blob: a5b5838fe6b6219f19f535df1057d96f33b84403 [file] [log] [blame]
//===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertArrayConstructor.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/Runtime/ArrayConstructor.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Builder/TemporaryStorage.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
// Array constructors are lowered with three different strategies.
// All strategies are not possible with all array constructors.
//
// - Strategy 1: runtime approach (RuntimeTempStrategy).
// This strategy works will all array constructors, but will create more
// complex code that is harder to optimize. An allocatable temp is created,
// it may be unallocated if the array constructor length parameters or extent
// could not be computed. Then, the runtime is called to push lowered
// ac-value (array constructor elements) into the allocatable. The runtime
// will allocate or reallocate as needed while values are being pushed.
// In the end, the allocatable contain a temporary with all the array
// constructor evaluated elements.
//
// - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl)
// This strategy can only be used if the array constructor extent and length
// parameters can be pre-computed without evaluating any ac-value, and if all
// of the ac-value are scalars (at least for now).
// A temporary is allocated inline in one go, and an index pointing at the
// current ac-value position in the array constructor element sequence is
// maintained and used to store ac-value as they are being lowered.
//
// - Strategy 3: "function of the indices" approach (AsElementalStrategy)
// This strategy can only be used if the array constructor extent and length
// parameters can be pre-computed and, if the array constructor is of the
// form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered
// into an hlfir.elemental without creating any temporary in lowering. This
// form should maximize the chance of array temporary elision when assigning
// the array constructor, potentially reshaped, to an array variable.
//
// The array constructor lowering looks like:
// ```
// strategy = selectArrayCtorLoweringStrategy(array-ctor-expr);
// for (ac-value : array-ctor-expr)
// if (ac-value is expression) {
// strategy.pushValue(ac-value);
// } else if (ac-value is implied-do) {
// strategy.startImpliedDo(lower, upper, stride);
// strategy.startImpliedDoScope();
// // lower nested values
// ...
// strategy.endImpliedDoScope();
// }
// result = strategy.finishArrayCtorLowering();
// ```
//===----------------------------------------------------------------------===//
// Definition of the lowering strategies. Each lowering strategy is defined
// as a class that implements "pushValue", "startImpliedDo" and
// "finishArrayCtorLowering". A strategy may optionally override
// "startImpliedDoScope" and "endImpliedDoScope" virtual methods
// of its base class StrategyBase.
//===----------------------------------------------------------------------===//
namespace {
/// Class provides common implementation of scope push/pop methods
/// that update StatementContext scopes and SymMap bindings.
/// They might be overridden by the lowering strategies, e.g.
/// see AsElementalStrategy.
class StrategyBase {
public:
StrategyBase(Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap)
: stmtCtx{stmtCtx}, symMap{symMap} {};
virtual ~StrategyBase() = default;
virtual void startImpliedDoScope(llvm::StringRef doName,
mlir::Value indexValue) {
symMap.pushImpliedDoBinding(doName, indexValue);
stmtCtx.pushScope();
}
virtual void endImpliedDoScope() {
stmtCtx.finalizeAndPop();
symMap.popImpliedDoBinding();
}
protected:
Fortran::lower::StatementContext &stmtCtx;
Fortran::lower::SymMap &symMap;
};
/// Class that implements the "inlined temp strategy" to lower array
/// constructors. It must be provided a boolean to indicate if the array
/// constructor has any implied-do-loop.
template <bool hasLoops>
class InlinedTempStrategyImpl : public StrategyBase,
public fir::factory::HomogeneousScalarStack {
/// Name that will be given to the temporary allocation and hlfir.declare in
/// the IR.
static constexpr char tempName[] = ".tmp.arrayctor";
public:
/// Start lowering an array constructor according to the inline strategy.
/// The temporary is created right away.
InlinedTempStrategyImpl(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType, mlir::Value extent,
llvm::ArrayRef<mlir::Value> lengths)
: StrategyBase{stmtCtx, symMap},
fir::factory::HomogeneousScalarStack{
loc, builder, declaredType,
extent, lengths, /*allocateOnHeap=*/true,
hasLoops, tempName} {}
/// Push a lowered ac-value into the current insertion point and
/// increment the insertion point.
using fir::factory::HomogeneousScalarStack::pushValue;
/// Start a fir.do_loop with the control from an implied-do and return
/// the loop induction variable that is the ac-do-variable value.
/// Only usable if the counter is able to track the position through loops.
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
if constexpr (!hasLoops)
fir::emitFatalError(loc, "array constructor lowering is inconsistent");
auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
/*unordered=*/false,
/*finalCount=*/false);
builder.setInsertionPointToStart(loop.getBody());
return loop.getInductionVar();
}
/// Move the temporary to an hlfir.expr value (array constructors are not
/// variables and cannot be further modified).
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return moveStackAsArrayExpr(loc, builder);
}
};
/// Semantic analysis expression rewrites unroll implied do loop with
/// compile time constant bounds (even if huge). So using a minimalistic
/// counter greatly reduces the generated IR for simple but big array
/// constructors [(i,i=1,constant-expr)] that are expected to be quite
/// common.
using LooplessInlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/false>;
/// A generic memory based counter that can deal with all cases of
/// "inlined temp strategy". The counter value is stored in a temp
/// from which it is loaded, incremented, and stored every time an
/// ac-value is pushed.
using InlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/true>;
/// Class that implements the "as function of the indices" lowering strategy.
/// It will lower [(scalar_expr(i), i=l,u,s)] to:
/// ```
/// %extent = max((%u-%l+1)/%s, 0)
/// %shape = fir.shape %extent
/// %elem = hlfir.elemental %shape {
/// ^bb0(%pos:index):
/// %i = %l+(%i-1)*%s
/// %value = scalar_expr(%i)
/// hlfir.yield_element %value
/// }
/// ```
/// That way, no temporary is created in lowering, and if the array constructor
/// is part of a more complex elemental expression, or an assignment, it will be
/// trivial to "inline" it in the expression or assignment loops if allowed by
/// alias analysis.
/// This lowering is however only possible for the form of array constructors as
/// in the illustration above. It could be extended to deeper independent
/// implied-do nest and wrapped in an hlfir.reshape to a rank 1 array. But this
/// op does not exist yet, so this is left for the future if it appears
/// profitable.
class AsElementalStrategy : public StrategyBase {
public:
/// The constructor only gathers the operands to create the hlfir.elemental.
AsElementalStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType, mlir::Value extent,
llvm::ArrayRef<mlir::Value> lengths)
: StrategyBase{stmtCtx, symMap}, shape{builder.genShape(loc, {extent})},
lengthParams{lengths.begin(), lengths.end()},
exprType{getExprType(declaredType)} {}
static hlfir::ExprType getExprType(fir::SequenceType declaredType) {
// Note: 7.8 point 4: the dynamic type of an array constructor is its static
// type, it is not polymorphic.
return hlfir::ExprType::get(declaredType.getContext(),
declaredType.getShape(),
declaredType.getEleTy(),
/*isPolymorphic=*/false);
}
/// Create the hlfir.elemental and compute the ac-implied-do-index value
/// given the lower bound and stride (compute "%i" in the illustration above).
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
assert(!elementalOp && "expected only one implied-do");
mlir::Value one =
builder.createIntegerConstant(loc, builder.getIndexType(), 1);
elementalOp = builder.create<hlfir::ElementalOp>(
loc, exprType, shape,
/*mold=*/nullptr, lengthParams, /*isUnordered=*/true);
builder.setInsertionPointToStart(elementalOp.getBody());
// implied-do-index = lower+((i-1)*stride)
mlir::Value diff = builder.create<mlir::arith::SubIOp>(
loc, elementalOp.getIndices()[0], one);
mlir::Value mul = builder.create<mlir::arith::MulIOp>(loc, diff, stride);
mlir::Value add = builder.create<mlir::arith::AddIOp>(loc, lower, mul);
return add;
}
/// Create the elemental hlfir.yield_element with the scalar ac-value.
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
assert(value.isScalar() && "cannot use hlfir.elemental with array values");
assert(elementalOp && "array constructor must contain an outer implied-do");
mlir::Value elementResult = value;
if (fir::isa_trivial(elementResult.getType()))
elementResult =
builder.createConvert(loc, exprType.getElementType(), elementResult);
// The clean-ups associated with the implied-do body operations
// must be initiated before the YieldElementOp, so we have to pop the scope
// right now.
stmtCtx.finalizeAndPop();
// This is a hacky way to get rid of the DestroyOp clean-up
// associated with the final ac-value result if it is hlfir.expr.
// Example:
// ... = (/(REPEAT(REPEAT(CHAR(i),2),2),i=1,n)/)
// Each intrinsic call lowering will produce hlfir.expr result
// with the associated clean-up, but only the last of them
// is wrong. It is wrong because the value is used in hlfir.yield_element,
// so it cannot be destroyed.
mlir::Operation *destroyOp = nullptr;
for (mlir::Operation *useOp : elementResult.getUsers())
if (mlir::isa<hlfir::DestroyOp>(useOp)) {
if (destroyOp)
fir::emitFatalError(loc,
"multiple DestroyOp's for ac-value expression");
destroyOp = useOp;
}
if (destroyOp)
destroyOp->erase();
builder.create<hlfir::YieldElementOp>(loc, elementResult);
}
// Override the default, because the context scope must be popped in
// pushValue().
virtual void endImpliedDoScope() override { symMap.popImpliedDoBinding(); }
/// Return the created hlfir.elemental.
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return hlfir::Entity{elementalOp};
}
private:
mlir::Value shape;
llvm::SmallVector<mlir::Value> lengthParams;
hlfir::ExprType exprType;
hlfir::ElementalOp elementalOp{};
};
/// Class that implements the "runtime temp strategy" to lower array
/// constructors.
class RuntimeTempStrategy : public StrategyBase {
/// Name that will be given to the temporary allocation and hlfir.declare in
/// the IR.
static constexpr char tempName[] = ".tmp.arrayctor";
public:
/// Start lowering an array constructor according to the runtime strategy.
/// The temporary is only created if the extents and length parameters are
/// already known. Otherwise, the handling of the allocation (and
/// reallocation) is left up to the runtime.
/// \p extent is the pre-computed extent of the array constructor, if it could
/// be pre-computed. It is std::nullopt otherwise.
/// \p lengths are the pre-computed length parameters of the array
/// constructor, if they could be precomputed. \p missingLengthParameters is
/// set to true if the length parameters could not be precomputed.
RuntimeTempStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType,
std::optional<mlir::Value> extent,
llvm::ArrayRef<mlir::Value> lengths,
bool missingLengthParameters)
: StrategyBase{stmtCtx, symMap},
arrayConstructorElementType{declaredType.getEleTy()} {
mlir::Type heapType = fir::HeapType::get(declaredType);
mlir::Type boxType = fir::BoxType::get(heapType);
allocatableTemp = builder.createTemporary(loc, boxType, tempName);
mlir::Value initialBoxValue;
if (extent && !missingLengthParameters) {
llvm::SmallVector<mlir::Value, 1> extents{*extent};
mlir::Value tempStorage = builder.createHeapTemporary(
loc, declaredType, tempName, extents, lengths);
mlir::Value shape = builder.genShape(loc, extents);
declare = builder.create<hlfir::DeclareOp>(
loc, tempStorage, tempName, shape, lengths,
fir::FortranVariableFlagsAttr{});
initialBoxValue =
builder.createBox(loc, boxType, declare->getOriginalBase(), shape,
/*slice=*/mlir::Value{}, lengths, /*tdesc=*/{});
} else {
// The runtime will have to do the initial allocation.
// The declare operation cannot be emitted in this case since the final
// array constructor has not yet been allocated. Instead, the resulting
// temporary variable will be extracted from the allocatable descriptor
// after all the API calls.
// Prepare the initial state of the allocatable descriptor with a
// deallocated status and all the available knowledge about the extent
// and length parameters.
llvm::SmallVector<mlir::Value> emboxLengths(lengths.begin(),
lengths.end());
if (!extent)
extent = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
if (missingLengthParameters) {
if (mlir::isa<fir::CharacterType>(declaredType.getEleTy()))
emboxLengths.push_back(builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), 0));
else
TODO(loc,
"parametrized derived type array constructor without type-spec");
}
mlir::Value nullAddr = builder.createNullConstant(loc, heapType);
mlir::Value shape = builder.genShape(loc, {*extent});
initialBoxValue = builder.createBox(loc, boxType, nullAddr, shape,
/*slice=*/mlir::Value{}, emboxLengths,
/*tdesc=*/{});
}
builder.create<fir::StoreOp>(loc, initialBoxValue, allocatableTemp);
arrayConstructorVector = fir::runtime::genInitArrayConstructorVector(
loc, builder, allocatableTemp,
builder.createBool(loc, missingLengthParameters));
}
bool useSimplePushRuntime(hlfir::Entity value) {
return value.isScalar() &&
!mlir::isa<fir::CharacterType>(arrayConstructorElementType) &&
!fir::isRecordWithAllocatableMember(arrayConstructorElementType) &&
!fir::isRecordWithTypeParameters(arrayConstructorElementType);
}
/// Push a lowered ac-value into the array constructor vector using
/// the runtime API.
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
if (useSimplePushRuntime(value)) {
auto [addrExv, cleanUp] = hlfir::convertToAddress(
loc, builder, value, arrayConstructorElementType);
mlir::Value addr = fir::getBase(addrExv);
if (mlir::isa<fir::BaseBoxType>(addr.getType()))
addr = builder.create<fir::BoxAddrOp>(loc, addr);
fir::runtime::genPushArrayConstructorSimpleScalar(
loc, builder, arrayConstructorVector, addr);
if (cleanUp)
(*cleanUp)();
return;
}
auto [boxExv, cleanUp] =
hlfir::convertToBox(loc, builder, value, arrayConstructorElementType);
fir::runtime::genPushArrayConstructorValue(
loc, builder, arrayConstructorVector, fir::getBase(boxExv));
if (cleanUp)
(*cleanUp)();
}
/// Start a fir.do_loop with the control from an implied-do and return
/// the loop induction variable that is the ac-do-variable value.
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
/*unordered=*/false,
/*finalCount=*/false);
builder.setInsertionPointToStart(loop.getBody());
return loop.getInductionVar();
}
/// Move the temporary to an hlfir.expr value (array constructors are not
/// variables and cannot be further modified).
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
// Temp is created using createHeapTemporary, or allocated on the heap
// by the runtime.
mlir::Value mustFree = builder.createBool(loc, true);
mlir::Value temp;
if (declare)
temp = declare->getBase();
else
temp = hlfir::derefPointersAndAllocatables(
loc, builder, hlfir::Entity{allocatableTemp});
auto hlfirExpr = builder.create<hlfir::AsExprOp>(loc, temp, mustFree);
return hlfir::Entity{hlfirExpr};
}
private:
/// Element type of the array constructor being built.
mlir::Type arrayConstructorElementType;
/// Allocatable descriptor for the storage of the array constructor being
/// built.
mlir::Value allocatableTemp;
/// Structure that allows the runtime API to maintain the status of
/// of the array constructor being built between two API calls.
mlir::Value arrayConstructorVector;
/// DeclareOp for the array constructor storage, if it was possible to
/// allocate it before any API calls.
std::optional<hlfir::DeclareOp> declare;
};
/// Wrapper class that dispatch to the selected array constructor lowering
/// strategy and does nothing else.
class ArrayCtorLoweringStrategy {
public:
template <typename A>
ArrayCtorLoweringStrategy(A &&impl) : implVariant{std::forward<A>(impl)} {}
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
return std::visit(
[&](auto &impl) { return impl.pushValue(loc, builder, value); },
implVariant);
}
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
return std::visit(
[&](auto &impl) {
return impl.startImpliedDo(loc, builder, lower, upper, stride);
},
implVariant);
}
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return std::visit(
[&](auto &impl) { return impl.finishArrayCtorLowering(loc, builder); },
implVariant);
}
void startImpliedDoScope(llvm::StringRef doName, mlir::Value indexValue) {
std::visit(
[&](auto &impl) {
return impl.startImpliedDoScope(doName, indexValue);
},
implVariant);
}
void endImpliedDoScope() {
std::visit([&](auto &impl) { return impl.endImpliedDoScope(); },
implVariant);
}
private:
std::variant<InlinedTempStrategy, LooplessInlinedTempStrategy,
AsElementalStrategy, RuntimeTempStrategy>
implVariant;
};
} // namespace
//===----------------------------------------------------------------------===//
// Definition of selectArrayCtorLoweringStrategy and its helpers.
// This is the code that analyses the evaluate::ArrayConstructor<T>,
// pre-lowers the array constructor extent and length parameters if it can,
// and chooses the lowering strategy.
//===----------------------------------------------------------------------===//
/// Helper to lower a scalar extent expression (like implied-do bounds).
static mlir::Value lowerExtentExpr(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ExtentExpr &expr) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
loc, converter, toEvExpr(expr), symMap, stmtCtx);
value = hlfir::loadTrivialScalar(loc, builder, value);
return builder.createConvert(loc, idxTy, value);
}
namespace {
/// Helper class to lower the array constructor type and its length parameters.
/// The length parameters, if any, are only lowered if this does not require
/// evaluating an ac-value.
template <typename T>
struct LengthAndTypeCollector {
static mlir::Type collect(mlir::Location,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &,
Fortran::lower::SymMap &,
Fortran::lower::StatementContext &,
mlir::SmallVectorImpl<mlir::Value> &) {
// Numerical and Logical types.
return Fortran::lower::getFIRType(&converter.getMLIRContext(), T::category,
T::kind, /*lenParams*/ {});
}
};
template <>
struct LengthAndTypeCollector<Fortran::evaluate::SomeDerived> {
static mlir::Type collect(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<Fortran::evaluate::SomeDerived>
&arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::SmallVectorImpl<mlir::Value> &lengths) {
// Array constructors cannot be unlimited polymorphic (C7113), so there must
// be a derived type spec available.
return Fortran::lower::translateDerivedTypeToFIRType(
converter, arrayCtorExpr.result().derivedTypeSpec());
}
};
template <int Kind>
using Character =
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
template <int Kind>
struct LengthAndTypeCollector<Character<Kind>> {
static mlir::Type collect(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<Character<Kind>> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::SmallVectorImpl<mlir::Value> &lengths) {
llvm::SmallVector<Fortran::lower::LenParameterTy> typeLengths;
if (const Fortran::evaluate::ExtentExpr *lenExpr = arrayCtorExpr.LEN()) {
lengths.push_back(
lowerExtentExpr(loc, converter, symMap, stmtCtx, *lenExpr));
if (std::optional<std::int64_t> cstLen =
Fortran::evaluate::ToInt64(*lenExpr))
typeLengths.push_back(*cstLen);
}
return Fortran::lower::getFIRType(&converter.getMLIRContext(),
Fortran::common::TypeCategory::Character,
Kind, typeLengths);
}
};
} // namespace
/// Does the array constructor have length parameters that
/// LengthAndTypeCollector::collect could not lower because this requires
/// lowering an ac-value and must be delayed?
static bool missingLengthParameters(mlir::Type elementType,
llvm::ArrayRef<mlir::Value> lengths) {
return (mlir::isa<fir::CharacterType>(elementType) ||
fir::isRecordWithTypeParameters(elementType)) &&
lengths.empty();
}
namespace {
/// Structure that analyses the ac-value and implied-do of
/// evaluate::ArrayConstructor before they are lowered. It does not generate any
/// IR. The result of this analysis pass is used to select the lowering
/// strategy.
struct ArrayCtorAnalysis {
template <typename T>
ArrayCtorAnalysis(
Fortran::evaluate::FoldingContext &,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr);
// Can the array constructor easily be rewritten into an hlfir.elemental ?
bool isSingleImpliedDoWithOneScalarPureExpr() const {
return !anyArrayExpr && isPerfectLoopNest &&
innerNumberOfExprIfPrefectNest == 1 && depthIfPerfectLoopNest == 1 &&
innerExprIsPureIfPerfectNest;
}
bool anyImpliedDo = false;
bool anyArrayExpr = false;
bool isPerfectLoopNest = true;
bool innerExprIsPureIfPerfectNest = false;
std::int64_t innerNumberOfExprIfPrefectNest = 0;
std::int64_t depthIfPerfectLoopNest = 0;
};
} // namespace
template <typename T>
ArrayCtorAnalysis::ArrayCtorAnalysis(
Fortran::evaluate::FoldingContext &foldingContext,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr) {
llvm::SmallVector<const Fortran::evaluate::ArrayConstructorValues<T> *>
arrayValueListStack{&arrayCtorExpr};
// Loop through the ac-value-list(s) of the array constructor.
while (!arrayValueListStack.empty()) {
std::int64_t localNumberOfImpliedDo = 0;
std::int64_t localNumberOfExpr = 0;
// Loop though the ac-value of an ac-value list, and add any nested
// ac-value-list of ac-implied-do to the stack.
const Fortran::evaluate::ArrayConstructorValues<T> *currentArrayValueList =
arrayValueListStack.pop_back_val();
for (const Fortran::evaluate::ArrayConstructorValue<T> &acValue :
*currentArrayValueList)
std::visit(Fortran::common::visitors{
[&](const Fortran::evaluate::ImpliedDo<T> &impledDo) {
arrayValueListStack.push_back(&impledDo.values());
localNumberOfImpliedDo++;
},
[&](const Fortran::evaluate::Expr<T> &expr) {
localNumberOfExpr++;
anyArrayExpr = anyArrayExpr || expr.Rank() > 0;
}},
acValue.u);
anyImpliedDo = anyImpliedDo || localNumberOfImpliedDo > 0;
if (localNumberOfImpliedDo == 0) {
// Leaf ac-value-list in the array constructor ac-value tree.
if (isPerfectLoopNest) {
// This this the only leaf of the array-constructor (the array
// constructor is a nest of single implied-do with a list of expression
// in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]".
innerNumberOfExprIfPrefectNest = localNumberOfExpr;
if (localNumberOfExpr == 1)
innerExprIsPureIfPerfectNest = !Fortran::evaluate::FindImpureCall(
foldingContext, toEvExpr(std::get<Fortran::evaluate::Expr<T>>(
currentArrayValueList->begin()->u)));
}
} else if (localNumberOfImpliedDo == 1 && localNumberOfExpr == 0) {
// Perfect implied-do nest new level.
++depthIfPerfectLoopNest;
} else {
// More than one implied-do, or at least one implied-do and an expr
// at that level. This will not form a perfect nest. Examples:
// "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]".
isPerfectLoopNest = false;
}
}
}
/// Does \p expr contain no calls to user function?
static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr &expr) {
for (const Fortran::semantics::Symbol &symbol :
Fortran::evaluate::CollectSymbols(expr))
if (Fortran::semantics::IsProcedure(symbol))
return false;
return true;
}
/// Core function that pre-lowers the extent and length parameters of
/// array constructors if it can, runs the ac-value analysis and
/// select the lowering strategy accordingly.
template <typename T>
static ArrayCtorLoweringStrategy selectArrayCtorLoweringStrategy(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type idxType = builder.getIndexType();
// Try to gather the array constructor extent.
mlir::Value extent;
fir::SequenceType::Extent typeExtent = fir::SequenceType::getUnknownExtent();
auto shapeExpr = Fortran::evaluate::GetContextFreeShape(
converter.getFoldingContext(), arrayCtorExpr);
if (shapeExpr && shapeExpr->size() == 1 && (*shapeExpr)[0]) {
const Fortran::evaluate::ExtentExpr &extentExpr = *(*shapeExpr)[0];
if (auto constantExtent = Fortran::evaluate::ToInt64(extentExpr)) {
typeExtent = *constantExtent;
extent = builder.createIntegerConstant(loc, idxType, typeExtent);
} else if (isCallFreeExpr(extentExpr)) {
// The expression built by expression analysis for the array constructor
// extent does not contain procedure symbols. It is side effect free.
// This could be relaxed to allow pure procedure, but some care must
// be taken to not bring in "unmapped" symbols from callee scopes.
extent = lowerExtentExpr(loc, converter, symMap, stmtCtx, extentExpr);
}
// Otherwise, the temporary will have to be built step by step with
// reallocation and the extent will only be known at the end of the array
// constructor evaluation.
}
// Convert the array constructor type and try to gather its length parameter
// values, if any.
mlir::SmallVector<mlir::Value> lengths;
mlir::Type elementType = LengthAndTypeCollector<T>::collect(
loc, converter, arrayCtorExpr, symMap, stmtCtx, lengths);
// Run an analysis of the array constructor ac-value.
ArrayCtorAnalysis analysis(converter.getFoldingContext(), arrayCtorExpr);
bool needToEvaluateOneExprToGetLengthParameters =
missingLengthParameters(elementType, lengths);
auto declaredType = fir::SequenceType::get({typeExtent}, elementType);
// Based on what was gathered and the result of the analysis, select and
// instantiate the right lowering strategy for the array constructor.
if (!extent || needToEvaluateOneExprToGetLengthParameters ||
analysis.anyArrayExpr ||
mlir::isa<fir::RecordType>(declaredType.getEleTy()))
return RuntimeTempStrategy(
loc, builder, stmtCtx, symMap, declaredType,
extent ? std::optional<mlir::Value>(extent) : std::nullopt, lengths,
needToEvaluateOneExprToGetLengthParameters);
// Note: the generated hlfir.elemental is always unordered, thus,
// AsElementalStrategy can only be used for array constructors without
// impure ac-value expressions. If/when this changes, make sure
// the 'unordered' attribute is set accordingly for the hlfir.elemental.
if (analysis.isSingleImpliedDoWithOneScalarPureExpr())
return AsElementalStrategy(loc, builder, stmtCtx, symMap, declaredType,
extent, lengths);
if (analysis.anyImpliedDo)
return InlinedTempStrategy(loc, builder, stmtCtx, symMap, declaredType,
extent, lengths);
return LooplessInlinedTempStrategy(loc, builder, stmtCtx, symMap,
declaredType, extent, lengths);
}
/// Lower an ac-value expression \p expr and forward it to the selected
/// lowering strategy \p arrayBuilder,
template <typename T>
static void genAcValue(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::Expr<T> &expr,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
ArrayCtorLoweringStrategy &arrayBuilder) {
// TODO: get rid of the toEvExpr indirection.
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
loc, converter, toEvExpr(expr), symMap, stmtCtx);
value = hlfir::loadTrivialScalar(loc, builder, value);
arrayBuilder.pushValue(loc, builder, value);
}
/// Lowers an ac-value implied-do \p impledDo according to the selected
/// lowering strategy \p arrayBuilder.
template <typename T>
static void genAcValue(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ImpliedDo<T> &impledDo,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
ArrayCtorLoweringStrategy &arrayBuilder) {
auto lowerIndex =
[&](const Fortran::evaluate::ExtentExpr expr) -> mlir::Value {
return lowerExtentExpr(loc, converter, symMap, stmtCtx, expr);
};
mlir::Value lower = lowerIndex(impledDo.lower());
mlir::Value upper = lowerIndex(impledDo.upper());
mlir::Value stride = lowerIndex(impledDo.stride());
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
mlir::Value impliedDoIndexValue =
arrayBuilder.startImpliedDo(loc, builder, lower, upper, stride);
arrayBuilder.startImpliedDoScope(toStringRef(impledDo.name()),
impliedDoIndexValue);
for (const auto &acValue : impledDo.values())
std::visit(
[&](const auto &x) {
genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
},
acValue.u);
arrayBuilder.endImpliedDoScope();
builder.restoreInsertionPoint(insertPt);
}
/// Entry point for evaluate::ArrayConstructor lowering.
template <typename T>
hlfir::EntityWithAttributes Fortran::lower::ArrayConstructorBuilder<T>::gen(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Select the lowering strategy given the array constructor.
auto arrayBuilder = selectArrayCtorLoweringStrategy(
loc, converter, arrayCtorExpr, symMap, stmtCtx);
// Run the array lowering strategy through the ac-values.
for (const auto &acValue : arrayCtorExpr)
std::visit(
[&](const auto &x) {
genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
},
acValue.u);
hlfir::Entity hlfirExpr = arrayBuilder.finishArrayCtorLowering(loc, builder);
// Insert the clean-up for the created hlfir.expr.
fir::FirOpBuilder *bldr = &builder;
stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, hlfirExpr); });
return hlfir::EntityWithAttributes{hlfirExpr};
}
using namespace Fortran::evaluate;
using namespace Fortran::common;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder, )