p exv is not a |
| /// fir::BoxValue, this is a no-op. |
| ExtValue readIfBoxValue(const ExtValue &exv) { |
| if (const auto *box = exv.getBoxOf<fir::BoxValue>()) |
| return fir::factory::readBoxValue(builder, getLoc(), *box); |
| return exv; |
| } |
| |
| /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The |
| /// creation of the temp and copy-in can be made conditional at runtime by |
| /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case |
| /// the temp and copy will only be made if the value is true at runtime). |
| ExtValue genCopyIn(const ExtValue &actualArg, |
| const Fortran::lower::CallerInterface::PassedEntity &arg, |
| CopyOutPairs ©OutPairs, |
| std::optional<mlir::Value> restrictCopyAtRuntime, |
| bool byValue) { |
| const bool doCopyOut = !byValue && arg.mayBeModifiedByCall(); |
| llvm::StringRef tempName = byValue ? ".copy" : ".copyinout"; |
| mlir::Location loc = getLoc(); |
| bool isActualArgBox = fir::isa_box_type(fir::getBase(actualArg).getType()); |
| mlir::Value isContiguousResult; |
| mlir::Type addrType = fir::HeapType::get( |
| fir::unwrapPassByRefType(fir::getBase(actualArg).getType())); |
| |
| if (isActualArgBox) { |
| // Check at runtime if the argument is contiguous so no copy is needed. |
| isContiguousResult = |
| fir::runtime::genIsContiguous(builder, loc, fir::getBase(actualArg)); |
| } |
| |
| auto doCopyIn = [&]() -> ExtValue { |
| ExtValue temp = genArrayTempFromMold(actualArg, tempName); |
| if (!arg.mayBeReadByCall() && |
| // INTENT(OUT) dummy argument finalization, automatically |
| // done when the procedure is invoked, may imply reading |
| // the argument value in the finalization routine. |
| // So we need to make a copy, if finalization may occur. |
| // TODO: do we have to avoid the copying for an actual |
| // argument of type that does not require finalization? |
| !arg.mayRequireIntentoutFinalization() && |
| // ALLOCATABLE dummy argument may require finalization. |
| // If it has to be automatically deallocated at the end |
| // of the procedure invocation (9.7.3.2 p. 2), |
| // then the finalization may happen if the actual argument |
| // is allocated (7.5.6.3 p. 2). |
| !arg.hasAllocatableAttribute()) { |
| // We have to initialize the temp if it may have components |
| // that need initialization. If there are no components |
| // requiring initialization, then the call is a no-op. |
| if (mlir::isa<fir::RecordType>(getElementTypeOf(temp))) { |
| mlir::Value tempBox = fir::getBase(builder.createBox(loc, temp)); |
| fir::runtime::genDerivedTypeInitialize(builder, loc, tempBox); |
| } |
| return temp; |
| } |
| if (!isActualArgBox || inlineCopyInOutForBoxes) { |
| genArrayCopy(temp, actualArg); |
| return temp; |
| } |
| |
| // Generate AssignTemporary() call to copy data from the actualArg |
| // to a temporary. AssignTemporary() will initialize the temporary, |
| // if needed, before doing the assignment, which is required |
| // since the temporary's components (if any) are uninitialized |
| // at this point. |
| mlir::Value destBox = fir::getBase(builder.createBox(loc, temp)); |
| mlir::Value boxRef = builder.createTemporary(loc, destBox.getType()); |
| builder.create<fir::StoreOp>(loc, destBox, boxRef); |
| fir::runtime::genAssignTemporary(builder, loc, boxRef, |
| fir::getBase(actualArg)); |
| return temp; |
| }; |
| |
| auto noCopy = [&]() { |
| mlir::Value box = fir::getBase(actualArg); |
| mlir::Value boxAddr = builder.create<fir::BoxAddrOp>(loc, addrType, box); |
| builder.create<fir::ResultOp>(loc, boxAddr); |
| }; |
| |
| auto combinedCondition = [&]() { |
| if (isActualArgBox) { |
| mlir::Value zero = |
| builder.createIntegerConstant(loc, builder.getI1Type(), 0); |
| mlir::Value notContiguous = builder.create<mlir::arith::CmpIOp>( |
| loc, mlir::arith::CmpIPredicate::eq, isContiguousResult, zero); |
| if (!restrictCopyAtRuntime) { |
| restrictCopyAtRuntime = notContiguous; |
| } else { |
| mlir::Value cond = builder.create<mlir::arith::AndIOp>( |
| loc, *restrictCopyAtRuntime, notContiguous); |
| restrictCopyAtRuntime = cond; |
| } |
| } |
| }; |
| |
| if (!restrictCopyAtRuntime) { |
| if (isActualArgBox) { |
| // isContiguousResult = genIsContiguousCall(); |
| mlir::Value addr = |
| builder |
| .genIfOp(loc, {addrType}, isContiguousResult, |
| /*withElseRegion=*/true) |
| .genThen([&]() { noCopy(); }) |
| .genElse([&] { |
| ExtValue temp = doCopyIn(); |
| builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
| }) |
| .getResults()[0]; |
| fir::ExtendedValue temp = |
| fir::substBase(readIfBoxValue(actualArg), addr); |
| combinedCondition(); |
| copyOutPairs.emplace_back( |
| CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); |
| return temp; |
| } |
| |
| ExtValue temp = doCopyIn(); |
| copyOutPairs.emplace_back(CopyOutPair{actualArg, temp, doCopyOut, {}}); |
| return temp; |
| } |
| |
| // Otherwise, need to be careful to only copy-in if allowed at runtime. |
| mlir::Value addr = |
| builder |
| .genIfOp(loc, {addrType}, *restrictCopyAtRuntime, |
| /*withElseRegion=*/true) |
| .genThen([&]() { |
| if (isActualArgBox) { |
| // isContiguousResult = genIsContiguousCall(); |
| // Avoid copyin if the argument is contiguous at runtime. |
| mlir::Value addr1 = |
| builder |
| .genIfOp(loc, {addrType}, isContiguousResult, |
| /*withElseRegion=*/true) |
| .genThen([&]() { noCopy(); }) |
| .genElse([&]() { |
| ExtValue temp = doCopyIn(); |
| builder.create<fir::ResultOp>(loc, |
| fir::getBase(temp)); |
| }) |
| .getResults()[0]; |
| builder.create<fir::ResultOp>(loc, addr1); |
| } else { |
| ExtValue temp = doCopyIn(); |
| builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
| } |
| }) |
| .genElse([&]() { |
| mlir::Value nullPtr = builder.createNullConstant(loc, addrType); |
| builder.create<fir::ResultOp>(loc, nullPtr); |
| }) |
| .getResults()[0]; |
| // Associate the temp address with actualArg lengths and extents if a |
| // temporary is generated. Otherwise the same address is associated. |
| fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr); |
| combinedCondition(); |
| copyOutPairs.emplace_back( |
| CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); |
| return temp; |
| } |
| |
| /// Generate copy-out if needed and free the temporary for an argument that |
| /// has been copied-in into a contiguous temp. |
| void genCopyOut(const CopyOutPair ©OutPair) { |
| mlir::Location loc = getLoc(); |
| bool isActualArgBox = |
| fir::isa_box_type(fir::getBase(copyOutPair.var).getType()); |
| auto doCopyOut = [&]() { |
| if (!isActualArgBox || inlineCopyInOutForBoxes) { |
| if (copyOutPair.argMayBeModifiedByCall) |
| genArrayCopy(copyOutPair.var, copyOutPair.temp); |
| if (mlir::isa<fir::RecordType>( |
| fir::getElementTypeOf(copyOutPair.temp))) { |
| // Destroy components of the temporary (if any). |
| // If there are no components requiring destruction, then the call |
| // is a no-op. |
| mlir::Value tempBox = |
| fir::getBase(builder.createBox(loc, copyOutPair.temp)); |
| fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder, loc, |
| tempBox); |
| } |
| // Deallocate the top-level entity of the temporary. |
| builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); |
| return; |
| } |
| // Generate CopyOutAssign() call to copy data from the temporary |
| // to the actualArg. Note that in case the actual argument |
| // is ALLOCATABLE/POINTER the CopyOutAssign() implementation |
| // should not engage its reallocation, because the temporary |
| // is rank, shape and type compatible with it. |
| // Moreover, CopyOutAssign() guarantees that there will be no |
| // finalization for the LHS even if it is of a derived type |
| // with finalization. |
| |
| // Create allocatable descriptor for the temp so that the runtime may |
| // deallocate it. |
| mlir::Value srcBox = |
| fir::getBase(builder.createBox(loc, copyOutPair.temp)); |
| mlir::Type allocBoxTy = |
| mlir::cast<fir::BaseBoxType>(srcBox.getType()) |
| .getBoxTypeWithNewAttr(fir::BaseBoxType::Attribute::Allocatable); |
| srcBox = builder.create<fir::ReboxOp>(loc, allocBoxTy, srcBox, |
| /*shift=*/mlir::Value{}, |
| /*slice=*/mlir::Value{}); |
| mlir::Value srcBoxRef = builder.createTemporary(loc, srcBox.getType()); |
| builder.create<fir::StoreOp>(loc, srcBox, srcBoxRef); |
| // Create descriptor pointer to variable descriptor if copy out is needed, |
| // and nullptr otherwise. |
| mlir::Value destBoxRef; |
| if (copyOutPair.argMayBeModifiedByCall) { |
| mlir::Value destBox = |
| fir::getBase(builder.createBox(loc, copyOutPair.var)); |
| destBoxRef = builder.createTemporary(loc, destBox.getType()); |
| builder.create<fir::StoreOp>(loc, destBox, destBoxRef); |
| } else { |
| destBoxRef = builder.create<fir::ZeroOp>(loc, srcBoxRef.getType()); |
| } |
| fir::runtime::genCopyOutAssign(builder, loc, destBoxRef, srcBoxRef); |
| }; |
| |
| if (!copyOutPair.restrictCopyAndFreeAtRuntime) |
| doCopyOut(); |
| else |
| builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime) |
| .genThen([&]() { doCopyOut(); }) |
| .end(); |
| } |
| |
| /// Lower a designator to a variable that may be absent at runtime into an |
| /// ExtendedValue where all the properties (base address, shape and length |
| /// parameters) can be safely read (set to zero if not present). It also |
| /// returns a boolean mlir::Value telling if the variable is present at |
| /// runtime. |
| /// This is useful to later be able to do conditional copy-in/copy-out |
| /// or to retrieve the base address without having to deal with the case |
| /// where the actual may be an absent fir.box. |
| std::pair<ExtValue, mlir::Value> |
| prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) { |
| mlir::Location loc = getLoc(); |
| if (Fortran::evaluate::IsAllocatableOrPointerObject(expr)) { |
| // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, |
| // it is as if the argument was absent. The main care here is to |
| // not do a copy-in/copy-out because the temp address, even though |
| // pointing to a null size storage, would not be a nullptr and |
| // therefore the argument would not be considered absent on the |
| // callee side. Note: if wholeSymbol is optional, it cannot be |
| // absent as per 15.5.2.12 point 7. and 8. We rely on this to |
| // un-conditionally read the allocatable/pointer descriptor here. |
| fir::MutableBoxValue mutableBox = genMutableBoxValue(expr); |
| mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest( |
| builder, loc, mutableBox); |
| fir::ExtendedValue actualArg = |
| fir::factory::genMutableBoxRead(builder, loc, mutableBox); |
| return {actualArg, isPresent}; |
| } |
| // Absent descriptor cannot be read. To avoid any issue in |
| // copy-in/copy-out, and when retrieving the address/length |
| // create an descriptor pointing to a null address here if the |
| // fir.box is absent. |
| ExtValue actualArg = gen(expr); |
| mlir::Value actualArgBase = fir::getBase(actualArg); |
| mlir::Value isPresent = builder.create<fir::IsPresentOp>( |
| loc, builder.getI1Type(), actualArgBase); |
| if (!mlir::isa<fir::BoxType>(actualArgBase.getType())) |
| return {actualArg, isPresent}; |
| ExtValue safeToReadBox = |
| absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent); |
| return {safeToReadBox, isPresent}; |
| } |
| |
| /// Create a temp on the stack for scalar actual arguments that may be absent |
| /// at runtime, but must be passed via a temp if they are presents. |
| fir::ExtendedValue |
| createScalarTempForArgThatMayBeAbsent(ExtValue actualArg, |
| mlir::Value isPresent) { |
| mlir::Location loc = getLoc(); |
| mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType()); |
| if (fir::isDerivedWithLenParameters(actualArg)) |
| TODO(loc, "parametrized derived type optional scalar argument copy-in"); |
| if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) { |
| mlir::Value len = charBox->getLen(); |
| mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0); |
| len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero); |
| mlir::Value temp = |
| builder.createTemporary(loc, type, /*name=*/{}, |
| /*shape=*/{}, mlir::ValueRange{len}, |
| llvm::ArrayRef<mlir::NamedAttribute>{ |
| fir::getAdaptToByRefAttr(builder)}); |
| return fir::CharBoxValue{temp, len}; |
| } |
| assert((fir::isa_trivial(type) || mlir::isa<fir::RecordType>(type)) && |
| "must be simple scalar"); |
| return builder.createTemporary(loc, type, |
| llvm::ArrayRef<mlir::NamedAttribute>{ |
| fir::getAdaptToByRefAttr(builder)}); |
| } |
| |
| template <typename A> |
| bool isCharacterType(const A &exp) { |
| if (auto type = exp.GetType()) |
| return type->category() == Fortran::common::TypeCategory::Character; |
| return false; |
| } |
| |
| /// Lower an actual argument that must be passed via an address. |
| /// This generates of the copy-in/copy-out if the actual is not contiguous, or |
| /// the creation of the temp if the actual is a variable and \p byValue is |
| /// true. It handles the cases where the actual may be absent, and all of the |
| /// copying has to be conditional at runtime. |
| /// If the actual argument may be dynamically absent, return an additional |
| /// boolean mlir::Value that if true means that the actual argument is |
| /// present. |
| std::pair<ExtValue, std::optional<mlir::Value>> |
| prepareActualToBaseAddressLike( |
| const Fortran::lower::SomeExpr &expr, |
| const Fortran::lower::CallerInterface::PassedEntity &arg, |
| CopyOutPairs ©OutPairs, bool byValue) { |
| mlir::Location loc = getLoc(); |
| const bool isArray = expr.Rank() > 0; |
| const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr); |
| // It must be possible to modify VALUE arguments on the callee side, even |
| // if the actual argument is a literal or named constant. Hence, the |
| // address of static storage must not be passed in that case, and a copy |
| // must be made even if this is not a variable. |
| // Note: isArray should be used here, but genBoxArg already creates copies |
| // for it, so do not duplicate the copy until genBoxArg behavior is changed. |
| const bool isStaticConstantByValue = |
| byValue && Fortran::evaluate::IsActuallyConstant(expr) && |
| (isCharacterType(expr)); |
| const bool variableNeedsCopy = |
| actualArgIsVariable && |
| (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous( |
| expr, converter.getFoldingContext()))); |
| const bool needsCopy = isStaticConstantByValue || variableNeedsCopy; |
| auto [argAddr, isPresent] = |
| [&]() -> std::pair<ExtValue, std::optional<mlir::Value>> { |
| if (!actualArgIsVariable && !needsCopy) |
| // Actual argument is not a variable. Make sure a variable address is |
| // not passed. |
| return {genTempExtAddr(expr), std::nullopt}; |
| ExtValue baseAddr; |
| if (arg.isOptional() && |
| Fortran::evaluate::MayBePassedAsAbsentOptional(expr)) { |
| auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr); |
| const ExtValue &actualArg = actualArgBind; |
| if (!needsCopy) |
| return {actualArg, isPresent}; |
| |
| if (isArray) |
| return {genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue), |
| isPresent}; |
| // Scalars, create a temp, and use it conditionally at runtime if |
| // the argument is present. |
| ExtValue temp = |
| createScalarTempForArgThatMayBeAbsent(actualArg, isPresent); |
| mlir::Type tempAddrTy = fir::getBase(temp).getType(); |
| mlir::Value selectAddr = |
| builder |
| .genIfOp(loc, {tempAddrTy}, isPresent, |
| /*withElseRegion=*/true) |
| .genThen([&]() { |
| fir::factory::genScalarAssignment(builder, loc, temp, |
| actualArg); |
| builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
| }) |
| .genElse([&]() { |
| mlir::Value absent = |
| builder.create<fir::AbsentOp>(loc, tempAddrTy); |
| builder.create<fir::ResultOp>(loc, absent); |
| }) |
| .getResults()[0]; |
| return {fir::substBase(temp, selectAddr), isPresent}; |
| } |
| // Actual cannot be absent, the actual argument can safely be |
| // copied-in/copied-out without any care if needed. |
| if (isArray) { |
| ExtValue box = genBoxArg(expr); |
| if (needsCopy) |
| return {genCopyIn(box, arg, copyOutPairs, |
| /*restrictCopyAtRuntime=*/std::nullopt, byValue), |
| std::nullopt}; |
| // Contiguous: just use the box we created above! |
| // This gets "unboxed" below, if needed. |
| return {box, std::nullopt}; |
| } |
| // Actual argument is a non-optional, non-pointer, non-allocatable |
| // scalar. |
| ExtValue actualArg = genExtAddr(expr); |
| if (needsCopy) |
| return {createInMemoryScalarCopy(builder, loc, actualArg), |
| std::nullopt}; |
| return {actualArg, std::nullopt}; |
| }(); |
| // Scalar and contiguous expressions may be lowered to a fir.box, |
| // either to account for potential polymorphism, or because lowering |
| // did not account for some contiguity hints. |
| // Here, polymorphism does not matter (an entity of the declared type |
| // is passed, not one of the dynamic type), and the expr is known to |
| // be simply contiguous, so it is safe to unbox it and pass the |
| // address without making a copy. |
| return {readIfBoxValue(argAddr), isPresent}; |
| } |
| |
| /// Lower a non-elemental procedure reference. |
| ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, |
| std::optional<mlir::Type> resultType) { |
| mlir::Location loc = getLoc(); |
| if (isElementalProcWithArrayArgs(procRef)) |
| fir::emitFatalError(loc, "trying to lower elemental procedure with array " |
| "arguments as normal procedure"); |
| |
| if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
| procRef.proc().GetSpecificIntrinsic()) |
| return genIntrinsicRef(procRef, resultType, *intrinsic); |
| |
| if (Fortran::lower::isIntrinsicModuleProcRef(procRef) && |
| !Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) |
| return genIntrinsicRef(procRef, resultType); |
| |
| if (isStatementFunctionCall(procRef)) |
| return genStmtFunctionRef(procRef); |
| |
| Fortran::lower::CallerInterface caller(procRef, converter); |
| using PassBy = Fortran::lower::CallerInterface::PassEntityBy; |
| |
| llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall; |
| // List of <var, temp> where temp must be copied into var after the call. |
| CopyOutPairs copyOutPairs; |
| |
| mlir::FunctionType callSiteType = caller.genFunctionType(); |
| |
| // Lower the actual arguments and map the lowered values to the dummy |
| // arguments. |
| for (const Fortran::lower::CallInterface< |
| Fortran::lower::CallerInterface>::PassedEntity &arg : |
| caller.getPassedArguments()) { |
| const auto *actual = arg.entity; |
| mlir::Type argTy = callSiteType.getInput(arg.firArgument); |
| if (!actual) { |
| // Optional dummy argument for which there is no actual argument. |
| caller.placeInput(arg, builder.genAbsentOp(loc, argTy)); |
| continue; |
| } |
| const auto *expr = actual->UnwrapExpr(); |
| if (!expr) |
| TODO(loc, "assumed type actual argument"); |
| |
| if (arg.passBy == PassBy::Value) { |
| ExtValue argVal = genval(*expr); |
| if (!fir::isUnboxedValue(argVal)) |
| fir::emitFatalError( |
| loc, "internal error: passing non trivial value by value"); |
| caller.placeInput(arg, fir::getBase(argVal)); |
| continue; |
| } |
| |
| if (arg.passBy == PassBy::MutableBox) { |
| if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( |
| *expr)) { |
| // If expr is NULL(), the mutableBox created must be a deallocated |
| // pointer with the dummy argument characteristics (see table 16.5 |
| // in Fortran 2018 standard). |
| // No length parameters are set for the created box because any non |
| // deferred type parameters of the dummy will be evaluated on the |
| // callee side, and it is illegal to use NULL without a MOLD if any |
| // dummy length parameters are assumed. |
| mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy); |
| assert(boxTy && mlir::isa<fir::BaseBoxType>(boxTy) && |
| "must be a fir.box type"); |
| mlir::Value boxStorage = builder.createTemporary(loc, boxTy); |
| mlir::Value nullBox = fir::factory::createUnallocatedBox( |
| builder, loc, boxTy, /*nonDeferredParams=*/{}); |
| builder.create<fir::StoreOp>(loc, nullBox, boxStorage); |
| caller.placeInput(arg, boxStorage); |
| continue; |
| } |
| if (fir::isPointerType(argTy) && |
| !Fortran::evaluate::IsObjectPointer(*expr)) { |
| // Passing a non POINTER actual argument to a POINTER dummy argument. |
| // Create a pointer of the dummy argument type and assign the actual |
| // argument to it. |
| mlir::Value irBox = |
| builder.createTemporary(loc, fir::unwrapRefType(argTy)); |
| // Non deferred parameters will be evaluated on the callee side. |
| fir::MutableBoxValue pointer(irBox, |
| /*nonDeferredParams=*/mlir::ValueRange{}, |
| /*mutableProperties=*/{}); |
| Fortran::lower::associateMutableBox(converter, loc, pointer, *expr, |
| /*lbounds=*/std::nullopt, |
| stmtCtx); |
| caller.placeInput(arg, irBox); |
| continue; |
| } |
| // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE. |
| fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); |
| if (fir::isAllocatableType(argTy) && arg.isIntentOut() && |
| Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) |
| Fortran::lower::genDeallocateIfAllocated(converter, mutableBox, loc); |
| mlir::Value irBox = |
| fir::factory::getMutableIRBox(builder, loc, mutableBox); |
| caller.placeInput(arg, irBox); |
| if (arg.mayBeModifiedByCall()) |
| mutableModifiedByCall.emplace_back(std::move(mutableBox)); |
| continue; |
| } |
| if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar || |
| arg.passBy == PassBy::BaseAddressValueAttribute || |
| arg.passBy == PassBy::CharBoxValueAttribute) { |
| const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute || |
| arg.passBy == PassBy::CharBoxValueAttribute; |
| ExtValue argAddr = |
| prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue) |
| .first; |
| if (arg.passBy == PassBy::BaseAddress || |
| arg.passBy == PassBy::BaseAddressValueAttribute) { |
| caller.placeInput(arg, fir::getBase(argAddr)); |
| } else { |
| assert(arg.passBy == PassBy::BoxChar || |
| arg.passBy == PassBy::CharBoxValueAttribute); |
| auto helper = fir::factory::CharacterExprHelper{builder, loc}; |
| auto boxChar = argAddr.match( |
| [&](const fir::CharBoxValue &x) -> mlir::Value { |
| // If a character procedure was passed instead, handle the |
| // mismatch. |
| auto funcTy = |
| mlir::dyn_cast<mlir::FunctionType>(x.getAddr().getType()); |
| if (funcTy && funcTy.getNumResults() == 1 && |
| mlir::isa<fir::BoxCharType>(funcTy.getResult(0))) { |
| auto boxTy = |
| mlir::cast<fir::BoxCharType>(funcTy.getResult(0)); |
| mlir::Value ref = builder.createConvertWithVolatileCast( |
| loc, builder.getRefType(boxTy.getEleTy()), x.getAddr()); |
| auto len = builder.create<fir::UndefOp>( |
| loc, builder.getCharacterLengthType()); |
| return builder.create<fir::EmboxCharOp>(loc, boxTy, ref, len); |
| } |
| return helper.createEmbox(x); |
| }, |
| [&](const fir::CharArrayBoxValue &x) { |
| return helper.createEmbox(x); |
| }, |
| [&](const auto &x) -> mlir::Value { |
| // Fortran allows an actual argument of a completely different |
| // type to be passed to a procedure expecting a CHARACTER in the |
| // dummy argument position. When this happens, the data pointer |
| // argument is simply assumed to point to CHARACTER data and the |
| // LEN argument used is garbage. Simulate this behavior by |
| // free-casting the base address to be a !fir.char reference and |
| // setting the LEN argument to undefined. What could go wrong? |
| auto dataPtr = fir::getBase(x); |
| assert(!mlir::isa<fir::BoxType>(dataPtr.getType())); |
| return builder.convertWithSemantics( |
| loc, argTy, dataPtr, |
| /*allowCharacterConversion=*/true); |
| }); |
| caller.placeInput(arg, boxChar); |
| } |
| } else if (arg.passBy == PassBy::Box) { |
| if (arg.mustBeMadeContiguous() && |
| !Fortran::evaluate::IsSimplyContiguous( |
| *expr, converter.getFoldingContext())) { |
| // If the expression is a PDT, or a polymorphic entity, or an assumed |
| // rank, it cannot currently be safely handled by |
| // prepareActualToBaseAddressLike that is intended to prepare |
| // arguments that can be passed as simple base address. |
| if (auto dynamicType = expr->GetType()) |
| if (dynamicType->IsPolymorphic()) |
| TODO(loc, "passing a polymorphic entity to an OPTIONAL " |
| "CONTIGUOUS argument"); |
| if (fir::isRecordWithTypeParameters( |
| fir::unwrapSequenceType(fir::unwrapPassByRefType(argTy)))) |
| TODO(loc, "passing to an OPTIONAL CONTIGUOUS derived type argument " |
| "with length parameters"); |
| if (Fortran::evaluate::IsAssumedRank(*expr)) |
| TODO(loc, "passing an assumed rank entity to an OPTIONAL " |
| "CONTIGUOUS argument"); |
| // Assumed shape VALUE are currently TODO in the call interface |
| // lowering. |
| const bool byValue = false; |
| auto [argAddr, isPresentValue] = |
| prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue); |
| mlir::Value box = builder.createBox(loc, argAddr); |
| if (isPresentValue) { |
| mlir::Value convertedBox = builder.createConvert(loc, argTy, box); |
| auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
| caller.placeInput(arg, |
| builder.create<mlir::arith::SelectOp>( |
| loc, *isPresentValue, convertedBox, absent)); |
| } else { |
| caller.placeInput(arg, builder.createBox(loc, argAddr)); |
| } |
| |
| } else if (arg.isOptional() && |
| Fortran::evaluate::IsAllocatableOrPointerObject(*expr)) { |
| // Before lowering to an address, handle the allocatable/pointer |
| // actual argument to optional fir.box dummy. It is legal to pass |
| // unallocated/disassociated entity to an optional. In this case, an |
| // absent fir.box must be created instead of a fir.box with a null |
| // value (Fortran 2018 15.5.2.12 point 1). |
| // |
| // Note that passing an absent allocatable to a non-allocatable |
| // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So |
| // nothing has to be done to generate an absent argument in this case, |
| // and it is OK to unconditionally read the mutable box here. |
| fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); |
| mlir::Value isAllocated = |
| fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, |
| mutableBox); |
| auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
| /// For now, assume it is not OK to pass the allocatable/pointer |
| /// descriptor to a non pointer/allocatable dummy. That is a strict |
| /// interpretation of 18.3.6 point 4 that stipulates the descriptor |
| /// has the dummy attributes in BIND(C) contexts. |
| mlir::Value box = builder.createBox( |
| loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox)); |
| |
| // NULL() passed as argument is passed as a !fir.box<none>. Since |
| // select op requires the same type for its two argument, convert |
| // !fir.box<none> to !fir.class<none> when the argument is |
| // polymorphic. |
| if (fir::isBoxNone(box.getType()) && fir::isPolymorphicType(argTy)) { |
| box = builder.createConvert( |
| loc, |
| fir::ClassType::get(mlir::NoneType::get(builder.getContext())), |
| box); |
| } else if (mlir::isa<fir::BoxType>(box.getType()) && |
| fir::isPolymorphicType(argTy)) { |
| box = builder.create<fir::ReboxOp>(loc, argTy, box, mlir::Value{}, |
| /*slice=*/mlir::Value{}); |
| } |
| |
| // Need the box types to be exactly similar for the selectOp. |
| mlir::Value convertedBox = builder.createConvert(loc, argTy, box); |
| caller.placeInput(arg, builder.create<mlir::arith::SelectOp>( |
| loc, isAllocated, convertedBox, absent)); |
| } else { |
| auto dynamicType = expr->GetType(); |
| mlir::Value box; |
| |
| // Special case when an intrinsic scalar variable is passed to a |
| // function expecting an optional unlimited polymorphic dummy |
| // argument. |
| // The presence test needs to be performed before emboxing otherwise |
| // the program will crash. |
| if (dynamicType->category() != |
| Fortran::common::TypeCategory::Derived && |
| expr->Rank() == 0 && fir::isUnlimitedPolymorphicType(argTy) && |
| arg.isOptional()) { |
| ExtValue opt = lowerIntrinsicArgumentAsInquired(*expr); |
| mlir::Value isPresent = genActualIsPresentTest(builder, loc, opt); |
| box = |
| builder |
| .genIfOp(loc, {argTy}, isPresent, /*withElseRegion=*/true) |
| .genThen([&]() { |
| auto boxed = builder.createBox( |
| loc, genBoxArg(*expr), fir::isPolymorphicType(argTy)); |
| builder.create<fir::ResultOp>(loc, boxed); |
| }) |
| .genElse([&]() { |
| auto absent = |
| builder.create<fir::AbsentOp>(loc, argTy).getResult(); |
| builder.create<fir::ResultOp>(loc, absent); |
| }) |
| .getResults()[0]; |
| } else { |
| // Make sure a variable address is only passed if the expression is |
| // actually a variable. |
| box = Fortran::evaluate::IsVariable(*expr) |
| ? builder.createBox(loc, genBoxArg(*expr), |
| fir::isPolymorphicType(argTy), |
| fir::isAssumedType(argTy)) |
| : builder.createBox(getLoc(), genTempExtAddr(*expr), |
| fir::isPolymorphicType(argTy), |
| fir::isAssumedType(argTy)); |
| if (mlir::isa<fir::BoxType>(box.getType()) && |
| fir::isPolymorphicType(argTy) && !fir::isAssumedType(argTy)) { |
| mlir::Type actualTy = argTy; |
| if (Fortran::lower::isParentComponent(*expr)) |
| actualTy = fir::BoxType::get(converter.genType(*expr)); |
| // Rebox can only be performed on a present argument. |
| if (arg.isOptional()) { |
| mlir::Value isPresent = |
| genActualIsPresentTest(builder, loc, box); |
| box = builder |
| .genIfOp(loc, {actualTy}, isPresent, |
| /*withElseRegion=*/true) |
| .genThen([&]() { |
| auto rebox = |
| builder |
| .create<fir::ReboxOp>( |
| loc, actualTy, box, mlir::Value{}, |
| /*slice=*/mlir::Value{}) |
| .getResult(); |
| builder.create<fir::ResultOp>(loc, rebox); |
| }) |
| .genElse([&]() { |
| auto absent = |
| builder.create<fir::AbsentOp>(loc, actualTy) |
| .getResult(); |
| builder.create<fir::ResultOp>(loc, absent); |
| }) |
| .getResults()[0]; |
| } else { |
| box = builder.create<fir::ReboxOp>(loc, actualTy, box, |
| mlir::Value{}, |
| /*slice=*/mlir::Value{}); |
| } |
| } else if (Fortran::lower::isParentComponent(*expr)) { |
| fir::ExtendedValue newExv = |
| Fortran::lower::updateBoxForParentComponent(converter, box, |
| *expr); |
| box = fir::getBase(newExv); |
| } |
| } |
| caller.placeInput(arg, box); |
| } |
| } else if (arg.passBy == PassBy::AddressAndLength) { |
| ExtValue argRef = genExtAddr(*expr); |
| caller.placeAddressAndLengthInput(arg, fir::getBase(argRef), |
| fir::getLen(argRef)); |
| } else if (arg.passBy == PassBy::CharProcTuple) { |
| ExtValue argRef = genExtAddr(*expr); |
| mlir::Value tuple = createBoxProcCharTuple( |
| converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); |
| caller.placeInput(arg, tuple); |
| } else { |
| TODO(loc, "pass by value in non elemental function call"); |
| } |
| } |
| |
| auto loweredResult = |
| Fortran::lower::genCallOpAndResult(loc, converter, symMap, stmtCtx, |
| caller, callSiteType, resultType) |
| .first; |
| auto &result = std::get<ExtValue>(loweredResult); |
| |
| // Sync pointers and allocatables that may have been modified during the |
| // call. |
| for (const auto &mutableBox : mutableModifiedByCall) |
| fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox); |
| // Handle case where result was passed as argument |
| |
| // Copy-out temps that were created for non contiguous variable arguments if |
| // needed. |
| for (const auto ©OutPair : copyOutPairs) |
| genCopyOut(copyOutPair); |
| |
| return result; |
| } |
| |
| template <typename A> |
| ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
| ExtValue result = genFunctionRef(funcRef); |
| if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType())) |
| return genLoad(result); |
| return result; |
| } |
| |
| ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) { |
| std::optional<mlir::Type> resTy; |
| if (procRef.hasAlternateReturns()) |
| resTy = builder.getIndexType(); |
| return genProcedureRef(procRef, resTy); |
| } |
| |
| template <typename A> |
| bool isScalar(const A &x) { |
| return x.Rank() == 0; |
| } |
| |
| /// Helper to detect Transformational function reference. |
| template <typename T> |
| bool isTransformationalRef(const T &) { |
| return false; |
| } |
| template <typename T> |
| bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) { |
| return !funcRef.IsElemental() && funcRef.Rank(); |
| } |
| template <typename T> |
| bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) { |
| return Fortran::common::visit( |
| [&](const auto &e) { return isTransformationalRef(e); }, expr.u); |
| } |
| |
| template <typename A> |
| ExtValue asArray(const A &x) { |
| return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x), |
| symMap, stmtCtx); |
| } |
| |
| /// Lower an array value as an argument. This argument can be passed as a box |
| /// value, so it may be possible to avoid making a temporary. |
| template <typename A> |
| ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) { |
| return Fortran::common::visit( |
| [&](const auto &e) { return asArrayArg(e, x); }, x.u); |
| } |
| template <typename A, typename B> |
| ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) { |
| return Fortran::common::visit( |
| [&](const auto &e) { return asArrayArg(e, y); }, x.u); |
| } |
| template <typename A, typename B> |
| ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) { |
| // Designator is being passed as an argument to a procedure. Lower the |
| // expression to a boxed value. |
| auto someExpr = toEvExpr(x); |
| return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap, |
| stmtCtx); |
| } |
| template <typename A, typename B> |
| ExtValue asArrayArg(const A &, const B &x) { |
| // If the expression to pass as an argument is not a designator, then create |
| // an array temp. |
| return asArray(x); |
| } |
| |
| template <typename A> |
| mlir::Value getIfOverridenExpr(const Fortran::evaluate::Expr<A> &x) { |
| if (const Fortran::lower::ExprToValueMap *map = |
| converter.getExprOverrides()) { |
| Fortran::lower::SomeExpr someExpr = toEvExpr(x); |
| if (auto match = map->find(&someExpr); match != map->end()) |
| return match->second; |
| } |
| return mlir::Value{}; |
| } |
| |
| template <typename A> |
| ExtValue gen(const Fortran::evaluate::Expr<A> &x) { |
| if (mlir::Value val = getIfOverridenExpr(x)) |
| return val; |
| // Whole array symbols or components, and results of transformational |
| // functions already have a storage and the scalar expression lowering path |
| // is used to not create a new temporary storage. |
| if (isScalar(x) || |
| Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) || |
| (isTransformationalRef(x) && !isOptimizableTranspose(x, converter))) |
| return Fortran::common::visit([&](const auto &e) { return genref(e); }, |
| x.u); |
| if (useBoxArg) |
| return asArrayArg(x); |
| return asArray(x); |
| } |
| template <typename A> |
| ExtValue genval(const Fortran::evaluate::Expr<A> &x) { |
| if (mlir::Value val = getIfOverridenExpr(x)) |
| return val; |
| if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) || |
| inInitializer) |
| return Fortran::common::visit([&](const auto &e) { return genval(e); }, |
| x.u); |
| return asArray(x); |
| } |
| |
| template <int KIND> |
| ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Logical, KIND>> &exp) { |
| if (mlir::Value val = getIfOverridenExpr(exp)) |
| return val; |
| return Fortran::common::visit([&](const auto &e) { return genval(e); }, |
| exp.u); |
| } |
| |
| using RefSet = |
| std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring, |
| Fortran::evaluate::DataRef, Fortran::evaluate::Component, |
| Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef, |
| Fortran::semantics::SymbolRef>; |
| template <typename A> |
| static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>; |
| |
| template <typename A, typename = std::enable_if_t<inRefSet<A>>> |
| ExtValue genref(const A &a) { |
| return gen(a); |
| } |
| template <typename A> |
| ExtValue genref(const A &a) { |
| if (inInitializer) { |
| // Initialization expressions can never allocate memory. |
| return genval(a); |
| } |
| mlir::Type storageType = converter.genType(toEvExpr(a)); |
| return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType); |
| } |
| |
| template <typename A, template <typename> typename T, |
| typename B = std::decay_t<T<A>>, |
| std::enable_if_t< |
| std::is_same_v<B, Fortran::evaluate::Expr<A>> || |
| std::is_same_v<B, Fortran::evaluate::Designator<A>> || |
| std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>, |
| bool> = true> |
| ExtValue genref(const T<A> &x) { |
| return gen(x); |
| } |
| |
| private: |
| mlir::Location location; |
| Fortran::lower::AbstractConverter &converter; |
| fir::FirOpBuilder &builder; |
| Fortran::lower::StatementContext &stmtCtx; |
| Fortran::lower::SymMap &symMap; |
| bool inInitializer = false; |
| bool useBoxArg = false; // expression lowered as argument |
| }; |
| } // namespace |
| |
| #define CONCAT(x, y) CONCAT2(x, y) |
| #define CONCAT2(x, y) x##y |
| |
| // Helper for changing the semantics in a given context. Preserves the current |
| // semantics which is resumed when the "push" goes out of scope. |
| #define PushSemantics(PushVal) \ |
| [[maybe_unused]] auto CONCAT(pushSemanticsLocalVariable, __LINE__) = \ |
| Fortran::common::ScopedSet(semant, PushVal); |
| |
| static bool isAdjustedArrayElementType(mlir::Type t) { |
| return fir::isa_char(t) || fir::isa_derived(t) || |
| mlir::isa<fir::SequenceType>(t); |
| } |
| static bool elementTypeWasAdjusted(mlir::Type t) { |
| if (auto ty = mlir::dyn_cast<fir::ReferenceType>(t)) |
| return isAdjustedArrayElementType(ty.getEleTy()); |
| return false; |
| } |
| static mlir::Type adjustedArrayElementType(mlir::Type t) { |
| return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t; |
| } |
| |
| /// Helper to generate calls to scalar user defined assignment procedures. |
| static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| mlir::func::FuncOp func, |
| const fir::ExtendedValue &lhs, |
| const fir::ExtendedValue &rhs) { |
| auto prepareUserDefinedArg = |
| [](fir::FirOpBuilder &builder, mlir::Location loc, |
| const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value { |
| if (mlir::isa<fir::BoxCharType>(argType)) { |
| const fir::CharBoxValue *charBox = value.getCharBox(); |
| assert(charBox && "argument type mismatch in elemental user assignment"); |
| return fir::factory::CharacterExprHelper{builder, loc}.createEmbox( |
| *charBox); |
| } |
| if (mlir::isa<fir::BaseBoxType>(argType)) { |
| mlir::Value box = |
| builder.createBox(loc, value, mlir::isa<fir::ClassType>(argType)); |
| return builder.createConvert(loc, argType, box); |
| } |
| // Simple pass by address. |
| mlir::Type argBaseType = fir::unwrapRefType(argType); |
| assert(!fir::hasDynamicSize(argBaseType)); |
| mlir::Value from = fir::getBase(value); |
| if (argBaseType != fir::unwrapRefType(from.getType())) { |
| // With logicals, it is possible that from is i1 here. |
| if (fir::isa_ref_type(from.getType())) |
| from = builder.create<fir::LoadOp>(loc, from); |
| from = builder.createConvert(loc, argBaseType, from); |
| } |
| if (!fir::isa_ref_type(from.getType())) { |
| mlir::Value temp = builder.createTemporary(loc, argBaseType); |
| builder.create<fir::StoreOp>(loc, from, temp); |
| from = temp; |
| } |
| return builder.createConvert(loc, argType, from); |
| }; |
| assert(func.getNumArguments() == 2); |
| mlir::Type lhsType = func.getFunctionType().getInput(0); |
| mlir::Type rhsType = func.getFunctionType().getInput(1); |
| mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType); |
| mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType); |
| builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg}); |
| } |
| |
| /// Convert the result of a fir.array_modify to an ExtendedValue given the |
| /// related fir.array_load. |
| static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder, |
| mlir::Location loc, |
| fir::ArrayLoadOp load, |
| mlir::Value elementAddr) { |
| mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType()); |
| if (fir::isa_char(eleTy)) { |
| auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| load.getMemref()); |
| if (!len) { |
| assert(load.getTypeparams().size() == 1 && |
| "length must be in array_load"); |
| len = load.getTypeparams()[0]; |
| } |
| return fir::CharBoxValue{elementAddr, len}; |
| } |
| return elementAddr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Lowering of scalar expressions in an explicit iteration space context. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Shared code for creating a copy of a derived type element. This function is |
| // called from a continuation. |
| inline static fir::ArrayAmendOp |
| createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad, |
| fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc, |
| const fir::ExtendedValue &elementExv, mlir::Type eleTy, |
| mlir::Value innerArg) { |
| if (destLoad.getTypeparams().empty()) { |
| fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv); |
| } else { |
| auto boxTy = fir::BoxType::get(eleTy); |
| auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(), |
| mlir::Value{}, mlir::Value{}, |
| destLoad.getTypeparams()); |
| auto fromBox = builder.create<fir::EmboxOp>( |
| loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{}, |
| destLoad.getTypeparams()); |
| fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox), |
| fir::BoxValue(fromBox)); |
| } |
| return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg, |
| destAcc); |
| } |
| |
| inline static fir::ArrayAmendOp |
| createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder, |
| fir::ArrayAccessOp dstOp, mlir::Value &dstLen, |
| const fir::ExtendedValue &srcExv, mlir::Value innerArg, |
| llvm::ArrayRef<mlir::Value> bounds) { |
| fir::CharBoxValue dstChar(dstOp, dstLen); |
| fir::factory::CharacterExprHelper helper{builder, loc}; |
| if (!bounds.empty()) { |
| dstChar = helper.createSubstring(dstChar, bounds); |
| fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv), |
| dstChar.getAddr(), dstChar.getLen(), builder, |
| loc); |
| // Update the LEN to the substring's LEN. |
| dstLen = dstChar.getLen(); |
| } |
| // For a CHARACTER, we generate the element assignment loops inline. |
| helper.createAssign(fir::ExtendedValue{dstChar}, srcExv); |
| // Mark this array element as amended. |
| mlir::Type ty = innerArg.getType(); |
| auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp); |
| return amend; |
| } |
| |
| /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting |
| /// the actual extents and lengths. This is only to allow their propagation as |
| /// ExtendedValue without triggering verifier failures when propagating |
| /// character/arrays as unboxed values. Only the base of the resulting |
| /// ExtendedValue should be used, it is undefined to use the length or extents |
| /// of the extended value returned, |
| inline static fir::ExtendedValue |
| convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder, |
| mlir::Value val, mlir::Value len) { |
| mlir::Type ty = fir::unwrapRefType(val.getType()); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| auto seqTy = mlir::cast<fir::SequenceType>(ty); |
| auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
| llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef); |
| if (fir::isa_char(seqTy.getEleTy())) |
| return fir::CharArrayBoxValue(val, len ? len : undef, extents); |
| return fir::ArrayBoxValue(val, extents); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Lowering of array expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ArrayExprLowering { |
| using ExtValue = fir::ExtendedValue; |
| |
| /// Structure to keep track of lowered array operands in the |
| /// array expression. Useful to later deduce the shape of the |
| /// array expression. |
| struct ArrayOperand { |
| /// Array base (can be a fir.box). |
| mlir::Value memref; |
| /// ShapeOp, ShapeShiftOp or ShiftOp |
| mlir::Value shape; |
| /// SliceOp |
| mlir::Value slice; |
| /// Can this operand be absent ? |
| bool mayBeAbsent = false; |
| }; |
| |
| using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts; |
| using PathComponent = Fortran::lower::PathComponent; |
| |
| /// Active iteration space. |
| using IterationSpace = Fortran::lower::IterationSpace; |
| using IterSpace = const Fortran::lower::IterationSpace &; |
| |
| /// Current continuation. Function that will generate IR for a single |
| /// iteration of the pending iterative loop structure. |
| using CC = Fortran::lower::GenerateElementalArrayFunc; |
| |
| /// Projection continuation. Function that will project one iteration space |
| /// into another. |
| using PC = std::function<IterationSpace(IterSpace)>; |
| using ArrayBaseTy = |
| std::variant<std::monostate, const Fortran::evaluate::ArrayRef *, |
| const Fortran::evaluate::DataRef *>; |
| using ComponentPath = Fortran::lower::ComponentPath; |
| |
| public: |
| //===--------------------------------------------------------------------===// |
| // Regular array assignment |
| //===--------------------------------------------------------------------===// |
| |
| /// Entry point for array assignments. Both the left-hand and right-hand sides |
| /// can either be ExtendedValue or evaluate::Expr. |
| template <typename TL, typename TR> |
| static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx, |
| const TL &lhs, const TR &rhs) { |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::CopyInCopyOut); |
| ael.lowerArrayAssignment(lhs, rhs); |
| } |
| |
| template <typename TL, typename TR> |
| void lowerArrayAssignment(const TL &lhs, const TR &rhs) { |
| mlir::Location loc = getLoc(); |
| /// Here the target subspace is not necessarily contiguous. The ArrayUpdate |
| /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad |
| /// in `destination`. |
| PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); |
| ccStoreToDest = genarr(lhs); |
| determineShapeOfDest(lhs); |
| semant = ConstituentSemantics::RefTransparent; |
| ExtValue exv = lowerArrayExpression(rhs); |
| if (explicitSpaceIsActive()) { |
| explicitSpace->finalizeContext(); |
| builder.create<fir::ResultOp>(loc, fir::getBase(exv)); |
| } else { |
| builder.create<fir::ArrayMergeStoreOp>( |
| loc, destination, fir::getBase(exv), destination.getMemref(), |
| destination.getSlice(), destination.getTypeparams()); |
| } |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // WHERE array assignment, FORALL assignment, and FORALL+WHERE array |
| // assignment |
| //===--------------------------------------------------------------------===// |
| |
| /// Entry point for array assignment when the iteration space is explicitly |
| /// defined (Fortran's FORALL) with or without masks, and/or the implied |
| /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit |
| /// space and implicit space with masks) may be present. |
| static void lowerAnyMaskedArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace) { |
| if (explicitSpace.isActive() && lhs.Rank() == 0) { |
| // Scalar assignment expression in a FORALL context. |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::RefTransparent, |
| &explicitSpace, &implicitSpace); |
| ael.lowerScalarAssignment(lhs, rhs); |
| return; |
| } |
| // Array assignment expression in a FORALL and/or WHERE context. |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
| &implicitSpace); |
| ael.lowerArrayAssignment(lhs, rhs); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Array assignment to array of pointer box values. |
| //===--------------------------------------------------------------------===// |
| |
| /// Entry point for assignment to pointer in an array of pointers. |
| static void lowerArrayOfPointerAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace, |
| const llvm::SmallVector<mlir::Value> &lbounds, |
| std::optional<llvm::SmallVector<mlir::Value>> ubounds) { |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
| &implicitSpace); |
| ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds); |
| } |
| |
| /// Scalar pointer assignment in an explicit iteration space. |
| /// |
| /// Pointers may be bound to targets in a FORALL context. This is a scalar |
| /// assignment in the sense there is never an implied iteration space, even if |
| /// the pointer is to a target with non-zero rank. Since the pointer |
| /// assignment must appear in a FORALL construct, correctness may require that |
| /// the array of pointers follow copy-in/copy-out semantics. The pointer |
| /// assignment may include a bounds-spec (lower bounds), a bounds-remapping |
| /// (lower and upper bounds), or neither. |
| void lowerArrayOfPointerAssignment( |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| const llvm::SmallVector<mlir::Value> &lbounds, |
| std::optional<llvm::SmallVector<mlir::Value>> ubounds) { |
| setPointerAssignmentBounds(lbounds, ubounds); |
| if (rhs.Rank() == 0 || |
| (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) && |
| Fortran::evaluate::IsAllocatableOrPointerObject(rhs))) { |
| lowerScalarAssignment(lhs, rhs); |
| return; |
| } |
| TODO(getLoc(), |
| "auto boxing of a ranked expression on RHS for pointer assignment"); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Array assignment to allocatable array |
| //===--------------------------------------------------------------------===// |
| |
| /// Entry point for assignment to allocatable array. |
| static void lowerAllocatableArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace) { |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
| &implicitSpace); |
| ael.lowerAllocatableArrayAssignment(lhs, rhs); |
| } |
| |
| /// Lower an assignment to allocatable array, where the LHS array |
| /// is represented with \p lhs extended value produced in different |
| /// branches created in genReallocIfNeeded(). The RHS lowering |
| /// is provided via \p rhsCC continuation. |
| void lowerAllocatableArrayAssignment(ExtValue lhs, CC rhsCC) { |
| mlir::Location loc = getLoc(); |
| // Check if the initial destShape is null, which means |
| // it has not been computed from rhs (e.g. rhs is scalar). |
| bool destShapeIsEmpty = destShape.empty(); |
| // Create ArrayLoad for the mutable box and save it into `destination`. |
| PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); |
| ccStoreToDest = genarr(lhs); |
| // destShape is either non-null on entry to this function, |
| // or has been just set by lhs lowering. |
| assert(!destShape.empty() && "destShape must have been set."); |
| // Finish lowering the loop nest. |
| assert(destination && "destination must have been set"); |
| ExtValue exv = lowerArrayExpression(rhsCC, destination.getType()); |
| if (!explicitSpaceIsActive()) |
| builder.create<fir::ArrayMergeStoreOp>( |
| loc, destination, fir::getBase(exv), destination.getMemref(), |
| destination.getSlice(), destination.getTypeparams()); |
| // destShape may originally be null, if rhs did not define a shape. |
| // In this case the destShape is computed from lhs, and we may have |
| // multiple different lhs values for different branches created |
| // in genReallocIfNeeded(). We cannot reuse destShape computed |
| // in different branches, so we have to reset it, |
| // so that it is recomputed for the next branch FIR generation. |
| if (destShapeIsEmpty) |
| destShape.clear(); |
| } |
| |
| /// Assignment to allocatable array. |
| /// |
| /// The semantics are reverse that of a "regular" array assignment. The rhs |
| /// defines the iteration space of the computation and the lhs is |
| /// resized/reallocated to fit if necessary. |
| void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs, |
| const Fortran::lower::SomeExpr &rhs) { |
| // With assignment to allocatable, we want to lower the rhs first and use |
| // its shape to determine if we need to reallocate, etc. |
| mlir::Location loc = getLoc(); |
| // FIXME: If the lhs is in an explicit iteration space, the assignment may |
| // be to an array of allocatable arrays rather than a single allocatable |
| // array. |
| if (explicitSpaceIsActive() && lhs.Rank() > 0) |
| TODO(loc, "assignment to whole allocatable array inside FORALL"); |
| |
| fir::MutableBoxValue mutableBox = |
| Fortran::lower::createMutableBox(loc, converter, lhs, symMap); |
| if (rhs.Rank() > 0) |
| determineShapeOfDest(rhs); |
| auto rhsCC = [&]() { |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| return genarr(rhs); |
| }(); |
| |
| llvm::SmallVector<mlir::Value> lengthParams; |
| // Currently no safe way to gather length from rhs (at least for |
| // character, it cannot be taken from array_loads since it may be |
| // changed by concatenations). |
| if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) || |
| mutableBox.isDerivedWithLenParameters()) |
| TODO(loc, "gather rhs LEN parameters in assignment to allocatable"); |
| |
| // The allocatable must take lower bounds from the expr if it is |
| // reallocated and the right hand side is not a scalar. |
| const bool takeLboundsIfRealloc = rhs.Rank() > 0; |
| llvm::SmallVector<mlir::Value> lbounds; |
| // When the reallocated LHS takes its lower bounds from the RHS, |
| // they will be non default only if the RHS is a whole array |
| // variable. Otherwise, lbounds is left empty and default lower bounds |
| // will be used. |
| if (takeLboundsIfRealloc && |
| Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) { |
| assert(arrayOperands.size() == 1 && |
| "lbounds can only come from one array"); |
| auto lbs = fir::factory::getOrigins(arrayOperands[0].shape); |
| lbounds.append(lbs.begin(), lbs.end()); |
| } |
| auto assignToStorage = [&](fir::ExtendedValue newLhs) { |
| // The lambda will be called repeatedly by genReallocIfNeeded(). |
| lowerAllocatableArrayAssignment(newLhs, rhsCC); |
| }; |
| fir::factory::MutableBoxReallocation realloc = |
| fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape, |
| lengthParams, assignToStorage); |
| if (explicitSpaceIsActive()) { |
| explicitSpace->finalizeContext(); |
| builder.create<fir::ResultOp>(loc, fir::getBase(realloc.newValue)); |
| } |
| fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds, |
| takeLboundsIfRealloc, realloc); |
| } |
| |
| /// Entry point for when an array expression appears in a context where the |
| /// result must be boxed. (BoxValue semantics.) |
| static ExtValue |
| lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &expr) { |
| ArrayExprLowering ael{converter, stmtCtx, symMap, |
| ConstituentSemantics::BoxValue}; |
| return ael.lowerBoxedArrayExpr(expr); |
| } |
| |
| ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) { |
| PushSemantics(ConstituentSemantics::BoxValue); |
| return Fortran::common::visit( |
| [&](const auto &e) { |
| auto f = genarr(e); |
| ExtValue exv = f(IterationSpace{}); |
| if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) |
| return exv; |
| fir::emitFatalError(getLoc(), "array must be emboxed"); |
| }, |
| exp.u); |
| } |
| |
| /// Entry point into lowering an expression with rank. This entry point is for |
| /// lowering a rhs expression, for example. (RefTransparent semantics.) |
| static ExtValue |
| lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &expr) { |
| ArrayExprLowering ael{converter, stmtCtx, symMap}; |
| ael.determineShapeOfDest(expr); |
| ExtValue loopRes = ael.lowerArrayExpression(expr); |
| fir::ArrayLoadOp dest = ael.destination; |
| mlir::Value tempRes = dest.getMemref(); |
| fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| mlir::Location loc = converter.getCurrentLocation(); |
| builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes), |
| tempRes, dest.getSlice(), |
| dest.getTypeparams()); |
| |
| auto arrTy = mlir::cast<fir::SequenceType>( |
| fir::dyn_cast_ptrEleTy(tempRes.getType())); |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(arrTy.getEleTy())) { |
| if (fir::characterWithDynamicLen(charTy)) |
| TODO(loc, "CHARACTER does not have constant LEN"); |
| mlir::Value len = builder.createIntegerConstant( |
| loc, builder.getCharacterLengthType(), charTy.getLen()); |
| return fir::CharArrayBoxValue(tempRes, len, dest.getExtents()); |
| } |
| return fir::ArrayBoxValue(tempRes, dest.getExtents()); |
| } |
| |
| static void lowerLazyArrayExpression( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) { |
| ArrayExprLowering ael(converter, stmtCtx, symMap); |
| ael.lowerLazyArrayExpression(expr, raggedHeader); |
| } |
| |
| /// Lower the expression \p expr into a buffer that is created on demand. The |
| /// variable containing the pointer to the buffer is \p var and the variable |
| /// containing the shape of the buffer is \p shapeBuffer. |
| void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr, |
| mlir::Value header) { |
| mlir::Location loc = getLoc(); |
| mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder); |
| mlir::IntegerType i32Ty = builder.getIntegerType(32); |
| |
| // Once the loop extents have been computed, which may require being inside |
| // some explicit loops, lazily allocate the expression on the heap. The |
| // following continuation creates the buffer as needed. |
| ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) { |
| mlir::IntegerType i64Ty = builder.getIntegerType(64); |
| mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1); |
| fir::runtime::genRaggedArrayAllocate( |
| loc, builder, header, /*asHeaders=*/false, byteSize, shape); |
| }; |
| |
| // Create a dummy array_load before the loop. We're storing to a lazy |
| // temporary, so there will be no conflict and no copy-in. TODO: skip this |
| // as there isn't any necessity for it. |
| ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp { |
| mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
| auto var = builder.create<fir::CoordinateOp>( |
| loc, builder.getRefType(hdrTy.getType(1)), header, one); |
| auto load = builder.create<fir::LoadOp>(loc, var); |
| mlir::Type eleTy = |
| fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); |
| auto seqTy = fir::SequenceType::get(eleTy, shape.size()); |
| mlir::Value castTo = |
| builder.createConvert(loc, fir::HeapType::get(seqTy), load); |
| mlir::Value shapeOp = builder.genShape(loc, shape); |
| return builder.create<fir::ArrayLoadOp>( |
| loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, std::nullopt); |
| }; |
| // Custom lowering of the element store to deal with the extra indirection |
| // to the lazy allocated buffer. |
| ccStoreToDest = [=](IterSpace iters) { |
| mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
| auto var = builder.create<fir::CoordinateOp>( |
| loc, builder.getRefType(hdrTy.getType(1)), header, one); |
| auto load = builder.create<fir::LoadOp>(loc, var); |
| mlir::Type eleTy = |
| fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); |
| auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size()); |
| auto toTy = fir::HeapType::get(seqTy); |
| mlir::Value castTo = builder.createConvert(loc, toTy, load); |
| mlir::Value shape = builder.genShape(loc, genIterationShape()); |
| llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
| loc, builder, castTo.getType(), shape, iters.iterVec()); |
| auto eleAddr = builder.create<fir::ArrayCoorOp>( |
| loc, builder.getRefType(eleTy), castTo, shape, |
| /*slice=*/mlir::Value{}, indices, destination.getTypeparams()); |
| mlir::Value eleVal = |
| builder.createConvert(loc, eleTy, iters.getElement()); |
| builder.create<fir::StoreOp>(loc, eleVal, eleAddr); |
| return iters.innerArgument(); |
| }; |
| |
| // Lower the array expression now. Clean-up any temps that may have |
| // been generated when lowering `expr` right after the lowered value |
| // was stored to the ragged array temporary. The local temps will not |
| // be needed afterwards. |
| stmtCtx.pushScope(); |
| [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr); |
| stmtCtx.finalizeAndPop(); |
| assert(fir::getBase(loopRes)); |
| } |
| |
| static void |
| lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace, |
| const Fortran::evaluate::ProcedureRef &procRef) { |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::CustomCopyInCopyOut, |
| &explicitSpace, &implicitSpace); |
| assert(procRef.arguments().size() == 2); |
| const auto *lhs = procRef.arguments()[0].value().UnwrapExpr(); |
| const auto *rhs = procRef.arguments()[1].value().UnwrapExpr(); |
| assert(lhs && rhs && |
| "user defined assignment arguments must be expressions"); |
| mlir::func::FuncOp func = |
| Fortran::lower::CallerInterface(procRef, converter).getFuncOp(); |
| ael.lowerElementalUserAssignment(func, *lhs, *rhs); |
| } |
| |
| void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment, |
| const Fortran::lower::SomeExpr &lhs, |
| const Fortran::lower::SomeExpr &rhs) { |
| mlir::Location loc = getLoc(); |
| PushSemantics(ConstituentSemantics::CustomCopyInCopyOut); |
| auto genArrayModify = genarr(lhs); |
| ccStoreToDest = [=](IterSpace iters) -> ExtValue { |
| auto modifiedArray = genArrayModify(iters); |
| auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>( |
| fir::getBase(modifiedArray).getDefiningOp()); |
| assert(arrayModify && "must be created by ArrayModifyOp"); |
| fir::ExtendedValue lhs = |
| arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0)); |
| genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs, |
| iters.elementExv()); |
| return modifiedArray; |
| }; |
| determineShapeOfDest(lhs); |
| semant = ConstituentSemantics::RefTransparent; |
| auto exv = lowerArrayExpression(rhs); |
| if (explicitSpaceIsActive()) { |
| explicitSpace->finalizeContext(); |
| builder.create<fir::ResultOp>(loc, fir::getBase(exv)); |
| } else { |
| builder.create<fir::ArrayMergeStoreOp>( |
| loc, destination, fir::getBase(exv), destination.getMemref(), |
| destination.getSlice(), destination.getTypeparams()); |
| } |
| } |
| |
| /// Lower an elemental subroutine call with at least one array argument. |
| /// An elemental subroutine is an exception and does not have copy-in/copy-out |
| /// semantics. See 15.8.3. |
| /// Do NOT use this for user defined assignments. |
| static void |
| lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx, |
| const Fortran::lower::SomeExpr &call) { |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::RefTransparent); |
| ael.lowerElementalSubroutine(call); |
| } |
| |
| static const std::optional<Fortran::evaluate::ActualArgument> |
| extractPassedArgFromProcRef(const Fortran::evaluate::ProcedureRef &procRef, |
| Fortran::lower::AbstractConverter &converter) { |
| // First look for passed object in actual arguments. |
| for (const std::optional<Fortran::evaluate::ActualArgument> &arg : |
| procRef.arguments()) |
| if (arg && arg->isPassedObject()) |
| return arg; |
| |
| // If passed object is not found by here, it means the call was fully |
| // resolved to the correct procedure. Look for the pass object in the |
| // dummy arguments. Pick the first polymorphic one. |
| Fortran::lower::CallerInterface caller(procRef, converter); |
| unsigned idx = 0; |
| for (const auto &arg : caller.characterize().dummyArguments) { |
| if (const auto *dummy = |
| std::get_if<Fortran::evaluate::characteristics::DummyDataObject>( |
| &arg.u)) |
| if (dummy->type.type().IsPolymorphic()) |
| return procRef.arguments()[idx]; |
| ++idx; |
| } |
| return std::nullopt; |
| } |
| |
| // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&). |
| // This is skipping generation of copy-in/copy-out code for analysis that is |
| // required when arguments are in parentheses. |
| void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) { |
| if (const auto *procRef = |
| std::get_if<Fortran::evaluate::ProcedureRef>(&call.u)) |
| setLoweredProcRef(procRef); |
| auto f = genarr(call); |
| llvm::SmallVector<mlir::Value> shape = genIterationShape(); |
| auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{}); |
| f(iterSpace); |
| finalizeElementCtx(); |
| builder.restoreInsertionPoint(insPt); |
| } |
| |
| ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs, |
| const Fortran::lower::SomeExpr &rhs) { |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| // 1) Lower the rhs expression with array_fetch op(s). |
| IterationSpace iters; |
| iters.setElement(genarr(rhs)(iters)); |
| // 2) Lower the lhs expression to an array_update. |
| semant = ConstituentSemantics::ProjectedCopyInCopyOut; |
| auto lexv = genarr(lhs)(iters); |
| // 3) Finalize the inner context. |
| explicitSpace->finalizeContext(); |
| // 4) Thread the array value updated forward. Note: the lhs might be |
| // ill-formed (performing scalar assignment in an array context), |
| // in which case there is no array to thread. |
| auto loc = getLoc(); |
| auto createResult = [&](auto op) { |
| mlir::Value oldInnerArg = op.getSequence(); |
| std::size_t offset = explicitSpace->argPosition(oldInnerArg); |
| explicitSpace->setInnerArg(offset, fir::getBase(lexv)); |
| finalizeElementCtx(); |
| builder.create<fir::ResultOp>(loc, fir::getBase(lexv)); |
| }; |
| if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) { |
| llvm::TypeSwitch<mlir::Operation *>(defOp) |
| .Case([&](fir::ArrayUpdateOp op) { createResult(op); }) |
| .Case([&](fir::ArrayAmendOp op) { createResult(op); }) |
| .Case([&](fir::ArrayModifyOp op) { createResult(op); }) |
| .Default([&](mlir::Operation *) { finalizeElementCtx(); }); |
| } else { |
| // `lhs` isn't from a `fir.array_load`, so there is no array modifications |
| // to thread through the iteration space. |
| finalizeElementCtx(); |
| } |
| return lexv; |
| } |
| |
| static ExtValue lowerScalarUserAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| Fortran::lower::ExplicitIterSpace &explicitIterSpace, |
| mlir::func::FuncOp userAssignmentFunction, |
| const Fortran::lower::SomeExpr &lhs, |
| const Fortran::lower::SomeExpr &rhs) { |
| Fortran::lower::ImplicitIterSpace implicit; |
| ArrayExprLowering ael(converter, stmtCtx, symMap, |
| ConstituentSemantics::RefTransparent, |
| &explicitIterSpace, &implicit); |
| return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs); |
| } |
| |
| ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment, |
| const Fortran::lower::SomeExpr &lhs, |
| const Fortran::lower::SomeExpr &rhs) { |
| mlir::Location loc = getLoc(); |
| if (rhs.Rank() > 0) |
| TODO(loc, "user-defined elemental assigment from expression with rank"); |
| // 1) Lower the rhs expression with array_fetch op(s). |
| IterationSpace iters; |
| iters.setElement(genarr(rhs)(iters)); |
| fir::ExtendedValue elementalExv = iters.elementExv(); |
| // 2) Lower the lhs expression to an array_modify. |
| semant = ConstituentSemantics::CustomCopyInCopyOut; |
| auto lexv = genarr(lhs)(iters); |
| bool isIllFormedLHS = false; |
| // 3) Insert the call |
| if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>( |
| fir::getBase(lexv).getDefiningOp())) { |
| mlir::Value oldInnerArg = modifyOp.getSequence(); |
| std::size_t offset = explicitSpace->argPosition(oldInnerArg); |
| explicitSpace->setInnerArg(offset, fir::getBase(lexv)); |
| auto lhsLoad = explicitSpace->getLhsLoad(0); |
| assert(lhsLoad.has_value()); |
| fir::ExtendedValue exv = |
| arrayModifyToExv(builder, loc, *lhsLoad, modifyOp.getResult(0)); |
| genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv, |
| elementalExv); |
| } else { |
| // LHS is ill formed, it is a scalar with no references to FORALL |
| // subscripts, so there is actually no array assignment here. The user |
| // code is probably bad, but still insert user assignment call since it |
| // was not rejected by semantics (a warning was emitted). |
| isIllFormedLHS = true; |
| genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment, |
| lexv, elementalExv); |
| } |
| // 4) Finalize the inner context. |
| explicitSpace->finalizeContext(); |
| // 5). Thread the array value updated forward. |
| if (!isIllFormedLHS) { |
| finalizeElementCtx(); |
| builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); |
| } |
| return lexv; |
| } |
| |
| private: |
| void determineShapeOfDest(const fir::ExtendedValue &lhs) { |
| destShape = fir::factory::getExtents(getLoc(), builder, lhs); |
| } |
| |
| void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) { |
| if (!destShape.empty()) |
| return; |
| if (explicitSpaceIsActive() && determineShapeWithSlice(lhs)) |
| return; |
| mlir::Type idxTy = builder.getIndexType(); |
| mlir::Location loc = getLoc(); |
| if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape = |
| Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(), |
| lhs)) |
| for (Fortran::common::ConstantSubscript extent : *constantShape) |
| destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent)); |
| } |
| |
| bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) { |
| return false; |
| } |
| bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) { |
| TODO(getLoc(), "coarray: reference to a coarray in an expression"); |
| return false; |
| } |
| bool genShapeFromDataRef(const Fortran::evaluate::Component &x) { |
| return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false; |
| } |
| bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) { |
| if (x.Rank() == 0) |
| return false; |
| if (x.base().Rank() > 0) |
| if (genShapeFromDataRef(x.base())) |
| return true; |
| // x has rank and x.base did not produce a shape. |
| ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base())) |
| : asScalarRef(x.base().GetComponent()); |
| mlir::Location loc = getLoc(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| llvm::SmallVector<mlir::Value> definedShape = |
| fir::factory::getExtents(loc, builder, exv); |
| mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| for (auto ss : llvm::enumerate(x.subscript())) { |
| Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const Fortran::evaluate::Triplet &trip) { |
| // For a subscript of triple notation, we compute the |
| // range of this dimension of the iteration space. |
| auto lo = [&]() { |
| if (auto optLo = trip.lower()) |
| return fir::getBase(asScalar(*optLo)); |
| return getLBound(exv, ss.index(), one); |
| }(); |
| auto hi = [&]() { |
| if (auto optHi = trip.upper()) |
| return fir::getBase(asScalar(*optHi)); |
| return getUBound(exv, ss.index(), one); |
| }(); |
| auto step = builder.createConvert( |
| loc, idxTy, fir::getBase(asScalar(trip.stride()))); |
| auto extent = |
| builder.genExtentFromTriplet(loc, lo, hi, step, idxTy); |
| destShape.push_back(extent); |
| }, |
| [&](auto) {}}, |
| ss.value().u); |
| } |
| return true; |
| } |
| bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) { |
| if (x.IsSymbol()) |
| return genShapeFromDataRef(getFirstSym(x)); |
| return genShapeFromDataRef(x.GetComponent()); |
| } |
| bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return genShapeFromDataRef(v); }, x.u); |
| } |
| |
| /// When in an explicit space, the ranked component must be evaluated to |
| /// determine the actual number of iterations when slicing triples are |
| /// present. Lower these expressions here. |
| bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) { |
| LLVM_DEBUG(Fortran::semantics::DumpEvaluateExpr::Dump( |
| llvm::dbgs() << "determine shape of:\n", lhs)); |
| // FIXME: We may not want to use ExtractDataRef here since it doesn't deal |
| // with substrings, etc. |
| std::optional<Fortran::evaluate::DataRef> dref = |
| Fortran::evaluate::ExtractDataRef(lhs); |
| return dref.has_value() ? genShapeFromDataRef(*dref) : false; |
| } |
| |
| /// CHARACTER and derived type elements are treated as memory references. The |
| /// numeric types are treated as values. |
| static mlir::Type adjustedArraySubtype(mlir::Type ty, |
| mlir::ValueRange indices) { |
| mlir::Type pathTy = fir::applyPathToType(ty, indices); |
| assert(pathTy && "indices failed to apply to type"); |
| return adjustedArrayElementType(pathTy); |
| } |
| |
| /// Lower rhs of an array expression. |
| ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) { |
| mlir::Type resTy = converter.genType(exp); |
| |
| if (fir::isPolymorphicType(resTy) && |
| Fortran::evaluate::HasVectorSubscript(exp)) |
| TODO(getLoc(), |
| "polymorphic array expression lowering with vector subscript"); |
| |
| return Fortran::common::visit( |
| [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); }, |
| exp.u); |
| } |
| ExtValue lowerArrayExpression(const ExtValue &exv) { |
| assert(!explicitSpace); |
| mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType()); |
| return lowerArrayExpression(genarr(exv), resTy); |
| } |
| |
| void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds, |
| const Fortran::evaluate::Substring *substring) { |
| if (!substring) |
| return; |
| bounds.push_back(fir::getBase(asScalar(substring->lower()))); |
| if (auto upper = substring->upper()) |
| bounds.push_back(fir::getBase(asScalar(*upper))); |
| } |
| |
| /// Convert the original value, \p origVal, to type \p eleTy. When in a |
| /// pointer assignment context, generate an appropriate `fir.rebox` for |
| /// dealing with any bounds parameters on the pointer assignment. |
| mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy, |
| mlir::Value origVal) { |
| if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType())) |
| if (mlir::isa<fir::BaseBoxType>(origEleTy)) { |
| // If origVal is a box variable, load it so it is in the value domain. |
| origVal = builder.create<fir::LoadOp>(loc, origVal); |
| } |
| if (mlir::isa<fir::BoxType>(origVal.getType()) && |
| !mlir::isa<fir::BoxType>(eleTy)) { |
| if (isPointerAssignment()) |
| TODO(loc, "lhs of pointer assignment returned unexpected value"); |
| TODO(loc, "invalid box conversion in elemental computation"); |
| } |
| if (isPointerAssignment() && mlir::isa<fir::BoxType>(eleTy) && |
| !mlir::isa<fir::BoxType>(origVal.getType())) { |
| // This is a pointer assignment and the rhs is a raw reference to a TARGET |
| // in memory. Embox the reference so it can be stored to the boxed |
| // POINTER variable. |
| assert(fir::isa_ref_type(origVal.getType())); |
| if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType()); |
| fir::hasDynamicSize(eleTy)) |
| TODO(loc, "TARGET of pointer assignment with runtime size/shape"); |
| auto memrefTy = fir::boxMemRefType(mlir::cast<fir::BoxType>(eleTy)); |
| auto castTo = builder.createConvert(loc, memrefTy, origVal); |
| origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo); |
| } |
| mlir::Value val = builder.convertWithSemantics(loc, eleTy, origVal); |
| if (isBoundsSpec()) { |
| assert(lbounds.has_value()); |
| auto lbs = *lbounds; |
| if (lbs.size() > 0) { |
| // Rebox the value with user-specified shift. |
| auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size()); |
| mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs); |
| val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp, |
| mlir::Value{}); |
| } |
| } else if (isBoundsRemap()) { |
| assert(lbounds.has_value()); |
| auto lbs = *lbounds; |
| if (lbs.size() > 0) { |
| // Rebox the value with user-specified shift and shape. |
| assert(ubounds.has_value()); |
| auto shapeShiftArgs = flatZip(lbs, *ubounds); |
| auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size()); |
| mlir::Value shapeShift = |
| builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs); |
| val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift, |
| mlir::Value{}); |
| } |
| } |
| return val; |
| } |
| |
| /// Default store to destination implementation. |
| /// This implements the default case, which is to assign the value in |
| /// `iters.element` into the destination array, `iters.innerArgument`. Handles |
| /// by value and by reference assignment. |
| CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) { |
| return [=](IterSpace iterSpace) -> ExtValue { |
| mlir::Location loc = getLoc(); |
| mlir::Value innerArg = iterSpace.innerArgument(); |
| fir::ExtendedValue exv = iterSpace.elementExv(); |
| mlir::Type arrTy = innerArg.getType(); |
| mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec()); |
| if (isAdjustedArrayElementType(eleTy)) { |
| // The elemental update is in the memref domain. Under this semantics, |
| // we must always copy the computed new element from its location in |
| // memory into the destination array. |
| mlir::Type resRefTy = builder.getRefType(eleTy); |
| // Get a reference to the array element to be amended. |
| auto arrayOp = builder.create<fir::ArrayAccessOp>( |
| loc, resRefTy, innerArg, iterSpace.iterVec(), |
| fir::factory::getTypeParams(loc, builder, destination)); |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| llvm::SmallVector<mlir::Value> substringBounds; |
| populateBounds(substringBounds, substring); |
| mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| builder, loc, destination, iterSpace.iterVec(), substringBounds); |
| fir::ArrayAmendOp amend = createCharArrayAmend( |
| loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds); |
| return abstractArrayExtValue(amend, dstLen); |
| } |
| if (fir::isa_derived(eleTy)) { |
| fir::ArrayAmendOp amend = createDerivedArrayAmend( |
| loc, destination, builder, arrayOp, exv, eleTy, innerArg); |
| return abstractArrayExtValue(amend /*FIXME: typeparams?*/); |
| } |
| assert(mlir::isa<fir::SequenceType>(eleTy) && "must be an array"); |
| TODO(loc, "array (as element) assignment"); |
| } |
| // By value semantics. The element is being assigned by value. |
| auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv)); |
| auto update = builder.create<fir::ArrayUpdateOp>( |
| loc, arrTy, innerArg, ele, iterSpace.iterVec(), |
| destination.getTypeparams()); |
| return abstractArrayExtValue(update); |
| }; |
| } |
| |
| /// For an elemental array expression. |
| /// 1. Lower the scalars and array loads. |
| /// 2. Create the iteration space. |
| /// 3. Create the element-by-element computation in the loop. |
| /// 4. Return the resulting array value. |
| /// If no destination was set in the array context, a temporary of |
| /// \p resultTy will be created to hold the evaluated expression. |
| /// Otherwise, \p resultTy is ignored and the expression is evaluated |
| /// in the destination. \p f is a continuation built from an |
| /// evaluate::Expr or an ExtendedValue. |
| ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) { |
| mlir::Location loc = getLoc(); |
| auto [iterSpace, insPt] = genIterSpace(resultTy); |
| auto exv = f(iterSpace); |
| iterSpace.setElement(std::move(exv)); |
| auto lambda = ccStoreToDest |
| ? *ccStoreToDest |
| : defaultStoreToDestination(/*substring=*/nullptr); |
| mlir::Value updVal = fir::getBase(lambda(iterSpace)); |
| finalizeElementCtx(); |
| builder.create<fir::ResultOp>(loc, updVal); |
| builder.restoreInsertionPoint(insPt); |
| return abstractArrayExtValue(iterSpace.outerResult()); |
| } |
| |
| /// Compute the shape of a slice. |
| llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) { |
| llvm::SmallVector<mlir::Value> slicedShape; |
| auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp()); |
| mlir::Operation::operand_range triples = slOp.getTriples(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Location loc = getLoc(); |
| for (unsigned i = 0, end = triples.size(); i < end; i += 3) { |
| if (!mlir::isa_and_nonnull<fir::UndefOp>( |
| triples[i + 1].getDefiningOp())) { |
| // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0) |
| // See Fortran 2018 9.5.3.3.2 section for more details. |
| mlir::Value res = builder.genExtentFromTriplet( |
| loc, triples[i], triples[i + 1], triples[i + 2], idxTy); |
| slicedShape.emplace_back(res); |
| } else { |
| // do nothing. `..., i, ...` case, so dimension is dropped. |
| } |
| } |
| return slicedShape; |
| } |
| |
| /// Get the shape from an ArrayOperand. The shape of the array is adjusted if |
| /// the array was sliced. |
| llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) { |
| if (array.slice) |
| return computeSliceShape(array.slice); |
| if (mlir::isa<fir::BaseBoxType>(array.memref.getType())) |
| return fir::factory::readExtents(builder, getLoc(), |
| fir::BoxValue{array.memref}); |
| return fir::factory::getExtents(array.shape); |
| } |
| |
| /// Get the shape from an ArrayLoad. |
| llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) { |
| return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(), |
| arrayLoad.getSlice()}); |
| } |
| |
| /// Returns the first array operand that may not be absent. If all |
| /// array operands may be absent, return the first one. |
| const ArrayOperand &getInducingShapeArrayOperand() const { |
| assert(!arrayOperands.empty()); |
| for (const ArrayOperand &op : arrayOperands) |
| if (!op.mayBeAbsent) |
| return op; |
| // If all arrays operand appears in optional position, then none of them |
| // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the |
| // first operands. |
| // TODO: There is an opportunity to add a runtime check here that |
| // this array is present as required. |
| return arrayOperands[0]; |
| } |
| |
| /// Generate the shape of the iteration space over the array expression. The |
| /// iteration space may be implicit, explicit, or both. If it is implied it is |
| /// based on the destination and operand array loads, or an optional |
| /// Fortran::evaluate::Shape from the front end. If the shape is explicit, |
| /// this returns any implicit shape component, if it exists. |
| llvm::SmallVector<mlir::Value> genIterationShape() { |
| // Use the precomputed destination shape. |
| if (!destShape.empty()) |
| return destShape; |
| // Otherwise, use the destination's shape. |
| if (destination) |
| return getShape(destination); |
| // Otherwise, use the first ArrayLoad operand shape. |
| if (!arrayOperands.empty()) |
| return getShape(getInducingShapeArrayOperand()); |
| // Otherwise, in elemental context, try to find the passed object and |
| // retrieve the iteration shape from it. |
| if (loweredProcRef && loweredProcRef->IsElemental()) { |
| const std::optional<Fortran::evaluate::ActualArgument> passArg = |
| extractPassedArgFromProcRef(*loweredProcRef, converter); |
| if (passArg) { |
| ExtValue exv = asScalarRef(*passArg->UnwrapExpr()); |
| fir::FirOpBuilder *builder = &converter.getFirOpBuilder(); |
| auto extents = fir::factory::getExtents(getLoc(), *builder, exv); |
| if (extents.size() == 0) |
| TODO(getLoc(), "getting shape from polymorphic array in elemental " |
| "procedure reference"); |
| return extents; |
| } |
| } |
| fir::emitFatalError(getLoc(), |
| "failed to compute the array expression shape"); |
| } |
| |
| bool explicitSpaceIsActive() const { |
| return explicitSpace && explicitSpace->isActive(); |
| } |
| |
| bool implicitSpaceHasMasks() const { |
| return implicitSpace && !implicitSpace->empty(); |
| } |
| |
| CC genMaskAccess(mlir::Value tmp, mlir::Value shape) { |
| mlir::Location loc = getLoc(); |
| return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) { |
| mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType()); |
| auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| mlir::Type eleRefTy = builder->getRefType(eleTy); |
| mlir::IntegerType i1Ty = builder->getI1Type(); |
| // Adjust indices for any shift of the origin of the array. |
| llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
| loc, *builder, tmp.getType(), shape, iters.iterVec()); |
| auto addr = |
| builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape, |
| /*slice=*/mlir::Value{}, indices, |
| /*typeParams=*/std::nullopt); |
| auto load = builder->create<fir::LoadOp>(loc, addr); |
| return builder->createConvert(loc, i1Ty, load); |
| }; |
| } |
| |
| /// Construct the incremental instantiations of the ragged array structure. |
| /// Rebind the lazy buffer variable, etc. as we go. |
| template <bool withAllocation = false> |
| mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) { |
| assert(explicitSpaceIsActive()); |
| mlir::Location loc = getLoc(); |
| mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder); |
| llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack = |
| explicitSpace->getLoopStack(); |
| const std::size_t depth = loopStack.size(); |
| mlir::IntegerType i64Ty = builder.getIntegerType(64); |
| [[maybe_unused]] mlir::Value byteSize = |
| builder.createIntegerConstant(loc, i64Ty, 1); |
| mlir::Value header = implicitSpace->lookupMaskHeader(expr); |
| for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) { |
| auto insPt = builder.saveInsertionPoint(); |
| if (i < depth - 1) |
| builder.setInsertionPoint(loopStack[i + 1][0]); |
| |
| // Compute and gather the extents. |
| llvm::SmallVector<mlir::Value> extents; |
| for (auto doLoop : loopStack[i]) |
| extents.push_back(builder.genExtentFromTriplet( |
| loc, doLoop.getLowerBound(), doLoop.getUpperBound(), |
| doLoop.getStep(), i64Ty)); |
| if constexpr (withAllocation) { |
| fir::runtime::genRaggedArrayAllocate( |
| loc, builder, header, /*asHeader=*/true, byteSize, extents); |
| } |
| |
| // Compute the dynamic position into the header. |
| llvm::SmallVector<mlir::Value> offsets; |
| for (auto doLoop : loopStack[i]) { |
| auto m = builder.create<mlir::arith::SubIOp>( |
| loc, doLoop.getInductionVar(), doLoop.getLowerBound()); |
| auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep()); |
| mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1); |
| offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one)); |
| } |
| mlir::IntegerType i32Ty = builder.getIntegerType(32); |
| mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1); |
| mlir::Type coorTy = builder.getRefType(raggedTy.getType(1)); |
| auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); |
| auto toTy = fir::SequenceType::get(raggedTy, offsets.size()); |
| mlir::Type toRefTy = builder.getRefType(toTy); |
| auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff); |
| mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr); |
| auto shapeOp = builder.genShape(loc, extents); |
| header = builder.create<fir::ArrayCoorOp>( |
| loc, builder.getRefType(raggedTy), hdArr, shapeOp, |
| /*slice=*/mlir::Value{}, offsets, |
| /*typeparams=*/mlir::ValueRange{}); |
| auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); |
| auto inVar = builder.create<fir::LoadOp>(loc, hdrVar); |
| mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); |
| mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2)); |
| auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two); |
| auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh); |
| // Replace the binding. |
| implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr)); |
| if (i < depth - 1) |
| builder.restoreInsertionPoint(insPt); |
| } |
| return header; |
| } |
| |
| /// Lower mask expressions with implied iteration spaces from the variants of |
| /// WHERE syntax. Since it is legal for mask expressions to have side-effects |
| /// and modify values that will be used for the lhs, rhs, or both of |
| /// subsequent assignments, the mask must be evaluated before the assignment |
| /// is processed. |
| /// Mask expressions are array expressions too. |
| void genMasks() { |
| // Lower the mask expressions, if any. |
| if (implicitSpaceHasMasks()) { |
| mlir::Location loc = getLoc(); |
| // Mask expressions are array expressions too. |
| for (const auto *e : implicitSpace->getExprs()) |
| if (e && !implicitSpace->isLowered(e)) { |
| if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) { |
| // Allocate the mask buffer lazily. |
| assert(explicitSpaceIsActive()); |
| mlir::Value header = |
| prepareRaggedArrays</*withAllocations=*/true>(e); |
| Fortran::lower::createLazyArrayTempValue(converter, *e, header, |
| symMap, stmtCtx); |
| // Close the explicit loops. |
| builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs()); |
| builder.setInsertionPointAfter(explicitSpace->getOuterLoop()); |
| // Open a new copy of the explicit loop nest. |
| explicitSpace->genLoopNest(); |
| continue; |
| } |
| fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue( |
| converter, *e, symMap, stmtCtx); |
| mlir::Value shape = builder.createShape(loc, tmp); |
| implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape)); |
| } |
| |
| // Set buffer from the header. |
| for (const auto *e : implicitSpace->getExprs()) { |
| if (!e) |
| continue; |
| if (implicitSpace->lookupMaskVariable(e)) { |
| // Index into the ragged buffer to retrieve cached results. |
| const int rank = e->Rank(); |
| assert(destShape.empty() || |
| static_cast<std::size_t>(rank) == destShape.size()); |
| mlir::Value header = prepareRaggedArrays(e); |
| mlir::TupleType raggedTy = |
| fir::factory::getRaggedArrayHeaderType(builder); |
| mlir::IntegerType i32Ty = builder.getIntegerType(32); |
| mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
| auto coor1 = builder.create<fir::CoordinateOp>( |
| loc, builder.getRefType(raggedTy.getType(1)), header, one); |
| auto db = builder.create<fir::LoadOp>(loc, coor1); |
| mlir::Type eleTy = |
| fir::unwrapSequenceType(fir::unwrapRefType(db.getType())); |
| mlir::Type buffTy = |
| builder.getRefType(fir::SequenceType::get(eleTy, rank)); |
| // Address of ragged buffer data. |
| mlir::Value buff = builder.createConvert(loc, buffTy, db); |
| |
| mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); |
| auto coor2 = builder.create<fir::CoordinateOp>( |
| loc, builder.getRefType(raggedTy.getType(2)), header, two); |
| auto shBuff = builder.create<fir::LoadOp>(loc, coor2); |
| mlir::IntegerType i64Ty = builder.getIntegerType(64); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| llvm::SmallVector<mlir::Value> extents; |
| for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) { |
| mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i); |
| auto coor = builder.create<fir::CoordinateOp>( |
| loc, builder.getRefType(i64Ty), shBuff, off); |
| auto ldExt = builder.create<fir::LoadOp>(loc, coor); |
| extents.push_back(builder.createConvert(loc, idxTy, ldExt)); |
| } |
| if (destShape.empty()) |
| destShape = extents; |
| // Construct shape of buffer. |
| mlir::Value shapeOp = builder.genShape(loc, extents); |
| |
| // Replace binding with the local result. |
| implicitSpace->rebind(e, genMaskAccess(buff, shapeOp)); |
| } |
| } |
| } |
| } |
| |
| // FIXME: should take multiple inner arguments. |
| std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> |
| genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) { |
| mlir::Location loc = getLoc(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
| llvm::SmallVector<mlir::Value> loopUppers; |
| |
| // Convert any implied shape to closed interval form. The fir.do_loop will |
| // run from 0 to `extent - 1` inclusive. |
| for (auto extent : shape) |
| loopUppers.push_back( |
| builder.create<mlir::arith::SubIOp>(loc, extent, one)); |
| |
| // Iteration space is created with outermost columns, innermost rows |
| llvm::SmallVector<fir::DoLoopOp> loops; |
| |
| const std::size_t loopDepth = loopUppers.size(); |
| llvm::SmallVector<mlir::Value> ivars; |
| |
| for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) { |
| if (i.index() > 0) { |
| assert(!loops.empty()); |
| builder.setInsertionPointToStart(loops.back().getBody()); |
| } |
| fir::DoLoopOp loop; |
| if (innerArg) { |
| loop = builder.create<fir::DoLoopOp>( |
| loc, zero, i.value(), one, isUnordered(), |
| /*finalCount=*/false, mlir::ValueRange{innerArg}); |
| innerArg = loop.getRegionIterArgs().front(); |
| if (explicitSpaceIsActive()) |
| explicitSpace->setInnerArg(0, innerArg); |
| } else { |
| loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one, |
| isUnordered(), |
| /*finalCount=*/false); |
| } |
| ivars.push_back(loop.getInductionVar()); |
| loops.push_back(loop); |
| } |
| |
| if (innerArg) |
| for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth; |
| ++i) { |
| builder.setInsertionPointToEnd(loops[i].getBody()); |
| builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0)); |
| } |
| |
| // Move insertion point to the start of the innermost loop in the nest. |
| builder.setInsertionPointToStart(loops.back().getBody()); |
| // Set `afterLoopNest` to just after the entire loop nest. |
| auto currPt = builder.saveInsertionPoint(); |
| builder.setInsertionPointAfter(loops[0]); |
| auto afterLoopNest = builder.saveInsertionPoint(); |
| builder.restoreInsertionPoint(currPt); |
| |
| // Put the implicit loop variables in row to column order to match FIR's |
| // Ops. (The loops were constructed from outermost column to innermost |
| // row.) |
| mlir::Value outerRes; |
| if (loops[0].getNumResults() != 0) |
| outerRes = loops[0].getResult(0); |
| return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)), |
| afterLoopNest}; |
| } |
| |
| /// Build the iteration space into which the array expression will be lowered. |
| /// The resultType is used to create a temporary, if needed. |
| std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> |
| genIterSpace(mlir::Type resultType) { |
| mlir::Location loc = getLoc(); |
| llvm::SmallVector<mlir::Value> shape = genIterationShape(); |
| if (!destination) { |
| // Allocate storage for the result if it is not already provided. |
| destination = createAndLoadSomeArrayTemp(resultType, shape); |
| } |
| |
| // Generate the lazy mask allocation, if one was given. |
| if (ccPrelude) |
| (*ccPrelude)(shape); |
| |
| // Now handle the implicit loops. |
| mlir::Value inner = explicitSpaceIsActive() |
| ? explicitSpace->getInnerArgs().front() |
| : destination.getResult(); |
| auto [iters, afterLoopNest] = genImplicitLoops(shape, inner); |
| mlir::Value innerArg = iters.innerArgument(); |
| |
| // Generate the mask conditional structure, if there are masks. Unlike the |
| // explicit masks, which are interleaved, these mask expression appear in |
| // the innermost loop. |
| if (implicitSpaceHasMasks()) { |
| // Recover the cached condition from the mask buffer. |
| auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) { |
| return implicitSpace->getBoundClosure(e)(iters); |
| }; |
| |
| // Handle the negated conditions in topological order of the WHERE |
| // clauses. See 10.2.3.2p4 as to why this control structure is produced. |
| for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs : |
| implicitSpace->getMasks()) { |
| const std::size_t size = maskExprs.size() - 1; |
| auto genFalseBlock = [&](const auto *e, auto &&cond) { |
| auto ifOp = builder.create<fir::IfOp>( |
| loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), |
| /*withElseRegion=*/true); |
| builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); |
| builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| builder.create<fir::ResultOp>(loc, innerArg); |
| builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| }; |
| auto genTrueBlock = [&](const auto *e, auto &&cond) { |
| auto ifOp = builder.create<fir::IfOp>( |
| loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), |
| /*withElseRegion=*/true); |
| builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); |
| builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| builder.create<fir::ResultOp>(loc, innerArg); |
| builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| }; |
| for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) |
| if (const auto *e = maskExprs[i]) |
| genFalseBlock(e, genCond(e, iters)); |
| |
| // The last condition is either non-negated or unconditionally negated. |
| if (const auto *e = maskExprs[size]) |
| genTrueBlock(e, genCond(e, iters)); |
| } |
| } |
| |
| // We're ready to lower the body (an assignment statement) for this context |
| // of loop nests at this point. |
| return {iters, afterLoopNest}; |
| } |
| |
| fir::ArrayLoadOp |
| createAndLoadSomeArrayTemp(mlir::Type type, |
| llvm::ArrayRef<mlir::Value> shape) { |
| mlir::Location loc = getLoc(); |
| if (fir::isPolymorphicType(type)) |
| TODO(loc, "polymorphic array temporary"); |
| if (ccLoadDest) |
| return (*ccLoadDest)(shape); |
| auto seqTy = mlir::dyn_cast<fir::SequenceType>(type); |
| assert(seqTy && "must be an array"); |
| // TODO: Need to thread the LEN parameters here. For character, they may |
| // differ from the operands length (e.g concatenation). So the array loads |
| // type parameters are not enough. |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(seqTy.getEleTy())) |
| if (charTy.hasDynamicLen()) |
| TODO(loc, "character array expression temp with dynamic length"); |
| if (auto recTy = mlir::dyn_cast<fir::RecordType>(seqTy.getEleTy())) |
| if (recTy.getNumLenParams() > 0) |
| TODO(loc, "derived type array expression temp with LEN parameters"); |
| if (mlir::Type eleTy = fir::unwrapSequenceType(type); |
| fir::isRecordWithAllocatableMember(eleTy)) |
| TODO(loc, "creating an array temp where the element type has " |
| "allocatable members"); |
| mlir::Value temp = !seqTy.hasDynamicExtents() |
| ? builder.create<fir::AllocMemOp>(loc, type) |
| : builder.create<fir::AllocMemOp>( |
| loc, type, ".array.expr", std::nullopt, shape); |
| fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
| stmtCtx.attachCleanup( |
| [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); }); |
| mlir::Value shapeOp = genShapeOp(shape); |
| return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp, |
| /*slice=*/mlir::Value{}, |
| std::nullopt); |
| } |
| |
| static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder, |
| llvm::ArrayRef<mlir::Value> shape) { |
| mlir::IndexType idxTy = builder.getIndexType(); |
| llvm::SmallVector<mlir::Value> idxShape; |
| for (auto s : shape) |
| idxShape.push_back(builder.createConvert(loc, idxTy, s)); |
| return builder.create<fir::ShapeOp>(loc, idxShape); |
| } |
| |
| fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) { |
| return genShapeOp(getLoc(), builder, shape); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Expression traversal and lowering. |
| //===--------------------------------------------------------------------===// |
| |
| /// Lower the expression, \p x, in a scalar context. |
| template <typename A> |
| ExtValue asScalar(const A &x) { |
| return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x); |
| } |
| |
| /// Lower the expression, \p x, in a scalar context. If this is an explicit |
| /// space, the expression may be scalar and refer to an array. We want to |
| /// raise the array access to array operations in FIR to analyze potential |
| /// conflicts even when the result is a scalar element. |
| template <typename A> |
| ExtValue asScalarArray(const A &x) { |
| return explicitSpaceIsActive() && !isPointerAssignment() |
| ? genarr(x)(IterationSpace{}) |
| : asScalar(x); |
| } |
| |
| /// Lower the expression in a scalar context to a memory reference. |
| template <typename A> |
| ExtValue asScalarRef(const A &x) { |
| return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x); |
| } |
| |
| /// Lower an expression without dereferencing any indirection that may be |
| /// a nullptr (because this is an absent optional or unallocated/disassociated |
| /// descriptor). The returned expression cannot be addressed directly, it is |
| /// meant to inquire about its status before addressing the related entity. |
| template <typename A> |
| ExtValue asInquired(const A &x) { |
| return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx} |
| .lowerIntrinsicArgumentAsInquired(x); |
| } |
| |
| /// Some temporaries are allocated on an element-by-element basis during the |
| /// array expression evaluation. Collect the cleanups here so the resources |
| /// can be freed before the next loop iteration, avoiding memory leaks. etc. |
| Fortran::lower::StatementContext &getElementCtx() { |
| if (!elementCtx) { |
| stmtCtx.pushScope(); |
| elementCtx = true; |
| } |
| return stmtCtx; |
| } |
| |
| /// If there were temporaries created for this element evaluation, finalize |
| /// and deallocate the resources now. This should be done just prior to the |
| /// fir::ResultOp at the end of the innermost loop. |
| void finalizeElementCtx() { |
| if (elementCtx) { |
| stmtCtx.finalizeAndPop(); |
| elementCtx = false; |
| } |
| } |
| |
| /// Lower an elemental function array argument. This ensures array |
| /// sub-expressions that are not variables and must be passed by address |
| /// are lowered by value and placed in memory. |
| template <typename A> |
| CC genElementalArgument(const A &x) { |
| // Ensure the returned element is in memory if this is what was requested. |
| if ((semant == ConstituentSemantics::RefOpaque || |
| semant == ConstituentSemantics::DataAddr || |
| semant == ConstituentSemantics::ByValueArg)) { |
| if (!Fortran::evaluate::IsVariable(x)) { |
| PushSemantics(ConstituentSemantics::DataValue); |
| CC cc = genarr(x); |
| mlir::Location loc = getLoc(); |
| if (isParenthesizedVariable(x)) { |
| // Parenthesised variables are lowered to a reference to the variable |
| // storage. When passing it as an argument, a copy must be passed. |
| return [=](IterSpace iters) -> ExtValue { |
| return createInMemoryScalarCopy(builder, loc, cc(iters)); |
| }; |
| } |
| mlir::Type storageType = |
| fir::unwrapSequenceType(converter.genType(toEvExpr(x))); |
| return [=](IterSpace iters) -> ExtValue { |
| return placeScalarValueInMemory(builder, loc, cc(iters), storageType); |
| }; |
| } else if (isArray(x)) { |
| // An array reference is needed, but the indices used in its path must |
| // still be retrieved by value. |
| assert(!nextPathSemant && "Next path semantics already set!"); |
| nextPathSemant = ConstituentSemantics::RefTransparent; |
| CC cc = genarr(x); |
| assert(!nextPathSemant && "Next path semantics wasn't used!"); |
| return cc; |
| } |
| } |
| return genarr(x); |
| } |
| |
| // A reference to a Fortran elemental intrinsic or intrinsic module procedure. |
| CC genElementalIntrinsicProcRef( |
| const Fortran::evaluate::ProcedureRef &procRef, |
| std::optional<mlir::Type> retTy, |
| std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = |
| std::nullopt) { |
| |
| llvm::SmallVector<CC> operands; |
| std::string name = |
| intrinsic ? intrinsic->name |
| : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); |
| const fir::IntrinsicArgumentLoweringRules *argLowering = |
| fir::getIntrinsicArgumentLowering(name); |
| mlir::Location loc = getLoc(); |
| if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( |
| procRef, *intrinsic, converter)) { |
| using CcPairT = std::pair<CC, std::optional<mlir::Value>>; |
| llvm::SmallVector<CcPairT> operands; |
| auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { |
| if (expr.Rank() == 0) { |
| ExtValue optionalArg = this->asInquired(expr); |
| mlir::Value isPresent = |
| genActualIsPresentTest(builder, loc, optionalArg); |
| operands.emplace_back( |
| [=](IterSpace iters) -> ExtValue { |
| return genLoad(builder, loc, optionalArg); |
| }, |
| isPresent); |
| } else { |
| auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr); |
| operands.emplace_back(cc, isPresent); |
| } |
| }; |
| auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr, |
| fir::LowerIntrinsicArgAs lowerAs) { |
| assert(lowerAs == fir::LowerIntrinsicArgAs::Value && |
| "expect value arguments for elemental intrinsic"); |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| operands.emplace_back(genElementalArgument(expr), std::nullopt); |
| }; |
| Fortran::lower::prepareCustomIntrinsicArgument( |
| procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg, |
| converter); |
| |
| fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
| return [=](IterSpace iters) -> ExtValue { |
| auto getArgument = [&](std::size_t i, bool) -> ExtValue { |
| return operands[i].first(iters); |
| }; |
| auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> { |
| return operands[i].second; |
| }; |
| return Fortran::lower::lowerCustomIntrinsic( |
| *bldr, loc, name, retTy, isPresent, getArgument, operands.size(), |
| getElementCtx()); |
| }; |
| } |
| /// Otherwise, pre-lower arguments and use intrinsic lowering utility. |
| for (const auto &arg : llvm::enumerate(procRef.arguments())) { |
| const auto *expr = |
| Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); |
| if (!expr) { |
| // Absent optional. |
| operands.emplace_back([=](IterSpace) { return mlir::Value{}; }); |
| } else if (!argLowering) { |
| // No argument lowering instruction, lower by value. |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } else { |
| // Ad-hoc argument lowering handling. |
| fir::ArgLoweringRule argRules = |
| fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
| if (argRules.handleDynamicOptional && |
| Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) { |
| // Currently, there is not elemental intrinsic that requires lowering |
| // a potentially absent argument to something else than a value (apart |
| // from character MAX/MIN that are handled elsewhere.) |
| if (argRules.lowerAs != fir::LowerIntrinsicArgAs::Value) |
| TODO(loc, "non trivial optional elemental intrinsic array " |
| "argument"); |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr)); |
| continue; |
| } |
| switch (argRules.lowerAs) { |
| case fir::LowerIntrinsicArgAs::Value: { |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } break; |
| case fir::LowerIntrinsicArgAs::Addr: { |
| // Note: assume does not have Fortran VALUE attribute semantics. |
| PushSemantics(ConstituentSemantics::RefOpaque); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } break; |
| case fir::LowerIntrinsicArgAs::Box: { |
| PushSemantics(ConstituentSemantics::RefOpaque); |
| auto lambda = genElementalArgument(*expr); |
| operands.emplace_back([=](IterSpace iters) { |
| return builder.createBox(loc, lambda(iters)); |
| }); |
| } break; |
| case fir::LowerIntrinsicArgAs::Inquired: |
| TODO(loc, "intrinsic function with inquired argument"); |
| break; |
| } |
| } |
| } |
| |
| // Let the intrinsic library lower the intrinsic procedure call |
| return [=](IterSpace iters) { |
| llvm::SmallVector<ExtValue> args; |
| for (const auto &cc : operands) |
| args.push_back(cc(iters)); |
| return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args, |
| getElementCtx()); |
| }; |
| } |
| |
| /// Lower a procedure reference to a user-defined elemental procedure. |
| CC genElementalUserDefinedProcRef( |
| const Fortran::evaluate::ProcedureRef &procRef, |
| std::optional<mlir::Type> retTy) { |
| using PassBy = Fortran::lower::CallerInterface::PassEntityBy; |
| |
| // 10.1.4 p5. Impure elemental procedures must be called in element order. |
| if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol()) |
| if (!Fortran::semantics::IsPureProcedure(*procSym)) |
| setUnordered(false); |
| |
| Fortran::lower::CallerInterface caller(procRef, converter); |
| llvm::SmallVector<CC> operands; |
| operands.reserve(caller.getPassedArguments().size()); |
| mlir::Location loc = getLoc(); |
| mlir::FunctionType callSiteType = caller.genFunctionType(); |
| for (const Fortran::lower::CallInterface< |
| Fortran::lower::CallerInterface>::PassedEntity &arg : |
| caller.getPassedArguments()) { |
| // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout) |
| // arguments must be called in element order. |
| if (arg.mayBeModifiedByCall()) |
| setUnordered(false); |
| const auto *actual = arg.entity; |
| mlir::Type argTy = callSiteType.getInput(arg.firArgument); |
| if (!actual) { |
| // Optional dummy argument for which there is no actual argument. |
| auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
| operands.emplace_back([=](IterSpace) { return absent; }); |
| continue; |
| } |
| const auto *expr = actual->UnwrapExpr(); |
| if (!expr) |
| TODO(loc, "assumed type actual argument"); |
| |
| LLVM_DEBUG(expr->AsFortran(llvm::dbgs() |
| << "argument: " << arg.firArgument << " = [") |
| << "]\n"); |
| if (arg.isOptional() && |
| Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) |
| TODO(loc, |
| "passing dynamically optional argument to elemental procedures"); |
| switch (arg.passBy) { |
| case PassBy::Value: { |
| // True pass-by-value semantics. |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } break; |
| case PassBy::BaseAddressValueAttribute: { |
| // VALUE attribute or pass-by-reference to a copy semantics. (byval*) |
| if (isArray(*expr)) { |
| PushSemantics(ConstituentSemantics::ByValueArg); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } else { |
| // Store scalar value in a temp to fulfill VALUE attribute. |
| mlir::Value val = fir::getBase(asScalar(*expr)); |
| mlir::Value temp = |
| builder.createTemporary(loc, val.getType(), |
| llvm::ArrayRef<mlir::NamedAttribute>{ |
| fir::getAdaptToByRefAttr(builder)}); |
| builder.create<fir::StoreOp>(loc, val, temp); |
| operands.emplace_back( |
| [=](IterSpace iters) -> ExtValue { return temp; }); |
| } |
| } break; |
| case PassBy::BaseAddress: { |
| if (isArray(*expr)) { |
| PushSemantics(ConstituentSemantics::RefOpaque); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } else { |
| ExtValue exv = asScalarRef(*expr); |
| operands.emplace_back([=](IterSpace iters) { return exv; }); |
| } |
| } break; |
| case PassBy::CharBoxValueAttribute: { |
| if (isArray(*expr)) { |
| PushSemantics(ConstituentSemantics::DataValue); |
| auto lambda = genElementalArgument(*expr); |
| operands.emplace_back([=](IterSpace iters) { |
| return fir::factory::CharacterExprHelper{builder, loc} |
| .createTempFrom(lambda(iters)); |
| }); |
| } else { |
| fir::factory::CharacterExprHelper helper(builder, loc); |
| fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr)); |
| operands.emplace_back( |
| [=](IterSpace iters) -> ExtValue { return argVal; }); |
| } |
| } break; |
| case PassBy::BoxChar: { |
| PushSemantics(ConstituentSemantics::RefOpaque); |
| operands.emplace_back(genElementalArgument(*expr)); |
| } break; |
| case PassBy::AddressAndLength: |
| // PassBy::AddressAndLength is only used for character results. Results |
| // are not handled here. |
| fir::emitFatalError( |
| loc, "unexpected PassBy::AddressAndLength in elemental call"); |
| break; |
| case PassBy::CharProcTuple: { |
| ExtValue argRef = asScalarRef(*expr); |
| mlir::Value tuple = createBoxProcCharTuple( |
| converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); |
| operands.emplace_back( |
| [=](IterSpace iters) -> ExtValue { return tuple; }); |
| } break; |
| case PassBy::Box: |
| case PassBy::MutableBox: |
| // Handle polymorphic passed object. |
| if (fir::isPolymorphicType(argTy)) { |
| if (isArray(*expr)) { |
| ExtValue exv = asScalarRef(*expr); |
| mlir::Value sourceBox; |
| if (fir::isPolymorphicType(fir::getBase(exv).getType())) |
| sourceBox = fir::getBase(exv); |
| mlir::Type baseTy = |
| fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType()); |
| mlir::Type innerTy = fir::unwrapSequenceType(baseTy); |
| operands.emplace_back([=](IterSpace iters) -> ExtValue { |
| mlir::Value coord = builder.create<fir::CoordinateOp>( |
| loc, fir::ReferenceType::get(innerTy), fir::getBase(exv), |
| iters.iterVec()); |
| mlir::Value empty; |
| mlir::ValueRange emptyRange; |
| return builder.create<fir::EmboxOp>( |
| loc, fir::ClassType::get(innerTy), coord, empty, empty, |
| emptyRange, sourceBox); |
| }); |
| } else { |
| ExtValue exv = asScalarRef(*expr); |
| if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) { |
| operands.emplace_back( |
| [=](IterSpace iters) -> ExtValue { return exv; }); |
| } else { |
| mlir::Type baseTy = |
| fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType()); |
| operands.emplace_back([=](IterSpace iters) -> ExtValue { |
| mlir::Value empty; |
| mlir::ValueRange emptyRange; |
| return builder.create<fir::EmboxOp>( |
| loc, fir::ClassType::get(baseTy), fir::getBase(exv), empty, |
| empty, emptyRange); |
| }); |
| } |
| } |
| break; |
| } |
| // See C15100 and C15101 |
| fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE"); |
| case PassBy::BoxProcRef: |
| // Procedure pointer: no action here. |
| break; |
| } |
| } |
| |
| if (caller.getIfIndirectCall()) |
| fir::emitFatalError(loc, "cannot be indirect call"); |
| |
| // The lambda is mutable so that `caller` copy can be modified inside it. |
| return [=, |
| caller = std::move(caller)](IterSpace iters) mutable -> ExtValue { |
| for (const auto &[cc, argIface] : |
| llvm::zip(operands, caller.getPassedArguments())) { |
| auto exv = cc(iters); |
| auto arg = exv.match( |
| [&](const fir::CharBoxValue &cb) -> mlir::Value { |
| return fir::factory::CharacterExprHelper{builder, loc} |
| .createEmbox(cb); |
| }, |
| [&](const auto &) { return fir::getBase(exv); }); |
| caller.placeInput(argIface, arg); |
| } |
| Fortran::lower::LoweredResult res = |
| Fortran::lower::genCallOpAndResult(loc, converter, symMap, |
| getElementCtx(), caller, |
| callSiteType, retTy) |
| .first; |
| return std::get<ExtValue>(res); |
| }; |
| } |
| |
| /// Lower TRANSPOSE call without using runtime TRANSPOSE. |
| /// Return continuation for generating the TRANSPOSE result. |
| /// The continuation just swaps the iteration space before |
| /// invoking continuation for the argument. |
| CC genTransposeProcRef(const Fortran::evaluate::ProcedureRef &procRef) { |
| assert(procRef.arguments().size() == 1 && |
| "TRANSPOSE must have one argument."); |
| const auto *argExpr = procRef.arguments()[0].value().UnwrapExpr(); |
| assert(argExpr); |
| |
| llvm::SmallVector<mlir::Value> savedDestShape = destShape; |
| assert((destShape.empty() || destShape.size() == 2) && |
| "TRANSPOSE destination must have rank 2."); |
| |
| if (!savedDestShape.empty()) |
| std::swap(destShape[0], destShape[1]); |
| |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| llvm::SmallVector<CC> operands{genElementalArgument(*argExpr)}; |
| |
| if (!savedDestShape.empty()) { |
| // If destShape was set before transpose lowering, then |
| // restore it. Otherwise, ... |
| destShape = savedDestShape; |
| } else if (!destShape.empty()) { |
| // ... if destShape has been set from the argument lowering, |
| // then reverse it. |
| assert(destShape.size() == 2 && |
| "TRANSPOSE destination must have rank 2."); |
| std::swap(destShape[0], destShape[1]); |
| } |
| |
| return [=](IterSpace iters) { |
| assert(iters.iterVec().size() == 2 && |
| "TRANSPOSE expects 2D iterations space."); |
| IterationSpace newIters(iters, {iters.iterValue(1), iters.iterValue(0)}); |
| return operands.front()(newIters); |
| }; |
| } |
| |
| /// Generate a procedure reference. This code is shared for both functions and |
| /// subroutines, the difference being reflected by `retTy`. |
| CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef, |
| std::optional<mlir::Type> retTy) { |
| mlir::Location loc = getLoc(); |
| setLoweredProcRef(&procRef); |
| |
| if (isOptimizableTranspose(procRef, converter)) |
| return genTransposeProcRef(procRef); |
| |
| if (procRef.IsElemental()) { |
| if (const Fortran::evaluate::SpecificIntrinsic *intrin = |
| procRef.proc().GetSpecificIntrinsic()) { |
| // All elemental intrinsic functions are pure and cannot modify their |
| // arguments. The only elemental subroutine, MVBITS has an Intent(inout) |
| // argument. So for this last one, loops must be in element order |
| // according to 15.8.3 p1. |
| if (!retTy) |
| setUnordered(false); |
| |
| // Elemental intrinsic call. |
| // The intrinsic procedure is called once per element of the array. |
| return genElementalIntrinsicProcRef(procRef, retTy, *intrin); |
| } |
| if (Fortran::lower::isIntrinsicModuleProcRef(procRef)) |
| return genElementalIntrinsicProcRef(procRef, retTy); |
| if (ScalarExprLowering::isStatementFunctionCall(procRef)) |
| fir::emitFatalError(loc, "statement function cannot be elemental"); |
| |
| // Elemental call. |
| // The procedure is called once per element of the array argument(s). |
| return genElementalUserDefinedProcRef(procRef, retTy); |
| } |
| |
| // Transformational call. |
| // The procedure is called once and produces a value of rank > 0. |
| if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
| procRef.proc().GetSpecificIntrinsic()) { |
| if (explicitSpaceIsActive() && procRef.Rank() == 0) { |
| // Elide any implicit loop iters. |
| return [=, &procRef](IterSpace) { |
| return ScalarExprLowering{loc, converter, symMap, stmtCtx} |
| .genIntrinsicRef(procRef, retTy, *intrinsic); |
| }; |
| } |
| return genarr( |
| ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef( |
| procRef, retTy, *intrinsic)); |
| } |
| |
| const bool isPtrAssn = isPointerAssignment(); |
| if (explicitSpaceIsActive() && procRef.Rank() == 0) { |
| // Elide any implicit loop iters. |
| return [=, &procRef](IterSpace) { |
| ScalarExprLowering sel(loc, converter, symMap, stmtCtx); |
| return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) |
| : sel.genProcedureRef(procRef, retTy); |
| }; |
| } |
| // In the default case, the call can be hoisted out of the loop nest. Apply |
| // the iterations to the result, which may be an array value. |
| ScalarExprLowering sel(loc, converter, symMap, stmtCtx); |
| auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) |
| : sel.genProcedureRef(procRef, retTy); |
| return genarr(exv); |
| } |
| |
| CC genarr(const Fortran::evaluate::ProcedureDesignator &) { |
| TODO(getLoc(), "procedure designator"); |
| } |
| CC genarr(const Fortran::evaluate::ProcedureRef &x) { |
| if (x.hasAlternateReturns()) |
| fir::emitFatalError(getLoc(), |
| "array procedure reference with alt-return"); |
| return genProcRef(x, std::nullopt); |
| } |
| template <typename A> |
| CC genScalarAndForwardValue(const A &x) { |
| ExtValue result = asScalar(x); |
| return [=](IterSpace) { return result; }; |
| } |
| template <typename A, typename = std::enable_if_t<Fortran::common::HasMember< |
| A, Fortran::evaluate::TypelessExpression>>> |
| CC genarr(const A &x) { |
| return genScalarAndForwardValue(x); |
| } |
| |
| template <typename A> |
| CC genarr(const Fortran::evaluate::Expr<A> &x) { |
| LLVM_DEBUG(Fortran::semantics::DumpEvaluateExpr::Dump(llvm::dbgs(), x)); |
| if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) || |
| isElementalProcWithArrayArgs(x)) |
| return Fortran::common::visit([&](const auto &e) { return genarr(e); }, |
| x.u); |
| if (explicitSpaceIsActive()) { |
| assert(!isArray(x) && !isLeftHandSide()); |
| auto cc = |
| Fortran::common::visit([&](const auto &e) { return genarr(e); }, x.u); |
| auto result = cc(IterationSpace{}); |
| return [=](IterSpace) { return result; }; |
| } |
| return genScalarAndForwardValue(x); |
| } |
| |
| // Converting a value of memory bound type requires creating a temp and |
| // copying the value. |
| static ExtValue convertAdjustedType(fir::FirOpBuilder &builder, |
| mlir::Location loc, mlir::Type toType, |
| const ExtValue &exv) { |
| return exv.match( |
| [&](const fir::CharBoxValue &cb) -> ExtValue { |
| mlir::Value len = cb.getLen(); |
| auto mem = |
| builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len}); |
| fir::CharBoxValue result(mem, len); |
| fir::factory::CharacterExprHelper{builder, loc}.createAssign( |
| ExtValue{result}, exv); |
| return result; |
| }, |
| [&](const auto &) -> ExtValue { |
| fir::emitFatalError(loc, "convert on adjusted extended value"); |
| }); |
| } |
| template <Fortran::common::TypeCategory TC1, int KIND, |
| Fortran::common::TypeCategory TC2> |
| CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, |
| TC2> &x) { |
| mlir::Location loc = getLoc(); |
| auto lambda = genarr(x.left()); |
| mlir::Type ty = converter.genType(TC1, KIND); |
| return [=](IterSpace iters) -> ExtValue { |
| auto exv = lambda(iters); |
| mlir::Value val = fir::getBase(exv); |
| auto valTy = val.getType(); |
| if (elementTypeWasAdjusted(valTy) && |
| !(fir::isa_ref_type(valTy) && fir::isa_integer(ty))) |
| return convertAdjustedType(builder, loc, ty, exv); |
| return builder.createConvert(loc, ty, val); |
| }; |
| } |
| |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) { |
| mlir::Location loc = getLoc(); |
| auto lambda = genarr(x.left()); |
| bool isImagPart = x.isImaginaryPart; |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lambda(iters)); |
| return fir::factory::Complex{builder, loc}.extractComplexPart(lhs, |
| isImagPart); |
| }; |
| } |
| |
| template <typename T> |
| CC genarr(const Fortran::evaluate::Parentheses<T> &x) { |
| mlir::Location loc = getLoc(); |
| if (isReferentiallyOpaque()) { |
| // Context is a call argument in, for example, an elemental procedure |
| // call. TODO: all array arguments should use array_load, array_access, |
| // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have |
| // array_merge_store ops. |
| TODO(loc, "parentheses on argument in elemental call"); |
| } |
| auto f = genarr(x.left()); |
| return [=](IterSpace iters) -> ExtValue { |
| auto val = f(iters); |
| mlir::Value base = fir::getBase(val); |
| auto newBase = |
| builder.create<fir::NoReassocOp>(loc, base.getType(), base); |
| return fir::substBase(val, newBase); |
| }; |
| } |
| template <Fortran::common::TypeCategory CAT, int KIND> |
| CC genarrIntNeg( |
| const Fortran::evaluate::Expr<Fortran::evaluate::Type<CAT, KIND>> &left) { |
| mlir::Location loc = getLoc(); |
| auto f = genarr(left); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value val = fir::getBase(f(iters)); |
| mlir::Type ty = |
| converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
| mlir::Value zero = builder.createIntegerConstant(loc, ty, 0); |
| if constexpr (CAT == Fortran::common::TypeCategory::Unsigned) { |
| mlir::Value signless = builder.createConvert(loc, ty, val); |
| mlir::Value neg = |
| builder.create<mlir::arith::SubIOp>(loc, zero, signless); |
| return builder.createConvert(loc, val.getType(), neg); |
| } |
| return builder.create<mlir::arith::SubIOp>(loc, zero, val); |
| }; |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Integer, KIND>> &x) { |
| return genarrIntNeg(x.left()); |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Unsigned, KIND>> &x) { |
| return genarrIntNeg(x.left()); |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Real, KIND>> &x) { |
| mlir::Location loc = getLoc(); |
| auto f = genarr(x.left()); |
| return [=](IterSpace iters) -> ExtValue { |
| return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters))); |
| }; |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Complex, KIND>> &x) { |
| mlir::Location loc = getLoc(); |
| auto f = genarr(x.left()); |
| return [=](IterSpace iters) -> ExtValue { |
| return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters))); |
| }; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Binary elemental ops |
| //===--------------------------------------------------------------------===// |
| |
| template <typename OP, typename A> |
| CC createBinaryOp(const A &evEx) { |
| mlir::Location loc = getLoc(); |
| auto lambda = genarr(evEx.left()); |
| auto rf = genarr(evEx.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value left = fir::getBase(lambda(iters)); |
| mlir::Value right = fir::getBase(rf(iters)); |
| assert(left.getType() == right.getType() && "types must be the same"); |
| return builder.createUnsigned<OP>(loc, left.getType(), left, right); |
| }; |
| } |
| |
| #undef GENBIN |
| #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ |
| template <int KIND> \ |
| CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ |
| Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ |
| return createBinaryOp<GenBinFirOp>(x); \ |
| } |
| |
| GENBIN(Add, Integer, mlir::arith::AddIOp) |
| GENBIN(Add, Unsigned, mlir::arith::AddIOp) |
| GENBIN(Add, Real, mlir::arith::AddFOp) |
| GENBIN(Add, Complex, fir::AddcOp) |
| GENBIN(Subtract, Integer, mlir::arith::SubIOp) |
| GENBIN(Subtract, Unsigned, mlir::arith::SubIOp) |
| GENBIN(Subtract, Real, mlir::arith::SubFOp) |
| GENBIN(Subtract, Complex, fir::SubcOp) |
| GENBIN(Multiply, Integer, mlir::arith::MulIOp) |
| GENBIN(Multiply, Unsigned, mlir::arith::MulIOp) |
| GENBIN(Multiply, Real, mlir::arith::MulFOp) |
| GENBIN(Multiply, Complex, fir::MulcOp) |
| GENBIN(Divide, Integer, mlir::arith::DivSIOp) |
| GENBIN(Divide, Unsigned, mlir::arith::DivUIOp) |
| GENBIN(Divide, Real, mlir::arith::DivFOp) |
| |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Divide<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Complex, KIND>> &x) { |
| mlir::Location loc = getLoc(); |
| mlir::Type ty = |
| converter.genType(Fortran::common::TypeCategory::Complex, KIND); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| return fir::genDivC(builder, loc, ty, lhs, rhs); |
| }; |
| } |
| |
| template <Fortran::common::TypeCategory TC, int KIND> |
| CC genarr( |
| const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { |
| mlir::Location loc = getLoc(); |
| mlir::Type ty = converter.genType(TC, KIND); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| return fir::genPow(builder, loc, ty, lhs, rhs); |
| }; |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| CC genarr( |
| const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { |
| mlir::Location loc = getLoc(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| switch (x.ordering) { |
| case Fortran::evaluate::Ordering::Greater: |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| return fir::genMax(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| }; |
| case Fortran::evaluate::Ordering::Less: |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| return fir::genMin(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| }; |
| case Fortran::evaluate::Ordering::Equal: |
| llvm_unreachable("Equal is not a valid ordering in this context"); |
| } |
| llvm_unreachable("unknown ordering"); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| CC genarr( |
| const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
| &x) { |
| mlir::Location loc = getLoc(); |
| auto ty = converter.genType(TC, KIND); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| return fir::genPow(builder, loc, ty, lhs, rhs); |
| }; |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) { |
| mlir::Location loc = getLoc(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| return fir::factory::Complex{builder, loc}.createComplex(lhs, rhs); |
| }; |
| } |
| |
| /// Fortran's concatenation operator `//`. |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Concat<KIND> &x) { |
| mlir::Location loc = getLoc(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| auto lhs = lf(iters); |
| auto rhs = rf(iters); |
| const fir::CharBoxValue *lchr = lhs.getCharBox(); |
| const fir::CharBoxValue *rchr = rhs.getCharBox(); |
| if (lchr && rchr) { |
| return fir::factory::CharacterExprHelper{builder, loc} |
| .createConcatenate(*lchr, *rchr); |
| } |
| TODO(loc, "concat on unexpected extended values"); |
| return mlir::Value{}; |
| }; |
| } |
| |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::SetLength<KIND> &x) { |
| auto lf = genarr(x.left()); |
| mlir::Value rhs = fir::getBase(asScalar(x.right())); |
| fir::CharBoxValue temp = |
| fir::factory::CharacterExprHelper(builder, getLoc()) |
| .createCharacterTemp( |
| fir::CharacterType::getUnknownLen(builder.getContext(), KIND), |
| rhs); |
| return [=](IterSpace iters) -> ExtValue { |
| fir::factory::CharacterExprHelper(builder, getLoc()) |
| .createAssign(temp, lf(iters)); |
| return temp; |
| }; |
| } |
| |
| template <typename T> |
| CC genarr(const Fortran::evaluate::Constant<T> &x) { |
| if (x.Rank() == 0) |
| return genScalarAndForwardValue(x); |
| return genarr(Fortran::lower::convertConstant( |
| converter, getLoc(), x, |
| /*outlineBigConstantsInReadOnlyMemory=*/true)); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // A vector subscript expression may be wrapped with a cast to INTEGER*8. |
| // Get rid of it here so the vector can be loaded. Add it back when |
| // generating the elemental evaluation (inside the loop nest). |
| |
| static Fortran::lower::SomeExpr |
| ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Integer, 8>> &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return ignoreEvConvert(v); }, x.u); |
| } |
| template <Fortran::common::TypeCategory FROM> |
| static Fortran::lower::SomeExpr ignoreEvConvert( |
| const Fortran::evaluate::Convert< |
| Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>, |
| FROM> &x) { |
| return toEvExpr(x.left()); |
| } |
| template <typename A> |
| static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) { |
| return toEvExpr(x); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can |
| // be used to determine the lbound, ubound of the vector. |
| |
| template <typename A> |
| static const Fortran::semantics::Symbol * |
| extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return extractSubscriptSymbol(v); }, x.u); |
| } |
| template <typename A> |
| static const Fortran::semantics::Symbol * |
| extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) { |
| return Fortran::evaluate::UnwrapWholeSymbolDataRef(x); |
| } |
| template <typename A> |
| static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) { |
| return nullptr; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| |
| /// Get the declared lower bound value of the array `x` in dimension `dim`. |
| /// The argument `one` must be an ssa-value for the constant 1. |
| mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) { |
| return fir::factory::readLowerBound(builder, getLoc(), x, dim, one); |
| } |
| |
| /// Get the declared upper bound value of the array `x` in dimension `dim`. |
| /// The argument `one` must be an ssa-value for the constant 1. |
| mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) { |
| mlir::Location loc = getLoc(); |
| mlir::Value lb = getLBound(x, dim, one); |
| mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim); |
| auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); |
| return builder.create<mlir::arith::SubIOp>(loc, add, one); |
| } |
| |
| /// Return the extent of the boxed array `x` in dimesion `dim`. |
| mlir::Value getExtent(const ExtValue &x, unsigned dim) { |
| return fir::factory::readExtent(builder, getLoc(), x, dim); |
| } |
| |
| template <typename A> |
| ExtValue genArrayBase(const A &base) { |
| ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx}; |
| return base.IsSymbol() ? sel.gen(getFirstSym(base)) |
| : sel.gen(base.GetComponent()); |
| } |
| |
| template <typename A> |
| bool hasEvArrayRef(const A &x) { |
| struct HasEvArrayRefHelper |
| : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> { |
| HasEvArrayRefHelper() |
| : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {} |
| using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator(); |
| bool operator()(const Fortran::evaluate::ArrayRef &) const { |
| return true; |
| } |
| } helper; |
| return helper(x); |
| } |
| |
| CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr, |
| std::size_t dim) { |
| PushSemantics(ConstituentSemantics::RefTransparent); |
| auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr); |
| llvm::SmallVector<mlir::Value> savedDestShape = destShape; |
| destShape.clear(); |
| auto result = genarr(expr); |
| if (destShape.empty()) |
| TODO(getLoc(), "expected vector to have an extent"); |
| assert(destShape.size() == 1 && "vector has rank > 1"); |
| if (destShape[0] != savedDestShape[dim]) { |
| // Not the same, so choose the smaller value. |
| mlir::Location loc = getLoc(); |
| auto cmp = builder.create<mlir::arith::CmpIOp>( |
| loc, mlir::arith::CmpIPredicate::sgt, destShape[0], |
| savedDestShape[dim]); |
| auto sel = builder.create<mlir::arith::SelectOp>( |
| loc, cmp, savedDestShape[dim], destShape[0]); |
| savedDestShape[dim] = sel; |
| destShape = savedDestShape; |
| } |
| return result; |
| } |
| |
| /// Generate an access by vector subscript using the index in the iteration |
| /// vector at `dim`. |
| mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch, |
| IterSpace iters, std::size_t dim) { |
| IterationSpace vecIters(iters, |
| llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)}); |
| fir::ExtendedValue fetch = genArrFetch(vecIters); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| return builder.createConvert(loc, idxTy, fir::getBase(fetch)); |
| } |
| |
| /// When we have an array reference, the expressions specified in each |
| /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple |
| /// (loop-invarianet) scalar expressions. This returns the base entity, the |
| /// resulting type, and a continuation to adjust the default iteration space. |
| void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv, |
| const Fortran::evaluate::ArrayRef &x, bool atBase) { |
| mlir::Location loc = getLoc(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| llvm::SmallVector<mlir::Value> &trips = cmptData.trips; |
| LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n'); |
| auto &pc = cmptData.pc; |
| const bool useTripsForSlice = !explicitSpaceIsActive(); |
| const bool createDestShape = destShape.empty(); |
| bool useSlice = false; |
| std::size_t shapeIndex = 0; |
| for (auto sub : llvm::enumerate(x.subscript())) { |
| const std::size_t subsIndex = sub.index(); |
| Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const Fortran::evaluate::Triplet &t) { |
| mlir::Value lowerBound; |
| if (auto optLo = t.lower()) |
| lowerBound = fir::getBase(asScalarArray(*optLo)); |
| else |
| lowerBound = getLBound(arrayExv, subsIndex, one); |
| lowerBound = builder.createConvert(loc, idxTy, lowerBound); |
| mlir::Value stride = fir::getBase(asScalarArray(t.stride())); |
| stride = builder.createConvert(loc, idxTy, stride); |
| if (useTripsForSlice || createDestShape) { |
| // Generate a slice operation for the triplet. The first and |
| // second position of the triplet may be omitted, and the |
| // declared lbound and/or ubound expression values, |
| // respectively, should be used instead. |
| trips.push_back(lowerBound); |
| mlir::Value upperBound; |
| if (auto optUp = t.upper()) |
| upperBound = fir::getBase(asScalarArray(*optUp)); |
| else |
| upperBound = getUBound(arrayExv, subsIndex, one); |
| upperBound = builder.createConvert(loc, idxTy, upperBound); |
| trips.push_back(upperBound); |
| trips.push_back(stride); |
| if (createDestShape) { |
| auto extent = builder.genExtentFromTriplet( |
| loc, lowerBound, upperBound, stride, idxTy); |
| destShape.push_back(extent); |
| } |
| useSlice = true; |
| } |
| if (!useTripsForSlice) { |
| auto currentPC = pc; |
| pc = [=](IterSpace iters) { |
| IterationSpace newIters = currentPC(iters); |
| mlir::Value impliedIter = newIters.iterValue(subsIndex); |
| // FIXME: must use the lower bound of this component. |
| auto arrLowerBound = |
| atBase ? getLBound(arrayExv, subsIndex, one) : one; |
| auto initial = builder.create<mlir::arith::SubIOp>( |
| loc, lowerBound, arrLowerBound); |
| auto prod = builder.create<mlir::arith::MulIOp>( |
| loc, impliedIter, stride); |
| auto result = |
| builder.create<mlir::arith::AddIOp>(loc, initial, prod); |
| newIters.setIndexValue(subsIndex, result); |
| return newIters; |
| }; |
| } |
| shapeIndex++; |
| }, |
| [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) { |
| const auto &e = ie.value(); // dereference |
| if (isArray(e)) { |
| // This is a vector subscript. Use the index values as read |
| // from a vector to determine the temporary array value. |
| // Note: 9.5.3.3.3(3) specifies undefined behavior for |
| // multiple updates to any specific array element through a |
| // vector subscript with replicated values. |
| assert(!isBoxValue() && |
| "fir.box cannot be created with vector subscripts"); |
| // TODO: Avoid creating a new evaluate::Expr here |
| auto arrExpr = ignoreEvConvert(e); |
| if (createDestShape) { |
| destShape.push_back(fir::factory::getExtentAtDimension( |
| loc, builder, arrayExv, subsIndex)); |
| } |
| auto genArrFetch = |
| genVectorSubscriptArrayFetch(arrExpr, shapeIndex); |
| auto currentPC = pc; |
| pc = [=](IterSpace iters) { |
| IterationSpace newIters = currentPC(iters); |
| auto val = genAccessByVector(loc, genArrFetch, newIters, |
| subsIndex); |
| // Value read from vector subscript array and normalized |
| // using the base array's lower bound value. |
| mlir::Value lb = fir::factory::readLowerBound( |
| builder, loc, arrayExv, subsIndex, one); |
| auto origin = builder.create<mlir::arith::SubIOp>( |
| loc, idxTy, val, lb); |
| newIters.setIndexValue(subsIndex, origin); |
| return newIters; |
| }; |
| if (useTripsForSlice) { |
| LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape = |
| getShape(arrayOperands.back()); |
| auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
| trips.push_back(undef); |
| trips.push_back(undef); |
| trips.push_back(undef); |
| } |
| shapeIndex++; |
| } else { |
| // This is a regular scalar subscript. |
| if (useTripsForSlice) { |
| // A regular scalar index, which does not yield an array |
| // section. Use a degenerate slice operation |
| // `(e:undef:undef)` in this dimension as a placeholder. |
| // This does not necessarily change the rank of the original |
| // array, so the iteration space must also be extended to |
| // include this expression in this dimension to adjust to |
| // the array's declared rank. |
| mlir::Value v = fir::getBase(asScalarArray(e)); |
| trips.push_back(v); |
| auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
| trips.push_back(undef); |
| trips.push_back(undef); |
| auto currentPC = pc; |
| // Cast `e` to index type. |
| mlir::Value iv = builder.createConvert(loc, idxTy, v); |
| // Normalize `e` by subtracting the declared lbound. |
| mlir::Value lb = fir::factory::readLowerBound( |
| builder, loc, arrayExv, subsIndex, one); |
| mlir::Value ivAdj = |
| builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb); |
| // Add lbound adjusted value of `e` to the iteration vector |
| // (except when creating a box because the iteration vector |
| // is empty). |
| if (!isBoxValue()) |
| pc = [=](IterSpace iters) { |
| IterationSpace newIters = currentPC(iters); |
| newIters.insertIndexValue(subsIndex, ivAdj); |
| return newIters; |
| }; |
| } else { |
| auto currentPC = pc; |
| mlir::Value newValue = fir::getBase(asScalarArray(e)); |
| mlir::Value result = |
| builder.createConvert(loc, idxTy, newValue); |
| mlir::Value lb = fir::factory::readLowerBound( |
| builder, loc, arrayExv, subsIndex, one); |
| result = builder.create<mlir::arith::SubIOp>(loc, idxTy, |
| result, lb); |
| pc = [=](IterSpace iters) { |
| IterationSpace newIters = currentPC(iters); |
| newIters.insertIndexValue(subsIndex, result); |
| return newIters; |
| }; |
| } |
| } |
| }}, |
| sub.value().u); |
| } |
| if (!useSlice) |
| trips.clear(); |
| } |
| |
| static mlir::Type unwrapBoxEleTy(mlir::Type ty) { |
| if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) |
| return fir::unwrapRefType(boxTy.getEleTy()); |
| return ty; |
| } |
| |
| llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) { |
| llvm::SmallVector<mlir::Value> result; |
| ty = unwrapBoxEleTy(ty); |
| mlir::Location loc = getLoc(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| auto seqType = mlir::cast<fir::SequenceType>(ty); |
| for (auto extent : seqType.getShape()) { |
| auto v = extent == fir::SequenceType::getUnknownExtent() |
| ? builder.create<fir::UndefOp>(loc, idxTy).getResult() |
| : builder.createIntegerConstant(loc, idxTy, extent); |
| result.push_back(v); |
| } |
| return result; |
| } |
| |
| CC genarr(const Fortran::semantics::SymbolRef &sym, |
| ComponentPath &components) { |
| return genarr(sym.get(), components); |
| } |
| |
| ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) { |
| return convertToArrayBoxValue(getLoc(), builder, val, len); |
| } |
| |
| CC genarr(const ExtValue &extMemref) { |
| ComponentPath dummy(/*isImplicit=*/true); |
| return genarr(extMemref, dummy); |
| } |
| |
| // If the slice values are given then use them. Otherwise, generate triples |
| // that cover the entire shape specified by \p shapeVal. |
| inline llvm::SmallVector<mlir::Value> |
| padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) { |
| llvm::SmallVector<mlir::Value> result; |
| mlir::Location loc = getLoc(); |
| if (triples.size()) { |
| result.assign(triples.begin(), triples.end()); |
| } else { |
| auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
| if (!shapeVal) { |
| TODO(loc, "shape must be recovered from box"); |
| } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>( |
| shapeVal.getDefiningOp())) { |
| for (auto ext : shapeOp.getExtents()) { |
| result.push_back(one); |
| result.push_back(ext); |
| result.push_back(one); |
| } |
| } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>( |
| shapeVal.getDefiningOp())) { |
| for (auto [lb, ext] : |
| llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) { |
| result.push_back(lb); |
| result.push_back(ext); |
| result.push_back(one); |
| } |
| } else { |
| TODO(loc, "shape must be recovered from box"); |
| } |
| } |
| return result; |
| } |
| |
| /// Base case of generating an array reference, |
| CC genarr(const ExtValue &extMemref, ComponentPath &components, |
| mlir::Value CrayPtr = nullptr) { |
| mlir::Location loc = getLoc(); |
| mlir::Value memref = fir::getBase(extMemref); |
| mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType()); |
| assert(mlir::isa<fir::SequenceType>(arrTy) && |
| "memory ref must be an array"); |
| mlir::Value shape = builder.createShape(loc, extMemref); |
| mlir::Value slice; |
| if (components.isSlice()) { |
| if (isBoxValue() && components.substring) { |
| // Append the substring operator to emboxing Op as it will become an |
| // interior adjustment (add offset, adjust LEN) to the CHARACTER value |
| // being referenced in the descriptor. |
| llvm::SmallVector<mlir::Value> substringBounds; |
| populateBounds(substringBounds, components.substring); |
| // Convert to (offset, size) |
| mlir::Type iTy = substringBounds[0].getType(); |
| if (substringBounds.size() != 2) { |
| fir::CharacterType charTy = |
| fir::factory::CharacterExprHelper::getCharType(arrTy); |
| if (charTy.hasConstantLen()) { |
| mlir::IndexType idxTy = builder.getIndexType(); |
| fir::CharacterType::LenType charLen = charTy.getLen(); |
| mlir::Value lenValue = |
| builder.createIntegerConstant(loc, idxTy, charLen); |
| substringBounds.push_back(lenValue); |
| } else { |
| llvm::SmallVector<mlir::Value> typeparams = |
| fir::getTypeParams(extMemref); |
| substringBounds.push_back(typeparams.back()); |
| } |
| } |
| // Convert the lower bound to 0-based substring. |
| mlir::Value one = |
| builder.createIntegerConstant(loc, substringBounds[0].getType(), 1); |
| substringBounds[0] = |
| builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one); |
| // Convert the upper bound to a length. |
| mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]); |
| mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0); |
| auto size = |
| builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]); |
| auto cmp = builder.create<mlir::arith::CmpIOp>( |
| loc, mlir::arith::CmpIPredicate::sgt, size, zero); |
| // size = MAX(upper - (lower - 1), 0) |
| substringBounds[1] = |
| builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero); |
| slice = builder.create<fir::SliceOp>( |
| loc, padSlice(components.trips, shape), components.suffixComponents, |
| substringBounds); |
| } else { |
| slice = builder.createSlice(loc, extMemref, components.trips, |
| components.suffixComponents); |
| } |
| if (components.hasComponents()) { |
| auto seqTy = mlir::cast<fir::SequenceType>(arrTy); |
| mlir::Type eleTy = |
| fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents); |
| if (!eleTy) |
| fir::emitFatalError(loc, "slicing path is ill-formed"); |
| // create the type of the projected array. |
| arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy); |
| LLVM_DEBUG(llvm::dbgs() |
| << "type of array projection from component slicing: " |
| << eleTy << ", " << arrTy << '\n'); |
| } |
| } |
| arrayOperands.push_back(ArrayOperand{memref, shape, slice}); |
| if (destShape.empty()) |
| destShape = getShape(arrayOperands.back()); |
| if (isBoxValue()) { |
| // Semantics are a reference to a boxed array. |
| // This case just requires that an embox operation be created to box the |
| // value. The value of the box is forwarded in the continuation. |
| mlir::Type reduceTy = reduceRank(arrTy, slice); |
| mlir::Type boxTy = fir::BoxType::get(reduceTy); |
| if (mlir::isa<fir::ClassType>(memref.getType()) && |
| !components.hasComponents()) |
| boxTy = fir::ClassType::get(reduceTy); |
| if (components.substring) { |
| // Adjust char length to substring size. |
| fir::CharacterType charTy = |
| fir::factory::CharacterExprHelper::getCharType(reduceTy); |
| auto seqTy = mlir::cast<fir::SequenceType>(reduceTy); |
| // TODO: Use a constant for fir.char LEN if we can compute it. |
| boxTy = fir::BoxType::get( |
| fir::SequenceType::get(fir::CharacterType::getUnknownLen( |
| builder.getContext(), charTy.getFKind()), |
| seqTy.getDimension())); |
| } |
| llvm::SmallVector<mlir::Value> lbounds; |
| llvm::SmallVector<mlir::Value> nonDeferredLenParams; |
| if (!slice) { |
| lbounds = |
| fir::factory::getNonDefaultLowerBounds(builder, loc, extMemref); |
| nonDeferredLenParams = fir::factory::getNonDeferredLenParams(extMemref); |
| } |
| mlir::Value embox = |
| mlir::isa<fir::BaseBoxType>(memref.getType()) |
| ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice) |
| .getResult() |
| : builder |
| .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice, |
| fir::getTypeParams(extMemref)) |
| .getResult(); |
| return [=](IterSpace) -> ExtValue { |
| return fir::BoxValue(embox, lbounds, nonDeferredLenParams); |
| }; |
| } |
| auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| if (isReferentiallyOpaque()) { |
| // Semantics are an opaque reference to an array. |
| // This case forwards a continuation that will generate the address |
| // arithmetic to the array element. This does not have copy-in/copy-out |
| // semantics. No attempt to copy the array value will be made during the |
| // interpretation of the Fortran statement. |
| mlir::Type refEleTy = builder.getRefType(eleTy); |
| return [=](IterSpace iters) -> ExtValue { |
| // ArrayCoorOp does not expect zero based indices. |
| llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
| loc, builder, memref.getType(), shape, iters.iterVec()); |
| mlir::Value coor = builder.create<fir::ArrayCoorOp>( |
| loc, refEleTy, memref, shape, slice, indices, |
| fir::getTypeParams(extMemref)); |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| llvm::SmallVector<mlir::Value> substringBounds; |
| populateBounds(substringBounds, components.substring); |
| if (!substringBounds.empty()) { |
| mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| builder, loc, mlir::cast<fir::SequenceType>(arrTy), memref, |
| fir::getTypeParams(extMemref), iters.iterVec(), |
| substringBounds); |
| fir::CharBoxValue dstChar(coor, dstLen); |
| return fir::factory::CharacterExprHelper{builder, loc} |
| .createSubstring(dstChar, substringBounds); |
| } |
| } |
| return fir::factory::arraySectionElementToExtendedValue( |
| builder, loc, extMemref, coor, slice); |
| }; |
| } |
| auto arrLoad = builder.create<fir::ArrayLoadOp>( |
| loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref)); |
| |
| if (CrayPtr) { |
| mlir::Type ptrTy = CrayPtr.getType(); |
| mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
| loc, builder, CrayPtr, ptrTy, memref.getType()); |
| auto addr = builder.create<fir::LoadOp>(loc, cnvrt); |
| arrLoad = builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shape, slice, |
| fir::getTypeParams(extMemref)); |
| } |
| |
| mlir::Value arrLd = arrLoad.getResult(); |
| if (isProjectedCopyInCopyOut()) { |
| // Semantics are projected copy-in copy-out. |
| // The backing store of the destination of an array expression may be |
| // partially modified. These updates are recorded in FIR by forwarding a |
| // continuation that generates an `array_update` Op. The destination is |
| // always loaded at the beginning of the statement and merged at the |
| // end. |
| destination = arrLoad; |
| auto lambda = ccStoreToDest |
| ? *ccStoreToDest |
| : defaultStoreToDestination(components.substring); |
| return [=](IterSpace iters) -> ExtValue { return lambda(iters); }; |
| } |
| if (isCustomCopyInCopyOut()) { |
| // Create an array_modify to get the LHS element address and indicate |
| // the assignment, the actual assignment must be implemented in |
| // ccStoreToDest. |
| destination = arrLoad; |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value innerArg = iters.innerArgument(); |
| mlir::Type resTy = innerArg.getType(); |
| mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec()); |
| mlir::Type refEleTy = |
| fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); |
| auto arrModify = builder.create<fir::ArrayModifyOp>( |
| loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(), |
| destination.getTypeparams()); |
| return abstractArrayExtValue(arrModify.getResult(1)); |
| }; |
| } |
| if (isCopyInCopyOut()) { |
| // Semantics are copy-in copy-out. |
| // The continuation simply forwards the result of the `array_load` Op, |
| // which is the value of the array as it was when loaded. All data |
| // references with rank > 0 in an array expression typically have |
| // copy-in copy-out semantics. |
| return [=](IterSpace) -> ExtValue { return arrLd; }; |
| } |
| llvm::SmallVector<mlir::Value> arrLdTypeParams = |
| fir::factory::getTypeParams(loc, builder, arrLoad); |
| if (isValueAttribute()) { |
| // Semantics are value attribute. |
| // Here the continuation will `array_fetch` a value from an array and |
| // then store that value in a temporary. One can thus imitate pass by |
| // value even when the call is pass by reference. |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value base; |
| mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); |
| if (isAdjustedArrayElementType(eleTy)) { |
| mlir::Type eleRefTy = builder.getRefType(eleTy); |
| base = builder.create<fir::ArrayAccessOp>( |
| loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| } else { |
| base = builder.create<fir::ArrayFetchOp>( |
| loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| } |
| mlir::Value temp = |
| builder.createTemporary(loc, base.getType(), |
| llvm::ArrayRef<mlir::NamedAttribute>{ |
| fir::getAdaptToByRefAttr(builder)}); |
| builder.create<fir::StoreOp>(loc, base, temp); |
| return fir::factory::arraySectionElementToExtendedValue( |
| builder, loc, extMemref, temp, slice); |
| }; |
| } |
| // In the default case, the array reference forwards an `array_fetch` or |
| // `array_access` Op in the continuation. |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); |
| if (isAdjustedArrayElementType(eleTy)) { |
| mlir::Type eleRefTy = builder.getRefType(eleTy); |
| mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>( |
| loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| llvm::SmallVector<mlir::Value> substringBounds; |
| populateBounds(substringBounds, components.substring); |
| if (!substringBounds.empty()) { |
| mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| builder, loc, arrLoad, iters.iterVec(), substringBounds); |
| fir::CharBoxValue dstChar(arrayOp, dstLen); |
| return fir::factory::CharacterExprHelper{builder, loc} |
| .createSubstring(dstChar, substringBounds); |
| } |
| } |
| return fir::factory::arraySectionElementToExtendedValue( |
| builder, loc, extMemref, arrayOp, slice); |
| } |
| auto arrFetch = builder.create<fir::ArrayFetchOp>( |
| loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| return fir::factory::arraySectionElementToExtendedValue( |
| builder, loc, extMemref, arrFetch, slice); |
| }; |
| } |
| |
| std::tuple<CC, mlir::Value, mlir::Type> |
| genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) { |
| assert(expr.Rank() > 0 && "expr must be an array"); |
| mlir::Location loc = getLoc(); |
| ExtValue optionalArg = asInquired(expr); |
| mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); |
| // Generate an array load and access to an array that may be an absent |
| // optional or an unallocated optional. |
| mlir::Value base = getBase(optionalArg); |
| const bool hasOptionalAttr = |
| fir::valueHasFirAttribute(base, fir::getOptionalAttrName()); |
| mlir::Type baseType = fir::unwrapRefType(base.getType()); |
| const bool isBox = mlir::isa<fir::BoxType>(baseType); |
| const bool isAllocOrPtr = |
| Fortran::evaluate::IsAllocatableOrPointerObject(expr); |
| mlir::Type arrType = fir::unwrapPassByRefType(baseType); |
| mlir::Type eleType = fir::unwrapSequenceType(arrType); |
| ExtValue exv = optionalArg; |
| if (hasOptionalAttr && isBox && !isAllocOrPtr) { |
| // Elemental argument cannot be allocatable or pointers (C15100). |
| // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and |
| // Pointer optional arrays cannot be absent. The only kind of entities |
| // that can get here are optional assumed shape and polymorphic entities. |
| exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent); |
| } |
| // All the properties can be read from any fir.box but the read values may |
| // be undefined and should only be used inside a fir.if (canBeRead) region. |
| if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) |
| exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); |
| |
| mlir::Value memref = fir::getBase(exv); |
| mlir::Value shape = builder.createShape(loc, exv); |
| mlir::Value noSlice; |
| auto arrLoad = builder.create<fir::ArrayLoadOp>( |
| loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv)); |
| mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); |
| mlir::Value arrLd = arrLoad.getResult(); |
| // Mark the load to tell later passes it is unsafe to use this array_load |
| // shape unconditionally. |
| arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr()); |
| |
| // Place the array as optional on the arrayOperands stack so that its |
| // shape will only be used as a fallback to induce the implicit loop nest |
| // (that is if there is no non optional array arguments). |
| arrayOperands.push_back( |
| ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true}); |
| |
| // By value semantics. |
| auto cc = [=](IterSpace iters) -> ExtValue { |
| auto arrFetch = builder.create<fir::ArrayFetchOp>( |
| loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams); |
| return fir::factory::arraySectionElementToExtendedValue( |
| builder, loc, exv, arrFetch, noSlice); |
| }; |
| return {cc, isPresent, eleType}; |
| } |
| |
| /// Generate a continuation to pass \p expr to an OPTIONAL argument of an |
| /// elemental procedure. This is meant to handle the cases where \p expr might |
| /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an |
| /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can |
| /// directly be called instead. |
| CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) { |
| mlir::Location loc = getLoc(); |
| // Only by-value numerical and logical so far. |
| if (semant != ConstituentSemantics::RefTransparent) |
| TODO(loc, "optional arguments in user defined elemental procedures"); |
| |
| // Handle scalar argument case (the if-then-else is generated outside of the |
| // implicit loop nest). |
| if (expr.Rank() == 0) { |
| ExtValue optionalArg = asInquired(expr); |
| mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); |
| mlir::Value elementValue = |
| fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent)); |
| return [=](IterSpace iters) -> ExtValue { return elementValue; }; |
| } |
| |
| CC cc; |
| mlir::Value isPresent; |
| mlir::Type eleType; |
| std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value elementValue = |
| builder |
| .genIfOp(loc, {eleType}, isPresent, |
| /*withElseRegion=*/true) |
| .genThen([&]() { |
| builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters))); |
| }) |
| .genElse([&]() { |
| mlir::Value zero = |
| fir::factory::createZeroValue(builder, loc, eleType); |
| builder.create<fir::ResultOp>(loc, zero); |
| }) |
| .getResults()[0]; |
| return elementValue; |
| }; |
| } |
| |
| /// Reduce the rank of a array to be boxed based on the slice's operands. |
| static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) { |
| if (slice) { |
| auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp()); |
| assert(slOp && "expected slice op"); |
| auto seqTy = mlir::dyn_cast<fir::SequenceType>(arrTy); |
| assert(seqTy && "expected array type"); |
| mlir::Operation::operand_range triples = slOp.getTriples(); |
| fir::SequenceType::Shape shape; |
| // reduce the rank for each invariant dimension |
| for (unsigned i = 1, end = triples.size(); i < end; i += 3) { |
| if (auto extent = fir::factory::getExtentFromTriplet( |
| triples[i - 1], triples[i], triples[i + 1])) |
| shape.push_back(*extent); |
| else if (!mlir::isa_and_nonnull<fir::UndefOp>( |
| triples[i].getDefiningOp())) |
| shape.push_back(fir::SequenceType::getUnknownExtent()); |
| } |
| return fir::SequenceType::get(shape, seqTy.getEleTy()); |
| } |
| // not sliced, so no change in rank |
| return arrTy; |
| } |
| |
| /// Example: <code>array%RE</code> |
| CC genarr(const Fortran::evaluate::ComplexPart &x, |
| ComponentPath &components) { |
| components.reversePath.push_back(&x); |
| return genarr(x.complex(), components); |
| } |
| |
| template <typename A> |
| CC genSlicePath(const A &x, ComponentPath &components) { |
| return genarr(x, components); |
| } |
| |
| CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &, |
| ComponentPath &components) { |
| TODO(getLoc(), "substring of static object inside FORALL"); |
| } |
| |
| /// Substrings (see 9.4.1) |
| CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) { |
| components.substring = &x; |
| return Fortran::common::visit( |
| [&](const auto &v) { return genarr(v, components); }, x.parent()); |
| } |
| |
| template <typename T> |
| CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) { |
| // Note that it's possible that the function being called returns either an |
| // array or a scalar. In the first case, use the element type of the array. |
| return genProcRef( |
| funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef)))); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Array construction |
| //===--------------------------------------------------------------------===// |
| |
| /// Target agnostic computation of the size of an element in the array. |
| /// Returns the size in bytes with type `index` or a null Value if the element |
| /// size is not constant. |
| mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy, |
| mlir::Type resTy) { |
| mlir::Location loc = getLoc(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1); |
| if (fir::hasDynamicSize(eleTy)) { |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| // Array of char with dynamic LEN parameter. Downcast to an array |
| // of singleton char, and scale by the len type parameter from |
| // `exv`. |
| exv.match( |
| [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); }, |
| [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); }, |
| [&](const fir::BoxValue &box) { |
| multiplier = fir::factory::CharacterExprHelper(builder, loc) |
| .readLengthFromBox(box.getAddr()); |
| }, |
| [&](const fir::MutableBoxValue &box) { |
| multiplier = fir::factory::CharacterExprHelper(builder, loc) |
| .readLengthFromBox(box.getAddr()); |
| }, |
| [&](const auto &) { |
| fir::emitFatalError(loc, |
| "array constructor element has unknown size"); |
| }); |
| fir::CharacterType newEleTy = fir::CharacterType::getSingleton( |
| eleTy.getContext(), charTy.getFKind()); |
| if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(resTy)) { |
| assert(eleTy == seqTy.getEleTy()); |
| resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy); |
| } |
| eleTy = newEleTy; |
| } else { |
| TODO(loc, "dynamic sized type"); |
| } |
| } |
| mlir::Type eleRefTy = builder.getRefType(eleTy); |
| mlir::Type resRefTy = builder.getRefType(resTy); |
| mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy); |
| auto offset = builder.create<fir::CoordinateOp>( |
| loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier}); |
| return builder.createConvert(loc, idxTy, offset); |
| } |
| |
| /// Get the function signature of the LLVM memcpy intrinsic. |
| mlir::FunctionType memcpyType() { |
| auto ptrTy = mlir::LLVM::LLVMPointerType::get(builder.getContext()); |
| llvm::SmallVector<mlir::Type> args = {ptrTy, ptrTy, builder.getI64Type()}; |
| return mlir::FunctionType::get(builder.getContext(), args, std::nullopt); |
| } |
| |
| /// Create a call to the LLVM memcpy intrinsic. |
| void createCallMemcpy(llvm::ArrayRef<mlir::Value> args, bool isVolatile) { |
| mlir::Location loc = getLoc(); |
| builder.create<mlir::LLVM::MemcpyOp>(loc, args[0], args[1], args[2], |
| isVolatile); |
| } |
| |
| // Construct code to check for a buffer overrun and realloc the buffer when |
| // space is depleted. This is done between each item in the ac-value-list. |
| mlir::Value growBuffer(mlir::Value mem, mlir::Value needed, |
| mlir::Value bufferSize, mlir::Value buffSize, |
| mlir::Value eleSz) { |
| mlir::Location loc = getLoc(); |
| mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder); |
| auto cond = builder.create<mlir::arith::CmpIOp>( |
| loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed); |
| auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond, |
| /*withElseRegion=*/true); |
| auto insPt = builder.saveInsertionPoint(); |
| builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| // Not enough space, resize the buffer. |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2); |
| auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two); |
| builder.create<fir::StoreOp>(loc, newSz, buffSize); |
| mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz); |
| mlir::SymbolRefAttr funcSymAttr = |
| builder.getSymbolRefAttr(reallocFunc.getName()); |
| mlir::FunctionType funcTy = reallocFunc.getFunctionType(); |
| auto newMem = builder.create<fir::CallOp>( |
| loc, funcSymAttr, funcTy.getResults(), |
| llvm::ArrayRef<mlir::Value>{ |
| builder.createConvert(loc, funcTy.getInputs()[0], mem), |
| builder.createConvert(loc, funcTy.getInputs()[1], byteSz)}); |
| mlir::Value castNewMem = |
| builder.createConvert(loc, mem.getType(), newMem.getResult(0)); |
| builder.create<fir::ResultOp>(loc, castNewMem); |
| builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| // Otherwise, just forward the buffer. |
| builder.create<fir::ResultOp>(loc, mem); |
| builder.restoreInsertionPoint(insPt); |
| return ifOp.getResult(0); |
| } |
| |
| /// Copy the next value (or vector of values) into the array being |
| /// constructed. |
| mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos, |
| mlir::Value buffSize, mlir::Value mem, |
| mlir::Value eleSz, mlir::Type eleTy, |
| mlir::Type eleRefTy, mlir::Type resTy) { |
| mlir::Location loc = getLoc(); |
| auto off = builder.create<fir::LoadOp>(loc, buffPos); |
| auto limit = builder.create<fir::LoadOp>(loc, buffSize); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| |
| if (fir::isRecordWithAllocatableMember(eleTy)) |
| TODO(loc, "deep copy on allocatable members"); |
| |
| if (!eleSz) { |
| // Compute the element size at runtime. |
| assert(fir::hasDynamicSize(eleTy)); |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| auto charBytes = |
| builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8; |
| mlir::Value bytes = |
| builder.createIntegerConstant(loc, idxTy, charBytes); |
| mlir::Value length = fir::getLen(exv); |
| if (!length) |
| fir::emitFatalError(loc, "result is not boxed character"); |
| eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length); |
| } else { |
| TODO(loc, "PDT size"); |
| // Will call the PDT's size function with the type parameters. |
| } |
| } |
| |
| // Compute the coordinate using `fir.coordinate_of`, or, if the type has |
| // dynamic size, generating the pointer arithmetic. |
| auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) { |
| mlir::Type refTy = eleRefTy; |
| if (fir::hasDynamicSize(eleTy)) { |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| // Scale a simple pointer using dynamic length and offset values. |
| auto chTy = fir::CharacterType::getSingleton(charTy.getContext(), |
| charTy.getFKind()); |
| refTy = builder.getRefType(chTy); |
| mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy)); |
| buff = builder.createConvert(loc, toTy, buff); |
| off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz); |
| } else { |
| TODO(loc, "PDT offset"); |
| } |
| } |
| auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff, |
| mlir::ValueRange{off}); |
| return builder.createConvert(loc, eleRefTy, coor); |
| }; |
| |
| // Lambda to lower an abstract array box value. |
| auto doAbstractArray = [&](const auto &v) { |
| // Compute the array size. |
| mlir::Value arrSz = one; |
| for (auto ext : v.getExtents()) |
| arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext); |
| |
| // Grow the buffer as needed. |
| auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz); |
| mem = growBuffer(mem, endOff, limit, buffSize, eleSz); |
| |
| // Copy the elements to the buffer. |
| mlir::Value byteSz = |
| builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz); |
| auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| mlir::Value buffi = computeCoordinate(buff, off); |
| llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( |
| builder, loc, memcpyType(), buffi, v.getAddr(), byteSz); |
| const bool isVolatile = fir::isa_volatile_type(v.getAddr().getType()); |
| createCallMemcpy(args, isVolatile); |
| |
| // Save the incremented buffer position. |
| builder.create<fir::StoreOp>(loc, endOff, buffPos); |
| }; |
| |
| // Copy a trivial scalar value into the buffer. |
| auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) { |
| // Increment the buffer position. |
| auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); |
| |
| // Grow the buffer as needed. |
| mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); |
| |
| // Store the element in the buffer. |
| mlir::Value buff = |
| builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff, |
| mlir::ValueRange{off}); |
| fir::factory::genScalarAssignment( |
| builder, loc, |
| [&]() -> ExtValue { |
| if (len) |
| return fir::CharBoxValue(buffi, len); |
| return buffi; |
| }(), |
| v); |
| builder.create<fir::StoreOp>(loc, plusOne, buffPos); |
| }; |
| |
| // Copy the value. |
| exv.match( |
| [&](mlir::Value) { doTrivialScalar(exv); }, |
| [&](const fir::CharBoxValue &v) { |
| auto buffer = v.getBuffer(); |
| if (fir::isa_char(buffer.getType())) { |
| doTrivialScalar(exv, eleSz); |
| } else { |
| // Increment the buffer position. |
| auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); |
| |
| // Grow the buffer as needed. |
| mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); |
| |
| // Store the element in the buffer. |
| mlir::Value buff = |
| builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| mlir::Value buffi = computeCoordinate(buff, off); |
| llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( |
| builder, loc, memcpyType(), buffi, v.getAddr(), eleSz); |
| const bool isVolatile = |
| fir::isa_volatile_type(v.getAddr().getType()); |
| createCallMemcpy(args, isVolatile); |
| |
| builder.create<fir::StoreOp>(loc, plusOne, buffPos); |
| } |
| }, |
| [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); }, |
| [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); }, |
| [&](const auto &) { |
| TODO(loc, "unhandled array constructor expression"); |
| }); |
| return mem; |
| } |
| |
| // Lower the expr cases in an ac-value-list. |
| template <typename A> |
| std::pair<ExtValue, bool> |
| genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type, |
| mlir::Value, mlir::Value, mlir::Value, |
| Fortran::lower::StatementContext &stmtCtx) { |
| if (isArray(x)) |
| return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)), |
| /*needCopy=*/true}; |
| return {asScalar(x), /*needCopy=*/true}; |
| } |
| |
| // Lower an ac-implied-do in an ac-value-list. |
| template <typename A> |
| std::pair<ExtValue, bool> |
| genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x, |
| mlir::Type resTy, mlir::Value mem, |
| mlir::Value buffPos, mlir::Value buffSize, |
| Fortran::lower::StatementContext &) { |
| mlir::Location loc = getLoc(); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value lo = |
| builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower()))); |
| mlir::Value up = |
| builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper()))); |
| mlir::Value step = |
| builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride()))); |
| auto seqTy = mlir::cast<fir::SequenceType>(resTy); |
| mlir::Type eleTy = fir::unwrapSequenceType(seqTy); |
| auto loop = |
| builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false, |
| /*finalCount=*/false, mem); |
| // create a new binding for x.name(), to ac-do-variable, to the iteration |
| // value. |
| symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar()); |
| auto insPt = builder.saveInsertionPoint(); |
| builder.setInsertionPointToStart(loop.getBody()); |
| // Thread mem inside the loop via loop argument. |
| mem = loop.getRegionIterArgs()[0]; |
| |
| mlir::Type eleRefTy = builder.getRefType(eleTy); |
| |
| // Any temps created in the loop body must be freed inside the loop body. |
| stmtCtx.pushScope(); |
| std::optional<mlir::Value> charLen; |
| for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) { |
| auto [exv, copyNeeded] = Fortran::common::visit( |
| [&](const auto &v) { |
| return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize, |
| stmtCtx); |
| }, |
| acv.u); |
| mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); |
| mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, |
| eleSz, eleTy, eleRefTy, resTy) |
| : fir::getBase(exv); |
| if (fir::isa_char(seqTy.getEleTy()) && !charLen) { |
| charLen = builder.createTemporary(loc, builder.getI64Type()); |
| mlir::Value castLen = |
| builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); |
| assert(charLen.has_value()); |
| builder.create<fir::StoreOp>(loc, castLen, *charLen); |
| } |
| } |
| stmtCtx.finalizeAndPop(); |
| |
| builder.create<fir::ResultOp>(loc, mem); |
| builder.restoreInsertionPoint(insPt); |
| mem = loop.getResult(0); |
| symMap.popImpliedDoBinding(); |
| llvm::SmallVector<mlir::Value> extents = { |
| builder.create<fir::LoadOp>(loc, buffPos).getResult()}; |
| |
| // Convert to extended value. |
| if (fir::isa_char(seqTy.getEleTy())) { |
| assert(charLen.has_value()); |
| auto len = builder.create<fir::LoadOp>(loc, *charLen); |
| return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false}; |
| } |
| return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false}; |
| } |
| |
| // To simplify the handling and interaction between the various cases, array |
| // constructors are always lowered to the incremental construction code |
| // pattern, even if the extent of the array value is constant. After the |
| // MemToReg pass and constant folding, the optimizer should be able to |
| // determine that all the buffer overrun tests are false when the |
| // incremental construction wasn't actually required. |
| template <typename A> |
| CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) { |
| mlir::Location loc = getLoc(); |
| auto evExpr = toEvExpr(x); |
| mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr); |
| mlir::IndexType idxTy = builder.getIndexType(); |
| auto seqTy = mlir::cast<fir::SequenceType>(resTy); |
| mlir::Type eleTy = fir::unwrapSequenceType(resTy); |
| mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size"); |
| mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
| mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos"); |
| builder.create<fir::StoreOp>(loc, zero, buffPos); |
| // Allocate space for the array to be constructed. |
| mlir::Value mem; |
| if (fir::hasDynamicSize(resTy)) { |
| if (fir::hasDynamicSize(eleTy)) { |
| // The size of each element may depend on a general expression. Defer |
| // creating the buffer until after the expression is evaluated. |
| mem = builder.createNullConstant(loc, builder.getRefType(eleTy)); |
| builder.create<fir::StoreOp>(loc, zero, buffSize); |
| } else { |
| mlir::Value initBuffSz = |
| builder.createIntegerConstant(loc, idxTy, clInitialBufferSize); |
| mem = builder.create<fir::AllocMemOp>( |
| loc, eleTy, /*typeparams=*/std::nullopt, initBuffSz); |
| builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); |
| } |
| } else { |
| mem = builder.create<fir::AllocMemOp>(loc, resTy); |
| int64_t buffSz = 1; |
| for (auto extent : seqTy.getShape()) |
| buffSz *= extent; |
| mlir::Value initBuffSz = |
| builder.createIntegerConstant(loc, idxTy, buffSz); |
| builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); |
| } |
| // Compute size of element |
| mlir::Type eleRefTy = builder.getRefType(eleTy); |
| |
| // Populate the buffer with the elements, growing as necessary. |
| std::optional<mlir::Value> charLen; |
| for (const auto &expr : x) { |
| auto [exv, copyNeeded] = Fortran::common::visit( |
| [&](const auto &e) { |
| return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize, |
| stmtCtx); |
| }, |
| expr.u); |
| mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); |
| mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, |
| eleSz, eleTy, eleRefTy, resTy) |
| : fir::getBase(exv); |
| if (fir::isa_char(seqTy.getEleTy()) && !charLen) { |
| charLen = builder.createTemporary(loc, builder.getI64Type()); |
| mlir::Value castLen = |
| builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); |
| builder.create<fir::StoreOp>(loc, castLen, *charLen); |
| } |
| } |
| mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| llvm::SmallVector<mlir::Value> extents = { |
| builder.create<fir::LoadOp>(loc, buffPos)}; |
| |
| // Cleanup the temporary. |
| fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
| stmtCtx.attachCleanup( |
| [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); }); |
| |
| // Return the continuation. |
| if (fir::isa_char(seqTy.getEleTy())) { |
| if (charLen) { |
| auto len = builder.create<fir::LoadOp>(loc, *charLen); |
| return genarr(fir::CharArrayBoxValue{mem, len, extents}); |
| } |
| return genarr(fir::CharArrayBoxValue{mem, zero, extents}); |
| } |
| return genarr(fir::ArrayBoxValue{mem, extents}); |
| } |
| |
| CC genarr(const Fortran::evaluate::ImpliedDoIndex &) { |
| fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0"); |
| } |
| CC genarr(const Fortran::evaluate::TypeParamInquiry &x) { |
| TODO(getLoc(), "array expr type parameter inquiry"); |
| return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
| } |
| CC genarr(const Fortran::evaluate::DescriptorInquiry &x) { |
| TODO(getLoc(), "array expr descriptor inquiry"); |
| return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
| } |
| CC genarr(const Fortran::evaluate::StructureConstructor &x) { |
| TODO(getLoc(), "structure constructor"); |
| return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // LOCICAL operators (.NOT., .AND., .EQV., etc.) |
| //===--------------------------------------------------------------------===// |
| |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Not<KIND> &x) { |
| mlir::Location loc = getLoc(); |
| mlir::IntegerType i1Ty = builder.getI1Type(); |
| auto lambda = genarr(x.left()); |
| mlir::Value truth = builder.createBool(loc, true); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value logical = fir::getBase(lambda(iters)); |
| mlir::Value val = builder.createConvert(loc, i1Ty, logical); |
| return builder.create<mlir::arith::XOrIOp>(loc, val, truth); |
| }; |
| } |
| template <typename OP, typename A> |
| CC createBinaryBoolOp(const A &x) { |
| mlir::Location loc = getLoc(); |
| mlir::IntegerType i1Ty = builder.getI1Type(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value left = fir::getBase(lf(iters)); |
| mlir::Value right = fir::getBase(rf(iters)); |
| mlir::Value lhs = builder.createConvert(loc, i1Ty, left); |
| mlir::Value rhs = builder.createConvert(loc, i1Ty, right); |
| return builder.create<OP>(loc, lhs, rhs); |
| }; |
| } |
| template <typename OP, typename A> |
| CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) { |
| mlir::Location loc = getLoc(); |
| mlir::IntegerType i1Ty = builder.getI1Type(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value left = fir::getBase(lf(iters)); |
| mlir::Value right = fir::getBase(rf(iters)); |
| mlir::Value lhs = builder.createConvert(loc, i1Ty, left); |
| mlir::Value rhs = builder.createConvert(loc, i1Ty, right); |
| return builder.create<OP>(loc, pred, lhs, rhs); |
| }; |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) { |
| switch (x.logicalOperator) { |
| case Fortran::evaluate::LogicalOperator::And: |
| return createBinaryBoolOp<mlir::arith::AndIOp>(x); |
| case Fortran::evaluate::LogicalOperator::Or: |
| return createBinaryBoolOp<mlir::arith::OrIOp>(x); |
| case Fortran::evaluate::LogicalOperator::Eqv: |
| return createCompareBoolOp<mlir::arith::CmpIOp>( |
| mlir::arith::CmpIPredicate::eq, x); |
| case Fortran::evaluate::LogicalOperator::Neqv: |
| return createCompareBoolOp<mlir::arith::CmpIOp>( |
| mlir::arith::CmpIPredicate::ne, x); |
| case Fortran::evaluate::LogicalOperator::Not: |
| llvm_unreachable(".NOT. handled elsewhere"); |
| } |
| llvm_unreachable("unhandled case"); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Relational operators (<, <=, ==, etc.) |
| //===--------------------------------------------------------------------===// |
| |
| template <typename OP, typename PRED, typename A> |
| CC createCompareOp(PRED pred, const A &x, |
| std::optional<int> unsignedKind = std::nullopt) { |
| mlir::Location loc = getLoc(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| mlir::Value lhs = fir::getBase(lf(iters)); |
| mlir::Value rhs = fir::getBase(rf(iters)); |
| if (unsignedKind) { |
| mlir::Type signlessType = converter.genType( |
| Fortran::common::TypeCategory::Integer, *unsignedKind); |
| mlir::Value lhsSL = builder.createConvert(loc, signlessType, lhs); |
| mlir::Value rhsSL = builder.createConvert(loc, signlessType, rhs); |
| return builder.create<OP>(loc, pred, lhsSL, rhsSL); |
| } |
| return builder.create<OP>(loc, pred, lhs, rhs); |
| }; |
| } |
| template <typename A> |
| CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) { |
| mlir::Location loc = getLoc(); |
| auto lf = genarr(x.left()); |
| auto rf = genarr(x.right()); |
| return [=](IterSpace iters) -> ExtValue { |
| auto lhs = lf(iters); |
| auto rhs = rf(iters); |
| return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs); |
| }; |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Integer, KIND>> &x) { |
| return createCompareOp<mlir::arith::CmpIOp>( |
| translateSignedRelational(x.opr), x); |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Unsigned, KIND>> &x) { |
| return createCompareOp<mlir::arith::CmpIOp>( |
| translateUnsignedRelational(x.opr), x, KIND); |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Character, KIND>> &x) { |
| return createCompareCharOp(translateSignedRelational(x.opr), x); |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Real, KIND>> &x) { |
| return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr), |
| x); |
| } |
| template <int KIND> |
| CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| Fortran::common::TypeCategory::Complex, KIND>> &x) { |
| return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x); |
| } |
| CC genarr( |
| const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) { |
| return Fortran::common::visit([&](const auto &x) { return genarr(x); }, |
| r.u); |
| } |
| |
| template <typename A> |
| CC genarr(const Fortran::evaluate::Designator<A> &des) { |
| ComponentPath components(des.Rank() > 0); |
| return Fortran::common::visit( |
| [&](const auto &x) { return genarr(x, components); }, des.u); |
| } |
| |
| /// Is the path component rank > 0? |
| static bool ranked(const PathComponent &x) { |
| return Fortran::common::visit( |
| Fortran::common::visitors{ |
| [](const ImplicitSubscripts &) { return false; }, |
| [](const auto *v) { return v->Rank() > 0; }}, |
| x); |
| } |
| |
| void extendComponent(Fortran::lower::ComponentPath &component, |
| mlir::Type coorTy, mlir::ValueRange vals) { |
| auto *bldr = &converter.getFirOpBuilder(); |
| llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end()); |
| auto currentFunc = component.getExtendCoorRef(); |
| auto loc = getLoc(); |
| auto newCoorRef = [bldr, coorTy, offsets, currentFunc, |
| loc](mlir::Value val) -> mlir::Value { |
| return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy), |
| currentFunc(val), offsets); |
| }; |
| component.extendCoorRef = newCoorRef; |
| } |
| |
| //===-------------------------------------------------------------------===// |
| // Array data references in an explicit iteration space. |
| // |
| // Use the base array that was loaded before the loop nest. |
| //===-------------------------------------------------------------------===// |
| |
| /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or |
| /// array_update op. \p ty is the initial type of the array |
| /// (reference). Returns the type of the element after application of the |
| /// path in \p components. |
| /// |
| /// TODO: This needs to deal with array's with initial bounds other than 1. |
| /// TODO: Thread type parameters correctly. |
| mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) { |
| mlir::Location loc = getLoc(); |
| mlir::Type ty = fir::getBase(arrayExv).getType(); |
| auto &revPath = components.reversePath; |
| ty = fir::unwrapPassByRefType(ty); |
| bool prefix = true; |
| bool deref = false; |
| auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) { |
| if (deref) { |
| extendComponent(components, ty, vals); |
| } else if (prefix) { |
| for (auto v : vals) |
| components.prefixComponents.push_back(v); |
| } else { |
| for (auto v : vals) |
| components.suffixComponents.push_back(v); |
| } |
| }; |
| mlir::IndexType idxTy = builder.getIndexType(); |
| mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| bool atBase = true; |
| PushSemantics(isProjectedCopyInCopyOut() |
| ? ConstituentSemantics::RefTransparent |
| : nextPathSemantics()); |
| unsigned index = 0; |
| for (const auto &v : llvm::reverse(revPath)) { |
| Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const ImplicitSubscripts &) { |
| prefix = false; |
| ty = fir::unwrapSequenceType(ty); |
| }, |
| [&](const Fortran::evaluate::ComplexPart *x) { |
| assert(!prefix && "complex part must be at end"); |
| mlir::Value offset = builder.createIntegerConstant( |
| loc, builder.getI32Type(), |
| x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 |
| : 1); |
| components.suffixComponents.push_back(offset); |
| ty = fir::applyPathToType(ty, mlir::ValueRange{offset}); |
| }, |
| [&](const Fortran::evaluate::ArrayRef *x) { |
| if (Fortran::lower::isRankedArrayAccess(*x)) { |
| genSliceIndices(components, arrayExv, *x, atBase); |
| ty = fir::unwrapSeqOrBoxedSeqType(ty); |
| } else { |
| // Array access where the expressions are scalar and cannot |
| // depend upon the implied iteration space. |
| unsigned ssIndex = 0u; |
| llvm::SmallVector<mlir::Value> componentsToAdd; |
| for (const auto &ss : x->subscript()) { |
| Fortran::common::visit( |
| Fortran::common::visitors{ |
| [&](const Fortran::evaluate:: |
| IndirectSubscriptIntegerExpr &ie) { |
| const auto &e = ie.value(); |
| if (isArray(e)) |
| fir::emitFatalError( |
| loc, |
| "multiple components along single path " |
| "generating array subexpressions"); |
| // Lower scalar index expression, append it to |
| // subs. |
| mlir::Value subscriptVal = |
| fir::getBase(asScalarArray(e)); |
| // arrayExv is the base array. It needs to reflect |
| // the current array component instead. |
| // FIXME: must use lower bound of this component, |
| // not just the constant 1. |
| mlir::Value lb = |
| atBase ? fir::factory::readLowerBound( |
| builder, loc, arrayExv, ssIndex, |
| one) |
| : one; |
| mlir::Value val = builder.createConvert( |
| loc, idxTy, subscriptVal); |
| mlir::Value ivAdj = |
| builder.create<mlir::arith::SubIOp>( |
| loc, idxTy, val, lb); |
| componentsToAdd.push_back( |
| builder.createConvert(loc, idxTy, ivAdj)); |
| }, |
| [&](const auto &) { |
| fir::emitFatalError( |
| loc, "multiple components along single path " |
| "generating array subexpressions"); |
| }}, |
| ss.u); |
| ssIndex++; |
| } |
| ty = fir::unwrapSeqOrBoxedSeqType(ty); |
| addComponentList(ty, componentsToAdd); |
| } |
| }, |
| [&](const Fortran::evaluate::Component *x) { |
| auto fieldTy = fir::FieldType::get(builder.getContext()); |
| std::string name = |
| converter.getRecordTypeFieldName(getLastSym(*x)); |
| if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) { |
| ty = recTy.getType(name); |
| auto fld = builder.create<fir::FieldIndexOp>( |
| loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); |
| addComponentList(ty, {fld}); |
| if (index != revPath.size() - 1 || !isPointerAssignment()) { |
| // Need an intermediate dereference if the boxed value |
| // appears in the middle of the component path or if it is |
| // on the right and this is not a pointer assignment. |
| if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
| auto currentFunc = components.getExtendCoorRef(); |
| auto loc = getLoc(); |
| auto *bldr = &converter.getFirOpBuilder(); |
| auto newCoorRef = [=](mlir::Value val) -> mlir::Value { |
| return bldr->create<fir::LoadOp>(loc, currentFunc(val)); |
| }; |
| components.extendCoorRef = newCoorRef; |
| deref = true; |
| } |
| } |
| } else if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
| ty = fir::unwrapRefType(boxTy.getEleTy()); |
| auto recTy = mlir::cast<fir::RecordType>(ty); |
| ty = recTy.getType(name); |
| auto fld = builder.create<fir::FieldIndexOp>( |
| loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); |
| extendComponent(components, ty, {fld}); |
| } else { |
| TODO(loc, "other component type"); |
| } |
| }}, |
| v); |
| atBase = false; |
| ++index; |
| } |
| ty = fir::unwrapSequenceType(ty); |
| components.applied = true; |
| return ty; |
| } |
| |
| llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) { |
| llvm::SmallVector<mlir::Value> result; |
| if (components.substring) |
| populateBounds(result, components.substring); |
| return result; |
| } |
| |
| CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) { |
| mlir::Location loc = getLoc(); |
| auto revPath = components.reversePath; |
| fir::ExtendedValue arrayExv = |
| arrayLoadExtValue(builder, loc, load, {}, load); |
| mlir::Type eleTy = lowerPath(arrayExv, components); |
| auto currentPC = components.pc; |
| auto pc = [=, prefix = components.prefixComponents, |
| suffix = components.suffixComponents](IterSpace iters) { |
| // Add path prefix and suffix. |
| return IterationSpace(currentPC(iters), prefix, suffix); |
| }; |
| components.resetPC(); |
| llvm::SmallVector<mlir::Value> substringBounds = |
| genSubstringBounds(components); |
| if (isProjectedCopyInCopyOut()) { |
| destination = load; |
| auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable { |
| mlir::Value innerArg = esp->findArgumentOfLoad(load); |
| if (isAdjustedArrayElementType(eleTy)) { |
| mlir::Type eleRefTy = builder.getRefType(eleTy); |
| auto arrayOp = builder.create<fir::ArrayAccessOp>( |
| loc, eleRefTy, innerArg, iters.iterVec(), |
| fir::factory::getTypeParams(loc, builder, load)); |
| if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| builder, loc, load, iters.iterVec(), substringBounds); |
| fir::ArrayAmendOp amend = createCharArrayAmend( |
| loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg, |
| substringBounds); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend, |
| dstLen); |
| } |
| if (fir::isa_derived(eleTy)) { |
| fir::ArrayAmendOp amend = |
| createDerivedArrayAmend(loc, load, builder, arrayOp, |
| iters.elementExv(), eleTy, innerArg); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), |
| amend); |
| } |
| assert(mlir::isa<fir::SequenceType>(eleTy)); |
| TODO(loc, "array (as element) assignment"); |
| } |
| if (components.hasExtendCoorRef()) { |
| auto eleBoxTy = |
| fir::applyPathToType(innerArg.getType(), iters.iterVec()); |
| if (!eleBoxTy || !mlir::isa<fir::BoxType>(eleBoxTy)) |
| TODO(loc, "assignment in a FORALL involving a designator with a " |
| "POINTER or ALLOCATABLE component part-ref"); |
| auto arrayOp = builder.create<fir::ArrayAccessOp>( |
| loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(), |
| fir::factory::getTypeParams(loc, builder, load)); |
| mlir::Value addr = components.getExtendCoorRef()(arrayOp); |
| components.resetExtendCoorRef(); |
| // When the lhs is a boxed value and the context is not a pointer |
| // assignment, then insert the dereference of the box before any |
| // conversion and store. |
| if (!isPointerAssignment()) { |
| if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(eleTy)) { |
| eleTy = fir::boxMemRefType(boxTy); |
| addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr); |
| eleTy = fir::unwrapRefType(eleTy); |
| } |
| } |
| auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); |
| builder.create<fir::StoreOp>(loc, ele, addr); |
| auto amend = builder.create<fir::ArrayAmendOp>( |
| loc, innerArg.getType(), innerArg, arrayOp); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend); |
| } |
| auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); |
| auto update = builder.create<fir::ArrayUpdateOp>( |
| loc, innerArg.getType(), innerArg, ele, iters.iterVec(), |
| fir::factory::getTypeParams(loc, builder, load)); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update); |
| }; |
| return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
| } |
| if (isCustomCopyInCopyOut()) { |
| // Create an array_modify to get the LHS element address and indicate |
| // the assignment, and create the call to the user defined assignment. |
| destination = load; |
| auto lambda = [=](IterSpace iters) mutable { |
| mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load); |
| mlir::Type refEleTy = |
| fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); |
| auto arrModify = builder.create<fir::ArrayModifyOp>( |
| loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg, |
| iters.iterVec(), load.getTypeparams()); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), |
| arrModify.getResult(1)); |
| }; |
| return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
| } |
| auto lambda = [=, semant = this->semant](IterSpace iters) mutable { |
| if (semant == ConstituentSemantics::RefOpaque || |
| isAdjustedArrayElementType(eleTy)) { |
| mlir::Type resTy = builder.getRefType(eleTy); |
| // Use array element reference semantics. |
| auto access = builder.create<fir::ArrayAccessOp>( |
| loc, resTy, load, iters.iterVec(), |
| fir::factory::getTypeParams(loc, builder, load)); |
| mlir::Value newBase = access; |
| if (fir::isa_char(eleTy)) { |
| mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| builder, loc, load, iters.iterVec(), substringBounds); |
| if (!substringBounds.empty()) { |
| fir::CharBoxValue charDst{access, dstLen}; |
| fir::factory::CharacterExprHelper helper{builder, loc}; |
| charDst = helper.createSubstring(charDst, substringBounds); |
| newBase = charDst.getAddr(); |
| } |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase, |
| dstLen); |
| } |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase); |
| } |
| if (components.hasExtendCoorRef()) { |
| auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec()); |
| if (!eleBoxTy || !mlir::isa<fir::BoxType>(eleBoxTy)) |
| TODO(loc, "assignment in a FORALL involving a designator with a " |
| "POINTER or ALLOCATABLE component part-ref"); |
| auto access = builder.create<fir::ArrayAccessOp>( |
| loc, builder.getRefType(eleBoxTy), load, iters.iterVec(), |
| fir::factory::getTypeParams(loc, builder, load)); |
| mlir::Value addr = components.getExtendCoorRef()(access); |
| components.resetExtendCoorRef(); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr); |
| } |
| if (isPointerAssignment()) { |
| auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec()); |
| if (!mlir::isa<fir::BoxType>(eleTy)) { |
| // Rhs is a regular expression that will need to be boxed before |
| // assigning to the boxed variable. |
| auto typeParams = fir::factory::getTypeParams(loc, builder, load); |
| auto access = builder.create<fir::ArrayAccessOp>( |
| loc, builder.getRefType(eleTy), load, iters.iterVec(), |
| typeParams); |
| auto addr = components.getExtendCoorRef()(access); |
| components.resetExtendCoorRef(); |
| auto ptrEleTy = fir::PointerType::get(eleTy); |
| auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr); |
| auto boxTy = fir::BoxType::get( |
| ptrEleTy, fir::isa_volatile_type(addr.getType())); |
| // FIXME: The typeparams to the load may be different than those of |
| // the subobject. |
| if (components.hasExtendCoorRef()) |
| TODO(loc, "need to adjust typeparameter(s) to reflect the final " |
| "component"); |
| mlir::Value embox = |
| builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr, |
| /*shape=*/mlir::Value{}, |
| /*slice=*/mlir::Value{}, typeParams); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox); |
| } |
| } |
| auto fetch = builder.create<fir::ArrayFetchOp>( |
| loc, eleTy, load, iters.iterVec(), load.getTypeparams()); |
| return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch); |
| }; |
| return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
| } |
| |
| template <typename A> |
| CC genImplicitArrayAccess(const A &x, ComponentPath &components) { |
| components.reversePath.push_back(ImplicitSubscripts{}); |
| ExtValue exv = asScalarRef(x); |
| lowerPath(exv, components); |
| auto lambda = genarr(exv, components); |
| return [=](IterSpace iters) { return lambda(components.pc(iters)); }; |
| } |
| CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x, |
| ComponentPath &components) { |
| if (x.IsSymbol()) |
| return genImplicitArrayAccess(getFirstSym(x), components); |
| return genImplicitArrayAccess(x.GetComponent(), components); |
| } |
| |
| CC genImplicitArrayAccess(const Fortran::semantics::Symbol &x, |
| ComponentPath &components) { |
| mlir::Value ptrVal = nullptr; |
| if (x.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| Fortran::semantics::SymbolRef ptrSym{ |
| Fortran::semantics::GetCrayPointer(x)}; |
| ExtValue ptr = converter.getSymbolExtendedValue(ptrSym); |
| ptrVal = fir::getBase(ptr); |
| } |
| components.reversePath.push_back(ImplicitSubscripts{}); |
| ExtValue exv = asScalarRef(x); |
| lowerPath(exv, components); |
| auto lambda = genarr(exv, components, ptrVal); |
| return [=](IterSpace iters) { return lambda(components.pc(iters)); }; |
| } |
| |
| template <typename A> |
| CC genAsScalar(const A &x) { |
| mlir::Location loc = getLoc(); |
| if (isProjectedCopyInCopyOut()) { |
| return [=, &x, builder = &converter.getFirOpBuilder()]( |
| IterSpace iters) -> ExtValue { |
| ExtValue exv = asScalarRef(x); |
| mlir::Value addr = fir::getBase(exv); |
| mlir::Type eleTy = fir::unwrapRefType(addr.getType()); |
| if (isAdjustedArrayElementType(eleTy)) { |
| if (fir::isa_char(eleTy)) { |
| fir::factory::CharacterExprHelper{*builder, loc}.createAssign( |
| exv, iters.elementExv()); |
| } else if (fir::isa_derived(eleTy)) { |
| TODO(loc, "assignment of derived type"); |
| } else { |
| fir::emitFatalError(loc, "array type not expected in scalar"); |
| } |
| } else { |
| auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement()); |
| builder->create<fir::StoreOp>(loc, eleVal, addr); |
| } |
| return exv; |
| }; |
| } |
| return [=, &x](IterSpace) { return asScalar(x); }; |
| } |
| |
| bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x, |
| ComponentPath &components) { |
| return isPointerAssignment() && Fortran::semantics::IsPointer(x) && |
| !components.hasComponents(); |
| } |
| bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x, |
| ComponentPath &components) { |
| return tailIsPointerInPointerAssignment(getLastSym(x), components); |
| } |
| |
| CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) { |
| if (explicitSpaceIsActive()) { |
| if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components)) |
| components.reversePath.push_back(ImplicitSubscripts{}); |
| if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) |
| return applyPathToArrayLoad(load, components); |
| } else { |
| return genImplicitArrayAccess(x, components); |
| } |
| if (pathIsEmpty(components)) |
| return components.substring ? genAsScalar(*components.substring) |
| : genAsScalar(x); |
| mlir::Location loc = getLoc(); |
| return [=](IterSpace) -> ExtValue { |
| fir::emitFatalError(loc, "reached symbol with path"); |
| }; |
| } |
| |
| /// Lower a component path with or without rank. |
| /// Example: <code>array%baz%qux%waldo</code> |
| CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) { |
| if (explicitSpaceIsActive()) { |
| if (x.base().Rank() == 0 && x.Rank() > 0 && |
| !tailIsPointerInPointerAssignment(x, components)) |
| components.reversePath.push_back(ImplicitSubscripts{}); |
| if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) |
| return applyPathToArrayLoad(load, components); |
| } else { |
| if (x.base().Rank() == 0) |
| return genImplicitArrayAccess(x, components); |
| } |
| bool atEnd = pathIsEmpty(components); |
| if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| // Skip parent components; their components are placed directly in the |
| // object. |
| components.reversePath.push_back(&x); |
| auto result = genarr(x.base(), components); |
| if (components.applied) |
| return result; |
| if (atEnd) |
| return genAsScalar(x); |
| mlir::Location loc = getLoc(); |
| return [=](IterSpace) -> ExtValue { |
| fir::emitFatalError(loc, "reached component with path"); |
| }; |
| } |
| |
| /// Array reference with subscripts. If this has rank > 0, this is a form |
| /// of an array section (slice). |
| /// |
| /// There are two "slicing" primitives that may be applied on a dimension by |
| /// dimension basis: (1) triple notation and (2) vector addressing. Since |
| /// dimensions can be selectively sliced, some dimensions may contain |
| /// regular scalar expressions and those dimensions do not participate in |
| /// the array expression evaluation. |
| CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) { |
| if (explicitSpaceIsActive()) { |
| if (Fortran::lower::isRankedArrayAccess(x)) |
| components.reversePath.push_back(ImplicitSubscripts{}); |
| if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) { |
| components.reversePath.push_back(&x); |
| return applyPathToArrayLoad(load, components); |
| } |
| } else { |
| if (Fortran::lower::isRankedArrayAccess(x)) { |
| components.reversePath.push_back(&x); |
| return genImplicitArrayAccess(x.base(), components); |
| } |
| } |
| bool atEnd = pathIsEmpty(components); |
| components.reversePath.push_back(&x); |
| auto result = genarr(x.base(), components); |
| if (components.applied) |
| return result; |
| mlir::Location loc = getLoc(); |
| if (atEnd) { |
| if (x.Rank() == 0) |
| return genAsScalar(x); |
| fir::emitFatalError(loc, "expected scalar"); |
| } |
| return [=](IterSpace) -> ExtValue { |
| fir::emitFatalError(loc, "reached arrayref with path"); |
| }; |
| } |
| |
| CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) { |
| TODO(getLoc(), "coarray: reference to a coarray in an expression"); |
| } |
| |
| CC genarr(const Fortran::evaluate::NamedEntity &x, |
| ComponentPath &components) { |
| return x.IsSymbol() ? genarr(getFirstSym(x), components) |
| : genarr(x.GetComponent(), components); |
| } |
| |
| CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return genarr(v, components); }, x.u); |
| } |
| |
| bool pathIsEmpty(const ComponentPath &components) { |
| return components.reversePath.empty(); |
| } |
| |
| explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::StatementContext &stmtCtx, |
| Fortran::lower::SymMap &symMap) |
| : converter{converter}, builder{converter.getFirOpBuilder()}, |
| stmtCtx{stmtCtx}, symMap{symMap} {} |
| |
| explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::StatementContext &stmtCtx, |
| Fortran::lower::SymMap &symMap, |
| ConstituentSemantics sem) |
| : converter{converter}, builder{converter.getFirOpBuilder()}, |
| stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {} |
| |
| explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::StatementContext &stmtCtx, |
| Fortran::lower::SymMap &symMap, |
| ConstituentSemantics sem, |
| Fortran::lower::ExplicitIterSpace *expSpace, |
| Fortran::lower::ImplicitIterSpace *impSpace) |
| : converter{converter}, builder{converter.getFirOpBuilder()}, |
| stmtCtx{stmtCtx}, symMap{symMap}, |
| explicitSpace((expSpace && expSpace->isActive()) ? expSpace : nullptr), |
| implicitSpace((impSpace && !impSpace->empty()) ? impSpace : nullptr), |
| semant{sem} { |
| // Generate any mask expressions, as necessary. This is the compute step |
| // that creates the effective masks. See 10.2.3.2 in particular. |
| genMasks(); |
| } |
| |
| mlir::Location getLoc() { return converter.getCurrentLocation(); } |
| |
| /// Array appears in a lhs context such that it is assigned after the rhs is |
| /// fully evaluated. |
| inline bool isCopyInCopyOut() { |
| return semant == ConstituentSemantics::CopyInCopyOut; |
| } |
| |
| /// Array appears in a lhs (or temp) context such that a projected, |
| /// discontiguous subspace of the array is assigned after the rhs is fully |
| /// evaluated. That is, the rhs array value is merged into a section of the |
| /// lhs array. |
| inline bool isProjectedCopyInCopyOut() { |
| return semant == ConstituentSemantics::ProjectedCopyInCopyOut; |
| } |
| |
| // ???: Do we still need this? |
| inline bool isCustomCopyInCopyOut() { |
| return semant == ConstituentSemantics::CustomCopyInCopyOut; |
| } |
| |
| /// Are we lowering in a left-hand side context? |
| inline bool isLeftHandSide() { |
| return isCopyInCopyOut() || isProjectedCopyInCopyOut() || |
| isCustomCopyInCopyOut(); |
| } |
| |
| /// Array appears in a context where it must be boxed. |
| inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; } |
| |
| /// Array appears in a context where differences in the memory reference can |
| /// be observable in the computational results. For example, an array |
| /// element is passed to an impure procedure. |
| inline bool isReferentiallyOpaque() { |
| return semant == ConstituentSemantics::RefOpaque; |
| } |
| |
| /// Array appears in a context where it is passed as a VALUE argument. |
| inline bool isValueAttribute() { |
| return semant == ConstituentSemantics::ByValueArg; |
| } |
| |
| /// Semantics to use when lowering the next array path. |
| /// If no value was set, the path uses the same semantics as the array. |
| inline ConstituentSemantics nextPathSemantics() { |
| if (nextPathSemant) { |
| ConstituentSemantics sema = nextPathSemant.value(); |
| nextPathSemant.reset(); |
| return sema; |
| } |
| |
| return semant; |
| } |
| |
| /// Can the loops over the expression be unordered? |
| inline bool isUnordered() const { return unordered; } |
| |
| void setUnordered(bool b) { unordered = b; } |
| |
| inline bool isPointerAssignment() const { return lbounds.has_value(); } |
| |
| inline bool isBoundsSpec() const { |
| return isPointerAssignment() && !ubounds.has_value(); |
| } |
| |
| inline bool isBoundsRemap() const { |
| return isPointerAssignment() && ubounds.has_value(); |
| } |
| |
| void setPointerAssignmentBounds( |
| const llvm::SmallVector<mlir::Value> &lbs, |
| std::optional<llvm::SmallVector<mlir::Value>> ubs) { |
| lbounds = lbs; |
| ubounds = ubs; |
| } |
| |
| void setLoweredProcRef(const Fortran::evaluate::ProcedureRef *procRef) { |
| loweredProcRef = procRef; |
| } |
| |
| Fortran::lower::AbstractConverter &converter; |
| fir::FirOpBuilder &builder; |
| Fortran::lower::StatementContext &stmtCtx; |
| bool elementCtx = false; |
| Fortran::lower::SymMap &symMap; |
| /// The continuation to generate code to update the destination. |
| std::optional<CC> ccStoreToDest; |
| std::optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude; |
| std::optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>> |
| ccLoadDest; |
| /// The destination is the loaded array into which the results will be |
| /// merged. |
| fir::ArrayLoadOp destination; |
| /// The shape of the destination. |
| llvm::SmallVector<mlir::Value> destShape; |
| /// List of arrays in the expression that have been loaded. |
| llvm::SmallVector<ArrayOperand> arrayOperands; |
| /// If there is a user-defined iteration space, explicitShape will hold the |
| /// information from the front end. |
| Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr; |
| Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr; |
| ConstituentSemantics semant = ConstituentSemantics::RefTransparent; |
| std::optional<ConstituentSemantics> nextPathSemant; |
| /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only |
| /// occur in an explicit iteration space. |
| std::optional<llvm::SmallVector<mlir::Value>> lbounds; |
| std::optional<llvm::SmallVector<mlir::Value>> ubounds; |
| // Can the array expression be evaluated in any order? |
| // Will be set to false if any of the expression parts prevent this. |
| bool unordered = true; |
| // ProcedureRef currently being lowered. Used to retrieve the iteration shape |
| // in elemental context with passed object. |
| const Fortran::evaluate::ProcedureRef *loweredProcRef = nullptr; |
| }; |
| } // namespace |
| |
| fir::ExtendedValue Fortran::lower::createSomeExtendedExpression( |
| mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); |
| return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr); |
| } |
| |
| fir::ExtendedValue Fortran::lower::createSomeInitializerExpression( |
| mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); |
| return ScalarExprLowering{loc, converter, symMap, stmtCtx, |
| /*inInitializer=*/true} |
| .genval(expr); |
| } |
| |
| fir::ExtendedValue Fortran::lower::createSomeExtendedAddress( |
| mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); |
| return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr); |
| } |
| |
| fir::ExtendedValue Fortran::lower::createInitializerAddress( |
| mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); |
| return ScalarExprLowering(loc, converter, symMap, stmtCtx, |
| /*inInitializer=*/true) |
| .gen(expr); |
| } |
| |
| void Fortran::lower::createSomeArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; |
| rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); |
| ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
| } |
| |
| void Fortran::lower::createSomeArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, |
| const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; |
| rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); |
| ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
| } |
| void Fortran::lower::createSomeArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, |
| const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; |
| llvm::dbgs() << "assign expression: " << rhs << '\n';); |
| ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
| } |
| |
| void Fortran::lower::createAnyMaskedArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; |
| rhs.AsFortran(llvm::dbgs() << "assign expression: ") |
| << " given the explicit iteration space:\n" |
| << explicitSpace << "\n and implied mask conditions:\n" |
| << implicitSpace << '\n';); |
| ArrayExprLowering::lowerAnyMaskedArrayAssignment( |
| converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); |
| } |
| |
| void Fortran::lower::createAllocatableArrayAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n'; |
| rhs.AsFortran(llvm::dbgs() << "assign expression: ") |
| << " given the explicit iteration space:\n" |
| << explicitSpace << "\n and implied mask conditions:\n" |
| << implicitSpace << '\n';); |
| ArrayExprLowering::lowerAllocatableArrayAssignment( |
| converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); |
| } |
| |
| void Fortran::lower::createArrayOfPointerAssignment( |
| Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| Fortran::lower::ExplicitIterSpace &explicitSpace, |
| Fortran::lower::ImplicitIterSpace &implicitSpace, |
| const llvm::SmallVector<mlir::Value> &lbounds, |
| std::optional<llvm::SmallVector<mlir::Value>> ubounds, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n'; |
| rhs.AsFortran(llvm::dbgs() << "assign expression: ") |
| << " given the explicit iteration space:\n" |
| << explicitSpace << "\n and implied mask conditions:\n" |
| << implicitSpace << '\n';); |
| assert(explicitSpace.isActive() && "must be in FORALL construct"); |
| ArrayExprLowering::lowerArrayOfPointerAssignment( |
| converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace, |
| lbounds, ubounds); |
| } |
| |
| fir::ExtendedValue Fortran::lower::createSomeArrayTempValue( |
| Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); |
| return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx, |
| expr); |
| } |
| |
| void Fortran::lower::createLazyArrayTempValue( |
| Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader, |
| Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); |
| ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr, |
| raggedHeader); |
| } |
| |
| fir::ExtendedValue |
| Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n'); |
| return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap, |
| stmtCtx, expr); |
| } |
| |
| fir::MutableBoxValue Fortran::lower::createMutableBox( |
| mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) { |
| // MutableBox lowering StatementContext does not need to be propagated |
| // to the caller because the result value is a variable, not a temporary |
| // expression. The StatementContext clean-up can occur before using the |
| // resulting MutableBoxValue. Variables of all other types are handled in the |
| // bridge. |
| Fortran::lower::StatementContext dummyStmtCtx; |
| return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx} |
| .genMutableBoxValue(expr); |
| } |
| |
| bool Fortran::lower::isParentComponent(const Fortran::lower::SomeExpr &expr) { |
| if (const Fortran::semantics::Symbol * symbol{GetLastSymbol(expr)}) { |
| if (symbol->test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Handling special case where the last component is referring to the |
| // parent component. |
| // |
| // TYPE t |
| // integer :: a |
| // END TYPE |
| // TYPE, EXTENDS(t) :: t2 |
| // integer :: b |
| // END TYPE |
| // TYPE(t2) :: y(2) |
| // TYPE(t2) :: a |
| // y(:)%t ! just need to update the box with a slice pointing to the first |
| // ! component of `t`. |
| // a%t ! simple conversion to TYPE(t). |
| fir::ExtendedValue Fortran::lower::updateBoxForParentComponent( |
| Fortran::lower::AbstractConverter &converter, fir::ExtendedValue box, |
| const Fortran::lower::SomeExpr &expr) { |
| mlir::Location loc = converter.getCurrentLocation(); |
| auto &builder = converter.getFirOpBuilder(); |
| mlir::Value boxBase = fir::getBase(box); |
| mlir::Operation *op = boxBase.getDefiningOp(); |
| mlir::Type actualTy = converter.genType(expr); |
| |
| if (op) { |
| if (auto embox = mlir::dyn_cast<fir::EmboxOp>(op)) { |
| auto newBox = builder.create<fir::EmboxOp>( |
| loc, fir::BoxType::get(actualTy), embox.getMemref(), embox.getShape(), |
| embox.getSlice(), embox.getTypeparams()); |
| return fir::substBase(box, newBox); |
| } |
| if (auto rebox = mlir::dyn_cast<fir::ReboxOp>(op)) { |
| auto newBox = builder.create<fir::ReboxOp>( |
| loc, fir::BoxType::get(actualTy), rebox.getBox(), rebox.getShape(), |
| rebox.getSlice()); |
| return fir::substBase(box, newBox); |
| } |
| } |
| |
| mlir::Value empty; |
| mlir::ValueRange emptyRange; |
| return builder.create<fir::ReboxOp>(loc, fir::BoxType::get(actualTy), boxBase, |
| /*shape=*/empty, |
| /*slice=*/empty); |
| } |
| |
| fir::ExtendedValue Fortran::lower::createBoxValue( |
| mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) && |
| !Fortran::evaluate::HasVectorSubscript(expr)) { |
| fir::ExtendedValue result = |
| Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx); |
| if (isParentComponent(expr)) |
| result = updateBoxForParentComponent(converter, result, expr); |
| return result; |
| } |
| fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress( |
| loc, converter, expr, symMap, stmtCtx); |
| fir::ExtendedValue result = fir::BoxValue( |
| converter.getFirOpBuilder().createBox(loc, addr, addr.isPolymorphic())); |
| if (isParentComponent(expr)) |
| result = updateBoxForParentComponent(converter, result, expr); |
| return result; |
| } |
| |
| mlir::Value Fortran::lower::createSubroutineCall( |
| AbstractConverter &converter, const evaluate::ProcedureRef &call, |
| ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace, |
| SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) { |
| mlir::Location loc = converter.getCurrentLocation(); |
| |
| if (isUserDefAssignment) { |
| assert(call.arguments().size() == 2); |
| const auto *lhs = call.arguments()[0].value().UnwrapExpr(); |
| const auto *rhs = call.arguments()[1].value().UnwrapExpr(); |
| assert(lhs && rhs && |
| "user defined assignment arguments must be expressions"); |
| if (call.IsElemental() && lhs->Rank() > 0) { |
| // Elemental user defined assignment has special requirements to deal with |
| // LHS/RHS overlaps. See 10.2.1.5 p2. |
| ArrayExprLowering::lowerElementalUserAssignment( |
| converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace, |
| call); |
| } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) { |
| // Scalar defined assignment (elemental or not) in a FORALL context. |
| mlir::func::FuncOp func = |
| Fortran::lower::CallerInterface(call, converter).getFuncOp(); |
| ArrayExprLowering::lowerScalarUserAssignment( |
| converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs); |
| } else if (explicitIterSpace.isActive()) { |
| // TODO: need to array fetch/modify sub-arrays? |
| TODO(loc, "non elemental user defined array assignment inside FORALL"); |
| } else { |
| if (!implicitIterSpace.empty()) |
| fir::emitFatalError( |
| loc, |
| "C1032: user defined assignment inside WHERE must be elemental"); |
| // Non elemental user defined assignment outside of FORALL and WHERE. |
| // FIXME: The non elemental user defined assignment case with array |
| // arguments must be take into account potential overlap. So far the front |
| // end does not add parentheses around the RHS argument in the call as it |
| // should according to 15.4.3.4.3 p2. |
| Fortran::lower::createSomeExtendedExpression( |
| loc, converter, toEvExpr(call), symMap, stmtCtx); |
| } |
| return {}; |
| } |
| |
| assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() && |
| "subroutine calls are not allowed inside WHERE and FORALL"); |
| |
| if (isElementalProcWithArrayArgs(call)) { |
| ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx, |
| toEvExpr(call)); |
| return {}; |
| } |
| // Simple subroutine call, with potential alternate return. |
| auto res = Fortran::lower::createSomeExtendedExpression( |
| loc, converter, toEvExpr(call), symMap, stmtCtx); |
| return fir::getBase(res); |
| } |
| |
| template <typename A> |
| fir::ArrayLoadOp genArrayLoad(mlir::Location loc, |
| Fortran::lower::AbstractConverter &converter, |
| fir::FirOpBuilder &builder, const A *x, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x); |
| mlir::Value addr = fir::getBase(exv); |
| mlir::Value shapeOp = builder.createShape(loc, exv); |
| mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); |
| return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp, |
| /*slice=*/mlir::Value{}, |
| fir::getTypeParams(exv)); |
| } |
| template <> |
| fir::ArrayLoadOp |
| genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x, |
| Fortran::lower::SymMap &symMap, |
| Fortran::lower::StatementContext &stmtCtx) { |
| if (x->base().IsSymbol()) |
| return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap, |
| stmtCtx); |
| return genArrayLoad(loc, converter, builder, &x->base().GetComponent(), |
| symMap, stmtCtx); |
| } |
| |
| void Fortran::lower::createArrayLoads( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) { |
| std::size_t counter = esp.getCounter(); |
| fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| mlir::Location loc = converter.getCurrentLocation(); |
| Fortran::lower::StatementContext &stmtCtx = esp.stmtContext(); |
| // Gen the fir.array_load ops. |
| auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp { |
| return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx); |
| }; |
| if (esp.lhsBases[counter]) { |
| auto &base = *esp.lhsBases[counter]; |
| auto load = Fortran::common::visit(genLoad, base); |
| esp.initialArgs.push_back(load); |
| esp.resetInnerArgs(); |
| esp.bindLoad(base, load); |
| } |
| for (const auto &base : esp.rhsBases[counter]) |
| esp.bindLoad(base, Fortran::common::visit(genLoad, base)); |
| } |
| |
| void Fortran::lower::createArrayMergeStores( |
| Fortran::lower::AbstractConverter &converter, |
| Fortran::lower::ExplicitIterSpace &esp) { |
| fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| mlir::Location loc = converter.getCurrentLocation(); |
| builder.setInsertionPointAfter(esp.getOuterLoop()); |
| // Gen the fir.array_merge_store ops for all LHS arrays. |
| for (auto i : llvm::enumerate(esp.getOuterLoop().getResults())) |
| if (std::optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) { |
| fir::ArrayLoadOp load = *ldOpt; |
| builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(), |
| load.getMemref(), load.getSlice(), |
| load.getTypeparams()); |
| } |
| if (esp.loopCleanup) { |
| (*esp.loopCleanup)(builder); |
| esp.loopCleanup = std::nullopt; |
| } |
| esp.initialArgs.clear(); |
| esp.innerArgs.clear(); |
| esp.outerLoop = std::nullopt; |
| esp.resetBindings(); |
| esp.incrementCounter(); |
| } |
| |
| mlir::Value Fortran::lower::addCrayPointerInst(mlir::Location loc, |
| fir::FirOpBuilder &builder, |
| mlir::Value ptrVal, |
| mlir::Type ptrTy, |
| mlir::Type pteTy) { |
| |
| mlir::Value empty; |
| mlir::ValueRange emptyRange; |
| auto boxTy = fir::BoxType::get(ptrTy); |
| auto box = builder.create<fir::EmboxOp>(loc, boxTy, ptrVal, empty, empty, |
| emptyRange); |
| mlir::Value addrof = |
| (mlir::isa<fir::ReferenceType>(ptrTy)) |
| ? builder.create<fir::BoxAddrOp>(loc, ptrTy, box) |
| : builder.create<fir::BoxAddrOp>(loc, builder.getRefType(ptrTy), box); |
| |
| auto refPtrTy = |
| builder.getRefType(fir::PointerType::get(fir::dyn_cast_ptrEleTy(pteTy))); |
| return builder.createConvert(loc, refPtrTy, addrof); |
| } |